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Heart rate variability (HRV) is a quantitative method for 
calculating the variance in the length of time between 
successive heartbeats. Although healthy humans at rest are 
generally considered to have steady heart rates, there are 
minute fluctuations in the length of time between successive 
R waves, on the order of milliseconds. For more than half a 
century, a loss of HRV has been associated with autonomic 
dysfunction in the setting of illness. Perhaps the earliest 
description of HRV was by Hon and Lee in 1963 (1) with 
the observation that loss of HRV was associated with fetal 
distress and death, which formed the foundation for modern 
interpretative standards of cardiotocography (CTG) during 
labor.

In the decades that followed this observation, a wide 
range of HRV measures have been developed, evolving with 
advancements in computer technology to allow faster, more 
sophisticated calculations on increasingly large datasets. 
Alterations in HRV have been associated with increased 
risk of death after myocardial infarction (2), diabetes (3), 
depression (4), sepsis in adults (5) and neonates (6), and 
outcomes in neonatal hypoxic-ischemic encephalopathy (7). 
While many research tools for calculating HRV measures 
exist and the association of depressed HRV with illness is 

unequivocal, HRV monitoring is not a standard of care in 
the intensive care unit (ICU) or non-ICU setting.

Early warning of impending patient deterioration is an 
important and universal goal in health care. In contrast to 
doctors of yesteryear who had only a keen eye and a “sixth 
sense” at their disposal, the modern healthcare provider has 
vast sums of organized, digitized data at their fingertips. Big 
data predictive analytics hold great potential to improve 
patient health (8). However, this bounty has created a new 
problem-identifying salient and robustly predictive factors 
across heterogeneous and nuanced patient populations. A 
number of different systems have been developed to assess 
illness severity and predict morbidity or mortality. However, 
despite the initial promise of many of these systems, 
significant gaps have led to uneven adoption and failure to 
improve outcomes.

The Acute Physiology and Chronic Health Evaluation 
(APACHE) score was first proposed in 1985 by Knaus  
et al. (9) and encompasses lab values, limited vital signs, 
and acute and chronic medical conditions to provide a 
quantitative measure of illness severity and a prediction of 
mortality in the first 24 hours after admission to the ICU. 
Although currently in the fourth version (APACHE-IV), the 
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APACHE-II score remains widely used due to ease of use 
and availability of online calculators. While performance 
is high for the first 24 hours, the APACHE score has 
been criticized for its static nature, failure to account for 
subsequent treatment or the hospital course after the first 
24 hours, and interrater reliability concerns about certain 
variables (10,11).

The Sequential Organ Failure Assessment (SOFA) is 
a similar illness severity score designed with the explicit 
intent of quantifying the degree of organ failure in critical 
illness (such as sepsis) across cardiovascular, respiratory, 
neurologic, renal, hematologic, and hepatic domains (12). 
Like APACHE-II, SOFA is widely utilized in clinical 
practice. Pediatric (pSOFA) and neonatal (nSOFA) variants 
were developed more recently (13,14). Unlike APACHE-II, 
SOFA can be recalculated at regular intervals, accounting 
for longitudinal changes in the patient’s course and 
treatment. The latest revision of consensus definitions of 
sepsis in adult patients uses SOFA as key criteria (15), yet 
significant concerns about SOFA’s reliability and predictive 
performance have been raised (16,17).

Despite their utility for benchmarking ICU performance, 
research, or characterizing a septic patient, many argue 
that severity of illness scores like APACHE and SOFA 
should not be used for individual patient decision-making 
(18,19). To date, the literature lacks evidence demonstrating 
that clinical usage of SOFA leads to any change in patient 
outcome, despite widespread adoption. 

Complimentary to early warning scores, has been 
the development and deployment of so-called “Rapid 
Response” teams (RRT), predesignated medical teams 
which are available to respond at short notice to medical 
wards when a decompensating patient is recognized. The 
RRT concept is based on several observations: (I) most in-
hospital cardiac arrest occurs outside the ICU, (II) signs of 
decompensation are present 6–8 hours before arrest, and 
(III) similar dedicated teams responding to traumas led to 
improved morbidity and mortality outcomes. Although 
the implementation of RRT has been widespread, owing 
to recommendations from accreditation agencies, the 
quality of evidence supporting this practice remains low 
and inconsistent, as shown in more than one meta-analysis 
covering hundreds of studies (20,21).

While the application of Big Data analysis techniques 
may be technically possible and yield statistically impressive 
results, if it is not done with an understanding of the 
framework in which medicine is practiced, it is likely to 
struggle with real-world deployment, face significant 

adoption hurdles, and ultimately fail to positively alter 
patient outcomes. 

Quantitative early warning algorithms should seek 
to make good on the promises of outcome calculators 
and rapid response teams by providing accurate, timely 
warning of an impending event where mitigation is likely 
to prevent damage or adverse outcomes. The challenge 
lies in integrating predictive analytics with clinician 
decisions (22). In doing so, such technology should 
reduce mortality and morbidity, but only if it performs as 
intended in the population to which it is applied. Failure 
to critically evaluate a predictive algorithm has resulted in 
many reportedly accurate algorithms falling short in the 
clinical setting. The TRIPOD (Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
or Diagnosis) guidelines were developed as a standardized 
reporting format to facilitate interpretation of results across 
studies (23). Here, we review six key principles to consider 
when evaluating and reporting the results of predictive 
analytics. 

(I) Multiple metrics of accuracy should be evaluated 
and reported (24); for models developed using 
existing datasets where the outcome is known, the 
Area Under the Curve of the Receiver Operating 
Characteristic (Abbreviated AUC, AUROC, or 
ROC) is the most commonly used and an easily 
compared metric for performance evaluation. But 
AUC has drawbacks. First, it is calculated against 
every possible threshold of model output, and 
the tradeoff between sensitivity and specificity is 
calculated at each of these thresholds and summed. 
Yet, in clinical practice, the output of the model 
will result in distinct action thresholds (often only 
one action threshold, in fact). So, while AUC 
gives the modeler a wide picture of overall model 
performance, it does not measure the performance 
at the action threshold(s). Second, because AUC 
is derived from sensitivity and specificity, it is a 
backward-looking metric. Sensitivity and specificity 
start with a patient’s known diagnosis and then look 
back to determine whether the test was positive for 
patients with the diagnosis (sensitivity) or negative 
for patients without the diagnosis (specificity). 
However, in clinical practice, the outcome is not 
yet known; thus, forward-looking metrics such as 
predicted risk, relative risk, odds ratio, positive 
predictive value, and negative predictive value 
better match the clinical picture confronting the 
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provider. Each of these metrics is calculated at 
a single threshold, which holds more clinically 
relevant information, but limits the range of 
predictive information conveyed. Calibration 
plots or measures provide information on how the 
accuracy of the predicted risk compared to the 
observed risk of an event or outcome. Importantly, 
a model with excellent discrimination (AUC >0.9) 
is rarely well-calibrated in the clinical setting, 
especially for rare outcomes. 

(II) A second principle for consideration is the method 
and timing of action. Algorithms and early warning 
systems (EWSs) do not impact patients directly—
they impact patients by prompting a change in 
clinical actions or decisions. The evaluator must 
ask two questions: (i) what will the predicted 
risk generated by the algorithm prompt the 
clinician to do that will intuitively affect patient 
outcome positively? And (ii) what is the desired 
timing relative to the event that an action (i.e., 
intervention) needs to occur in order to achieve 
the improved outcome? As a simple example that 
ties these concepts together, if we know that each 
hour of delay in starting antibiotics to treat sepsis 
is measurable in terms of increased mortality, then 
if we can improve the initiation of antibiotics by  
3 hours with an EWS, we should be able to 
decrease mortality. Here we have defined an action 
(start antibiotics) that addresses the clinical event, 
and a defined time (3 hours) prior to the event at 
which to evaluate model performance.

(III) As alluded to above, a critical element of designing 
any EWS is implementation. A busy ICU is full 
of constantly alarming monitors, the vast majority 
of which are false positives and contribute to 
alarm fatigue. A new EWS should not further 
exacerbate this problem. Display of predictive 
analytics without alerts avoids this issue and allows 
users to interpret trends and risk in the context of 
the full clinical picture, but requires the clinician 
to seek out the information rather than having it 
automatically presented as an alert. Selecting an 
alert threshold that minimizes false positives will 
inherently decrease true positives, and may also 
alter the timing of the “early” warning to such a 
degree that there is no longer any action that can 
positively alter the outcome. Hence, the metrics 
of model performance must be calculated at the 

defined point in time relative to the clinical event 
(as outlined in the second principle). Continuing 
the sepsis prediction example, if we believe that 
antibiotics are over-utilized at a ratio of 10:1 in our 
patient population (which implies that standard care 
has a 9% positive predictive value), then we might 
choose a threshold that results in a 15% or 20% 
positive predictive value for early warning of sepsis, 
which would represent a dramatic improvement 
relative to the current standard of care.

(IV) Again, our previous principle has become a segue 
into the next: for any new predictive paradigm, 
quantitative comparison to the existing paradigm 
is necessary for determining if the newer, likely 
more complex, model has sufficiently greater 
performance to justify the increased computational 
and/or data input demands. Metrics of model 
performance reported for a new algorithm are 
contextual—an AUC of 0.70 or a PPV of 15% can 
benefit the patient if they represent improvements 
to the existing paradigm. Statistical tools such 
as the net reclassification index (25) quantify the 
degree to which performance shifts.

(V) Orthogonality provides a more complete picture 
of the patient. For example, in preterm infants, 
birth weight and gestational age provide nearly 
identical information, as opposed to gestational age 
and sex, which capture distinctly different elements 
of risk. Additionally, physiologic monitoring data 
stand to tell clinicians more about what they don’t 
already know than other clinical risk factors. Many 
predictive algorithms use information that the 
provider is already aware of, in order to quantitate a 
risk prediction. This approach can only benefit the 
patient to the extent that the clinician is unaware 
or unable to process these data on their own. In 
contrast, algorithms that recognize subtle patterns 
in vital signs before the change is recognized at the 
bedside can alter the timing of interventions and 
change the course of illness. In practice, clinicians 
are remarkably adept at assimilating relevant 
clinical information, and through years of training 
and practice, intuiting the status of the patient. An 
algorithm that regurgitates back to the clinician 
something that they already know might provide 
decision support once the condition is recognized, 
but will not be useful for early warning. The 
patient will only benefit to the extent the model 
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is providing information that is either new (i.e., 
orthogonal) or beyond the capacity of the clinician 
to process in absence of the model. 

(VI) Costs must be quantified. The deployment of any 
clinical decision support system involves costs, 
which are often far greater than the researcher 
initially conceives. Data acquisition interfaces, user 
interface hardware and software, regulatory and 
quality system burdens, installation and training 
costs, 24/7 technical support, and post-market 
surveillance are some of the many costs that 
must be borne. Cost-effectiveness for improving 
outcomes (e.g., reduction in length of stay, 
avoidance of complications or comorbidities) can 
be assessed against the capital or operating costs of 
the system or devices, where commercial options 
are available, or projected costs where such a 
system is envisioned. Costs should also be assessed 
along a different dimension—when predictions 
are inaccurate, what is the cost (financial, pain, 
increased length of stay) of additional testing and 
treatment for false positives? What is the cost 
(death, increased morbidities) for false negatives?

In a manuscript by Chong et al., published of Annals 
of Translational Medicine (26), the authors describe a 
quantitative algorithm that uses conventional HRV, a 
novel second-order derivative of HRV (termed HRnV), 
demographics, vital signs, and laboratory results to identify 
which infants presenting to a hospital emergency ward 
were at risk for serious bacterial infection (SBI). In building 
this model, the authors utilized several of the previously 
outlined evaluation principles—the inclusion of orthogonal 
data elements and sequential comparison of more complex 
models using multiple accuracy metrics. The reported model 
shows significant promise for identifying infants at risk for 
SBI, permitting more targeted allocation of resources, and 
improving antibiotic stewardship, all of which are likely to 
increase the cost-effectiveness of care. We look forward 
to seeing future studies of this promising technology that 
evaluate thresholds for clinical action and external validation 
in a wider patient population. Given the financial and time 
costs of clinical trials, it is imperative that new models be 
rigorously evaluated and validated before deployment in a 
clinical setting or randomized clinical trials. 
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