Fish consumption in multiple health outcomes: an umbrella review of meta-analyses of observational and clinical studies

 Yanfang Chen ${ }^{1}$, Shaohui Tang ${ }^{1}$
${ }^{1}$ Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China; ${ }^{2}$ Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; ${ }^{3}$ Department of Endocrinology, Liuzhou People's Hospital, Liuzhou, China Contributions: (I) Conception and design: S Tang, H Zhao; (II) Administrative support: H Zhao, M Wang, X Peng; (III) Provision of study materials or patients: S Tang, H Zhao, L Zhong, X Liu; (IV) Collection and assembly of data: M Wang, Y Shi, Y Li; (V) Data analysis and interpretation: S Tang, H Zhao, M Wang, Y Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
"These authors contributed equally to this work.
Correspondence to: Shaohui Tang. Department of Gastroenterology, The First Affiliated Hospital, Jinan University, 613 W. Huangpu Avenue, Guangzhou 510630, China. Email: tangshaohui206@163.com.

Abstract

Background: Omega-3 polyunsaturated fatty acids are known to be associated with numbers of health benefits, and which can be uptake from fish. The aim of this study was to evaluate the current evidence of associations between consumption of fish and diverse health outcomes. Here, we performed an umbrella review to summarize the breadth, strength, and validity of the evidence derived from meta-analyses and systematic reviews of fish consumption on all health outcomes.

Methods: The methodological quality of the included meta-analyses and the quality of the evidence were assessed by the Assessment of Multiple Systematic Reviews (AMSTAR) and the grading of recommendations, assessment, development, and evaluation (GRADE) tools, respectively. The umbrella review identified 91 meta-analyses with 66 unique health outcomes, of which 32 outcomes were beneficial, 34 showed nonsignificant associations and only one was harmful (myeloid leukemia).
Results: A total of 17 beneficial associations [all-cause mortality, prostate cancer mortality, cardiovascular disease (CVD) mortality, esophageal squamous cell carcinoma (ESCC), glioma, non-Hodgkin lymphoma (NHL), oral cancer, acute coronary syndrome (ACS), cerebrovascular disease, metabolic syndrome, age-related macular degeneration (AMD), inflammatory bowel disease (IBD), Crohn's disease (CD), triglycerides, vitamin D, high-density lipoprotein (HDL)-cholesterol, and multiple sclerosis (MS)], and eight nonsignificant associations [colorectal cancer (CRC) mortality, esophageal adenocarcinoma (EAC), prostate cancer, renal cancer, ovarian cancer, hypertension, ulcerative colitis (UC), and rheumatoid arthritis (RA)] were evaluated as moderate/high quality of evidence. According to dose-response analyses, consumption of fish, especially fatty types, seems generally safe at one-two servings per week and could exert protective effects.
Conclusions: Fish consumption is often associated with a variety of health outcomes, both beneficial and harmless, but only about 34% of the associations were graded as based on a moderate/high quality of evidence, and additional multicenter high quality randomized controlled trials (RCTs) with a large sample size are needed to verify these findings in the future.

Keywords: Fish consumption; health; umbrella review; meta-analysis; systematic review

Submitted Dec 01, 2022. Accepted for publication Feb 07, 2023. Published online Feb 15, 2023.
doi: 10.21037/atm-22-6515
View this article at: https://dx.doi.org/10.21037/atm-22-6515

Introduction

Fish is a rich source of various nutrients, and one of the most commonly consumed sustenance worldwide (1). Per capita fish consumption is steadily increasing, especially in developed countries (2), and even small effects on individual health could be contributing to public health. The nutritional components of fish, especially n-3 polyunsaturated fatty acids ($n-3$ PUFA), such as eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), have been reported to have a protective effect against cardiovascular disease (CVD), cancers, and psychiatric illnesses, to exert immunomodulatory, antiinflammatory, and anticancer effects, and to affect blood pressure, lipid metabolism, and glucose metabolism in previous experimental studies (3-10). In general, fish types can be divided into two categories; fatty fish and lean fish, among which fatty fish is more popular worldwide (11). Salmon, tuna, sardines, mackerel, and trout, are examples of fatty fish, in which a higher amount of $\mathrm{n}-3$ PUFA is found, which is more beneficial than the saturated fat found in most meats and that in lean species of fish including cod $(5,12)$.

Recently, epidemiological studies have investigated the relevance between fish consumption and a various of outcomes, including mortality, cancers, CVD, metabolic, cognitive disorders, and other health-related outcomes (13). However, there have been inconsistent conclusions

Highlight box

Key findings

- Our findings strongly support the important role for fish as part of a healthy diet, which was recommended by the dietary guidelines in various countries, such as the Australian Dietary Guidelines, Dietary Guidelines for Americans, and European Food Safety Authority (EFSA) Dietary Guidelines.

What is known and what is new?

- Recent epidemiological studies have investigated the relevance between the consumption of fish and a wide series of outcomes, including mortality, cancers, cardiovascular disease, metabolic, cognitive disorders, and other health-related outcomes;
- We performed an umbrella review to summarize the breadth, strength, and validity of the evidence derived from meta-analyses and systematic reviews of fish consumption on all health outcomes.

What is the implication, and what should change now?

- Additional multicenter, high quality RCTs with large sample sizes are needed to verify these findings in the future.
about the overall effect of fish consumption on health problems, and its precise roles vary among different health outcomes (14). Although many of the reported associations could be causal, they could also be flawed due to residual confounding, reporting bias, or other biases, which frequently over-estimate the magnitudes of the observed effects $(15,16)$. To the best of our knowledge, there are no existing umbrella reviews to comprehensively capture the breadth of health outcomes associated with fish consumption. Thus, we performed an umbrella review to summarize the broad, powerful, and efficient evidence derived from meta-analyses and systematic reviews of fish consumption on all health outcomes.

Methods

Literature search

Here, PubMed and Web of Science of Systematic Reviews were used for quantitative reviews of fish intake and health outcomes up to May 2021. The search terms were "fish" and "systematic review" OR "meta-analysis". The references of eligible articles were conducted using manual screen. The search was performed by three independent researchers (M Wang, H Zhao, and X Peng) and consensus was used to resolve any differences in the literature search.

Eligibility criteria

The inclusion criterion was systematic review and metaanalysis of randomized controlled trials (RCTs) and observational studies considering fish intake as the exposure variable of interest and diverse health conditions. Articles with the following characteristics are excluded: (I) review articles without quantitative statistical analysis; (II) studies on genetic polymorphisms related to fish consumption; (III) RCTs including in vitro studies or animal trials; (IV) articles not published in English. As we were interested only in the relevance between total fish consumption and health outcomes, articles that evaluated the exposure to a fish ingredient, for example, fish oil or omega- 3 fatty acids, were also excluded. If multiple health outcomes were presented in a single article, we included each of these separately. If a single meta-analysis divided into cohort study and casecontrol study without including the total estimated effect size for both, we lectured the results of cohort study as it was less influenced by recall and selection biases. If more than one published meta-analysis examined the same
association, we assessed only the largest meta-analysis to avoid duplicate assessment of the same primary studies. In this umbrella review, we did not screen the individual component studies included in each meta-analysis.

Data extraction

Three authors (M Wang, H Zhao, and L Zhong) extracted data separately. From each eligible meta-analysis, the following information was extracted: (I) first author and publication year; (II) study design and outcomes; (III) total population and number of cases; (IV) type of exposure, measure of exposure, and effect sizes [risk ratio, odds ratio (OR), hazard ratio (HR), 95% confidence intervals (CIs), and continuous outcomes]. Finally, the type of effect model, publication bias by Egger's test, and dose-response analyses were abstracted when possible. Discussion was used to resolve the discrepancies in the process of the extracted data.

Assessment of methodological quality

The evaluation of reporting and methodological quality of all included systematic reviews and meta-analyses were analyzed according to the 11 items of the Assessment of Multiple Systematic Reviews (AMSTAR) checklist (17). Each question could be answered with "yes", "no", "can't answer", and "not applicable". A "yes" scored 1 point, whereas the other answers, including "no", "can't answer", and "not applicable", scored 0 points. An overall score of 3 points or less was defined as the cutoff value for low quality, $4-7$ points as moderate quality, and 8 points or more as high quality.

Evaluation of the grading of evidence

The grading of recommendations, assessment, development, and evaluation (GRADE) tool was used to assess the quality of evidence for each outcome in each meta-analysis (18). Included observational studies that started with low deterministic evidence by default and were then downgraded or upgraded according to pre-specified criteria. The downgrade criteria included study boundedness [the weight of studies showed risk of bias by the Newcastle-Ottawa Scale (NOS)], inconformity (large amounts of agnogenic cross-study heterogeneity, I^{2} was equal or greater than 50% and P value was less than 0.10), indirectness (presence of factors relating to the exposures, population quantity, and
denouements that limit pervasiveness), inexactitude [95\% CIs were broad or decussated a minimally momentous discrepancy of 5% relative risk (RR): 0.95-1.05 for all denouements], and publication bias (prominent evidence of minitype-study effects). Upgrading criteria included a large size effect ($\mathrm{RR}>2$ or $\mathrm{RR}<0.5$ in defect of possible confounding factors), a dose-reactiongradient, and falloff by paradoxical confounding effects.

Statistical analysis

The estimated summary effect with its corresponding 95\% CI was abstracted from each eligible meta-analysis. The Cochran's Q test and the I^{2} statistic were performed to evaluate the heterogeneity between studies. Publication bias was calculated with Egger's test, in which a P value less than 0.1 was considered significant. Dose-response analyses were not reanalyzed since we did not examine the primary articles.

Results

Cbaracteristics of meta-analyses

The search strategy is shown in Figure 1. After following the selection process, 91 meta-analyses and systematic reviews of RCTs and observational studies with 66 unique health outcomes were identified, with most outcomes having more than one meta-analysis. The association between fish consumption and mortality is presented in Table 1 (19-27). Table 2 (14,22,27-45) presents the associations between consumption of fish and cancer outcomes (46-64), while those between fish consumption and CVD are presented Table 3 (13,65-77). Table 4 presents the associations between fish consumption and metabolic outcomes (78-87), and those between fish consumption and cognitive outcomes are presented in Table 5 (88-97). Table 6 presents the associations between fish consumption and allergic outcomes (98-100), and those between fish consumption and other outcomes are presented in Table 7 (101-106).

Quality assessment of meta-analyses

The AMSTAR rating for all studies was determined to be high for approximate 70% or moderate for approximate 30%. The most common reasons for quality downgrades were lack of a registration scheme, unsatisfactory reporting/assessment of the risk of bias in pilot studies, and inappropriate metanalytic methodology.

Identification of studies via databases and registers

Figure 1 Flowchart of the selection process. From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/.

Mortality

High consumption of fish decreased the risk of all-cause death rate (RR: $0.95 ; 95 \% \mathrm{CI}: 0.92,0.98$) and prostate cancer death (RR: 0.37 ; 95% CI: $0.18,0.74)(21,22)$. Moreover, compared with the minimum intake of fish (less than one serving per month or one to three servings per month) (one serving $=100 \mathrm{~g}$), either low (one serving/week) (RR: $0.84 ; 95 \% \mathrm{CI}: 0.75,0.95$) or moderate intake of fish (two to four servings per week) (RR: 0.79 ; $95 \% \mathrm{CI}: 0.67$, 0.92), but not high fish consumption (more than five servings per week) (RR: $0.83 ; 95 \%$ CI: $0.68,1.01$), had a significantly beneficial effect on the prevention of coronary heart disease (CHD) mortality (23). An increment intake of fish was also inversely associated with a decreased risk of aortic diseases mortality (including aortic dissection mortality), and the largest benefit was at $1-2$ servings a week (RR: 0.52; 95\% CI: 0.30, 0.88) (24). Dose-response analysis showed a one serving per day increment in fish consumption was associated with a decreased risk of allcause mortality (RR: 0.93; 95\% CI: 0.88, 0.98) (21). Consistently, the intake of one serving of fish per week was
associated with a decreased risk of CVD mortality (RR: $0.96 ; 95 \%$ CI: $0.94,0.98$) and CHD mortality (RR: 0.94; 95% CI: $0.90,0.98)(23,25)$. However, no associations were found between fish consumption and total cancer mortality (RR: $0.99 ; 95 \%$ CI: $0.94,1.05$), aortic aneurysm mortality (HR, $0.84 ; 95 \%$ CI: $0.23,1.11$), as well as colorectal cancer (CRC) mortality (RR: 1.02; 95\% CI: 0.90, 1.16) $(24,26,27)$.

Cancer outcomes

High intake of fish was associated with a reduced risk of oral cancer (OR, 0.74; 95\% CI: $0.64,0.85$), brain cancer (RR: $0.83 ; 95 \% \mathrm{CI}: 0.70,0.99$), hepatocellular carcinoma (HCC) (RR: $0.82 ; 95 \%$ CI: $0.71,0.94$), CRC (RR: $0.88 ; 95 \% \mathrm{CI}$: $0.80,0.95$), lung cancer (RR: $0.79 ; 95 \%$ CI: $0.69,0.92$), esophageal cancer (EC) (RR: 0.69; 95\% CI: $0.57,0.85$) and its subtype esophageal squamous cell carcinoma (ESCC) (RR: 0.81; 95\% CI: 0.66, 0.99), non-Hodgkin lymphoma (NHL) (RR: 0.80; 95\% CI: 0.68, 0.94), and glioma (RR: 0.82 ; 95% CI: $0.70,0.97)(28,30,32,38,39,42,43,45)$. Conversely, a positive association between fish intake and
Table 1 Associations between fish consumption and mortality

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	RCT	Effects model	1^{2}	Egger test P value
Significant associations													
All-cause mortality	Fish	Schwingshackl 2017	157,688/NA	$\mathrm{RR}^{\text {a) }}$	0.95	0.92-0.98	39	39	0	0	Random	51	NA
All-cause mortality	Fish	Schwingshackl 2017	157,688/NA	$\mathrm{RR}^{\text {b2) }}$	0.93	0.88-0.98	19	19	0	0	Random	53	NA
Prostate cancerspecific mortality	Fish	Szymanski 2010	740/49,661	$\mathrm{RR}^{\text {a) }}$	0.37	0.18-0.74	4	4	0	0	Random	83	0.22
CHD mortality	Fish	Zheng 2012	NA/315,812	$R R^{\text {b1) }}$	0.84	0.75-0.95	16	16	0	0	Random	20.1	0.265
CHD mortality	Fish	Zheng 2012	NA/315,812	$\mathrm{RR}^{\text {d }}$	0.79	0.67-0.92	13	13	0	0	Random	56.7	0.018
CVD mortality	Fish	Jayedi 2018	11,720/331,239	$\mathrm{RR}^{\text {c }}$	0.96	0.94-0.98	8	8	0	0	Random	0	NA
Mortality of total aortic diseases	Fish	Yamagishi 2019	NA	$\mathrm{HR}^{\text {c }}$	0.52	0.30-0.88	7	7	0	0	Random	NA	NA
Aortic dissection mortality	Fish	Yamagishi 2019	NA	$\mathrm{HR}^{\text {c }}$	0.40	0.18-0.89	3	3	0	0	Random	NA	NA
Non-significant associations													
Total cancer mortality	Fish	Zhang 2018	NA	$\mathrm{RR}^{\text {a) }}$	0.99	0.94-1.05	10	10	0	0	Random	39.3	>0.4
Total cancer mortality	Fish	Zhang 2018	NA	$\mathrm{RR}^{\text {b2) }}$	0.98	0.92-1.05	10	10	0	0	Random	21.3	NA
CHD mortality	Fish	Zheng 2012	NA/315,812	RR ${ }^{\text {e }}$	0.83	0.68-1.01	5	5	0	0	Random	0	NA
CRC mortality	Fish	Geelen 2007	NA	$\mathrm{RR}^{\text {a }}$	1.02	0.90-1.16	4	4	0	0	Random	0	0.66
Aortic aneurysm mortality	Fish	Yamagishi 2019	NA	$\mathrm{HR}^{\text {c }}$	0.84	0.23-1.11	5	5	0	0	Random	NA	NA

${ }^{\text {a) }}$, highest versus lowest/none; ${ }^{\text {b1) }}$, one serving/week; ${ }^{\text {b2) }}$, one serving/day; ${ }^{\text {c) }}$, $1-2$ servings/week; ${ }^{\text {d) }}, 2-4$ servings/week; ${ }^{\text {e }}$, >5 servings/week. CHD, coronary heart disease;
Cl, confidence interval; CRC, colorectal cancer; CVD, cardiovascular disease; HR, hazard ratio; MA, meta-analysis; NA, not available; RCT, randomized controlled trial; RR, CI , confidence interval; CRC, colorectal cancer; CVD, cardiovascular disease; HR, hazard ratio; MA, meta-analysis; NA, not available; RCT, randomized controlled trial; RR,
relative risk.
Table 2 Associations between fish consumption and cancer outcomes

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	Crosssectional	Effects model	I^{2}	Egger test P value
Significant associations													
Brain tumor	Fish	Lian 2017	NA	$\mathrm{RR}^{\text {a }}$	0.83	0.70-0.99	9	1	8	0	Random	37.5	0.02
Brain tumor	Fish	Lian 2017	NA	$\mathrm{RR}^{\text {b }}$	0.95	0.91-0.98	9	1	8	0	Random	51.7	NA
EC	Fish	Jiang 2016	NA	${ }^{\mathrm{RR}} \mathrm{a}$)	0.69	0.57-0.85	18	2	16	0	Random	63.6	NA
ESCC	Fish	Han 2013	4,508/NA	$\mathrm{RR}^{\text {a) }}$	0.81	0.66-0.99	17	3	14	0	Random	51.9	NA
Glioma	Fish	Zhang 2019	NA	$\mathrm{RR}^{\text {a) }}$	0.82	0.70-0.97	8	0	8	0	Random	43.6	0.088
CRC	Fish	Wu 2012	NA	$\mathrm{RR}^{\text {a) }}$	0.88	0.80-0.95	41	22	19	0	Random	56.8	0.45
Liver cancer	Fish	Huang 2015	NA/3,624	$\mathrm{RR}^{\text {a) }}$	0.82	0.71-0.94	10	5	5	0	Random	12.8	0.07
Liver cancer	Fish	Huang 2015	NA/3,624	$\mathrm{RR}^{\text {c }}$	0.94	0.91-0.98	10	5	5	0	Random	0	NA
Lung cancer	Fish	Song 2014	8,799/17,072	${ }^{\text {RRa) }}$	0.79	0.69-0.92	20	3	17	0	Random	73	0.098
Myeloid leukemia	Fish	Sergentanis 2019	416/NA	$\mathrm{RR}^{\text {a }}$	1.74	1.22-2.47	3	3	0	0	Random	0.8	NA
NHL	Fish	Yang 2020	7,696/NA	$\mathrm{RR}^{\text {a) }}$	0.80	0.68-0.94	9	2	7	0	Random	66.3	0.002
Oral cancer	Fish	Hu 2019	5,211/7,005	$\left(\mathrm{R}^{\text {a) }}\right.$	0.74	0.64-0.85	15	2	13	0	Random	25.2	0.487
Non-significant associations													
Colon cancer	Fish	Vieira 2017	10,512/NA	$\mathrm{RR}^{\text {b }}$	0.91	0.80-1.03	11	11	0	0	Random	0	NA
Rectal cancer	Fish	Vieira 2017	3,944/NA	$\mathrm{RR}^{\text {b }}$	0.84	0.69-1.02	10	10	0	0	Random	15	NA
EAC	Fish	Han 2013	1,610/NA	$\mathrm{RR}^{\text {a) }}$	0.86	0.61-1.22	6	1	5	0	Random	58.4	NA
Gastric cancer	Fish	Wu 2011	5,323/NA	$\mathrm{RR}^{\text {a) }}$	0.87	0.71-1.07	17	2	15	0	Random	73.3	0.59
Leukemia	Fish	Sergentanis 2019	2,536/NA	$\mathrm{RR}^{\text {a) }}$	1.02	0.89-1.17	3	3	0	0	Random	0	NA
CLLSLL	Fish	Sergentanis 2019	1,370/NA	$\mathrm{RR}^{\text {a) }}$	0.99	0.83-1.19	3	3	0	0	Random	0	NA
MM	Fish	Sergentanis 2019	986/NA	$\mathrm{RR}^{\text {a) }}$	0.94	0.67-1.33	3	3	0	0	Random	30.2	NA
Prostate cancer	Fish	Szymanski2010	NA/445,820	$\mathrm{RR}^{\text {a) }}$	1.01	0.90-1.14	12	12	0	0	Random	NA	0.84
Thyroid cancer	Fish	Cho 2015	NA	$\mathrm{RR}^{\text {a) }}$	1.01	0.83-1.23	16	0	16	0	Random	58	NA
Renal cancer	Fish	Bai 2013	9,324/608,753	$\mathrm{RR}^{\text {a) }}$	0.99	0.92-1.07	15	3	12	0	Fixed	23.8	0.38
Ovarian cancer	Fish	Jiang 2014	NA	$\mathrm{RR}^{\text {a }}$	1.04	0.89-1.22	5	5	0	0	Fixed	0	0.29
Breast cancer	Fish	Wu 2016	20,810/914,451	$\mathrm{RR}^{\text {a) }}$	1.04	0.97-1.12	18	18	0	0	Random	47.9	0.613

Table 2 (continued)

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	Crosssectional	Effects model	I^{2}	Egger test P value
Breast cancer	Fatty fish	Wu 2016*	NA	$\mathrm{RR}^{\text {a }}$	0.81	0.58-1.12	5	2	3	0	Random	87	NA
Breast cancer	Lean fish	Wu 2016*	NA	$\mathrm{RR}^{\text {a) }}$	1.09	1.00-1.19	4	2	2	0	Random	0	NA
Pancreatic cancer	Fish	Jiang 2019	4,994/1,794,601	$\mathrm{RR}^{\text {a }}$	1.04	0.95-1.13	13	13	0	0	Random	0	0.77
Endometrial cancer	Fish	Hou 2017	NA	$\mathrm{RR}^{\text {a }}$	1.04	0.84-1.30	12	4	8	0	Random	80.4	NA
Endometrial cancer	Fish	Hou 2017	NA	$\mathrm{RR}^{\text {c }}$	1.00	0.94-1.07	10	2	8	0	Random	81.7	NA
Bladder cancer	Fish	Li 2011	NA	$\mathrm{RR}^{\text {a }}$	0.86	0.61-1.12	14	5	9	0	Random	85.4	NA

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	RCT	Effects model	1^{2}	Egger test P value
Significant associations													
Stroke	Fish	Zhao 2019	NA	$\mathrm{HR}^{\text {a }}$	0.90	0.85-0.96	33	33	0	0	Random	39.2	0.084
Stroke	Lean fish	Qin 2018	NA	$\mathrm{RR}^{\text {a) }}$	0.81	0.67-0.99	4	4	0	0	Random	0	0.324
Hemorrhagic stroke	Fish	Zhao 2019	NA	$H R^{\text {a) }}$	0.88	0.80-0.96	13	13	0	0	Random	0	0.084
ACS	Fish	Leung Yinko 2014	8,517/408,305	$R R^{\text {a) }}$	0.78	0.70-0.88	19	11	8	0	Random	0	0.6
MI	Fish	Jayedi 2019	NA/398,221	$\mathrm{RR}^{\text {a) }}$	0.73	0.59-0.87	11	11	0	0	Random	72	NA
CHD	Fish	Bechthold 2019	NA	$\mathrm{RR}^{\text {b }}$	0.88	0.79-0.99	15	15	0	0	Random	40	NA
HF	Fish	Bechthold 2019	7,945/NA	$\mathrm{RR}^{\text {a) }}$	0.89	0.80-0.99	8	8	0	0	Random	18	NA
HF	Fish	Bechthold 2019	NA	$\mathrm{RR}^{\text {b }}$	0.80	0.67-0.95	7	7	0	0	Random	20	NA
Cerebrovascular disease	Fish	Chowdhury 2012	25,320/675,048	$\mathrm{RR}^{\text {a) }}$	0.88	0.84-0.93	21	21	0	0	Random	18.5	>0.05
Cerebrovascular disease	Fish	Chowdhury 2012	24,612/650,210	$\mathrm{RR}^{\text {d) }}$	0.94	0.90-0.98	18	18	0	0	Random	22	>0.05

[^0]Table 3 (continued)

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	RCT	Effects model	1^{2}	Egger test P value
Cerebrovascular disease	Fish	Chowdhury 2012	16,890/394,958	$\mathrm{RR}^{\text {e }}$	0.88	0.81-0.96	8	8	0	0	Random	20	>0.05
Cerebrovascular disease	Fatty fish	Chowdhury 2012	2,695/62,799	$\mathrm{RR}^{\text {a) }}$	0.84	0.72-0.98	4	4	0	0	Random	10.1	>0.05
Triglycerides	Fish	Alhassan 2017	596/1,128	MD	-0.11 mmol/	-0.18 to -0.04	14	0	0	14	Random	0	NA
Triglycerides	Fatty fish	Alhassan 2017	438/831	MD	-0.11 mmol/	-0.19 to -0.03	12	0	0	12	Random	7	NA
HDL-cholesterol	Fish	Alhassan 2017	584/1,104	MD	$0.06 \mathrm{mmol} / \mathrm{L}$	0.02-0.11	13	0	0	13	Random	28	NA
HDL-cholesterol	Fatty fish	Alhassan 2017	438/831	MD	$0.08 \mathrm{mmol} / \mathrm{L}$	0.04-0.13	12	0	0	12	Random	0	NA
Non-significant associations													
Stroke	Fatty fish	Qin 2018	NA	$\mathrm{RR}^{\text {a) }}$	0.88	0.74-1.04	5	5	0	0	Random	26.2	0.891
CHD	Fish	Bechthold 2019	16,732/NA	$\mathrm{RR}^{\text {a) }}$	0.94	0.88-1.02	22	22	0	0	Random	52	NA
Ischemic stroke	Fish	Zhao 2019	NA	$\mathrm{HR}^{\text {a) }}$	0.96	0.89-1.03	15	15	0	0	Random	27.9	0.084
Cerebrovascular disease	Lean fish	Chowdhury 2012	2,695/62,799	$\mathrm{RR}^{\text {a) }}$	1.03	0.90-1.19	4	4	0	0	Random	0	>0.05
Triglycerides	Lean fish	Alhassan 2017	158/297	MD	-0.09 mmol/	-0.26 to 0.04	2	0	0	2	Random	0	NA
HDL-cholesterol	Lean fish	Alhassan 2017	146/273	MD	-0.02 mmol/	-0.10 to 0.06	1	0	0	1	Random	NA	NA
AF	Fish	Li 2017	NA	$\mathrm{RR}^{\text {a) }}$	1.01	0.94-1.09	6	6	0	0	Random	0	NA
AF	Fish	Li 2017	NA	RR ${ }^{\text {c }}$	0.99	0.96-1.02	6	6	0	0	Random	23	NA
Hypertension	Fish	Schwingshackl 2017	NA/83,612	$\mathrm{RR}^{\text {a) }}$	1.01	0.92-1.10	8	8	0	0	Random	57	NA
Hypertension	Fish	Schwingshackl 2017	NA	$R R^{\text {b }}$	1.07	0.98-1.16	7	7	0	0	Random	74	NA
VTE	Fish	Zhang 2020	NA	$\mathrm{RR}^{\text {a) }}$	1.02	0.93-1.11	6	6	0	0	Random	33	0.176

[^1]Table 4 Associations between fish consumption and metabolic disease

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	RCT	Effects model	1^{2}	Egger test P value
Significant associations													
Metabolic Syndrome	Fish	Kim 2015	NA	$\mathrm{RR}^{\text {a) }}$	0.71	0.58-0.87	2	2	0	0	fixed	60.7	NA
Metabolic Syndrome	Fish	Kim 2015	NA	$\mathrm{RR}^{\text {c }}$	0.94	0.90-0.98	2	2	0	0	Fixed	66.3	NA
T2DM	Fatty fish	Namazi 2019	NA	$\mathrm{RR}^{\text {a) }}$	0.89	0.82-0.98	5	5	0	0	Random	0	0.42
Vitamin D	Fish	Lehmann 2015	NA	M ${ }^{\text {a }}$	$4.4 \mathrm{nmol} / \mathrm{L}$	1.7-7.1	9	0	0	9	Random	25	NA
Vitamin D	Fish	Lehmann 2015	NA	MD ${ }^{\text {d }}$	3.8 nmol/L	0.6-6.9	10	0	0	10	Random	38	NA
Vitamin D	Fish	Lehmann 2015	NA	$M D^{\text {e }}$	8.3 nmol/L	2.1-14.5	4	0	0	4	Random	0	NA
Vitamin D	Fatty fish	Lehmann 2015	NA	MD ${ }^{\text {a }}$	6.8 nmol/L	3.7-9.9	7	0	0	7	Random	0	NA
Non-significant associations													
T2DM	Fish	Schwingshackl 2017	NA/45,029	$\mathrm{RR}^{\text {a) }}$	1.04	0.95-1.13	16	16	0	0	Random	76	NA
T2DM	Fish	Schwingshackl 2017	NA	$\mathrm{RR}^{\text {b }}$	1.09	0.93-1.28	15	15	0	0	Random	84	NA
T2DM	Lean fish	Namazi 2019	NA	$\mathrm{RR}^{\text {a) }}$	1.03	0.87-1.22	5	5	0	0	Random	51	0.36
Vitamin D	Lean fish	Lehmann 2015	NA	M ${ }^{\text {a }}$	$1.9 \mathrm{nmol} / \mathrm{L}$	-2.3 to 6.0	7	0	0	7	Random	37	NA

Table 5 Associations between fish consumption and cognitive disease

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	Crosssectional	Effects model	I^{2}	Egger test P value
Significant associations													
Depression	Fish	Li 2016	NA/102,785	$\mathrm{RR}^{\text {a }}$	0.83	0.74-0.93	26	10	0	16	Random	64.5	0.419
Dementia	Fish	Bakre 2018	3,139/40,668	${ }^{R R}$ a)	0.80	0.74-0.87	8	6	2	0	Fixed	0	0.597
AD	Fish	Zeng 2017	NA	$\mathrm{RR}^{\text {a) }}$	0.80	0.65-0.97	7	7	0	0	Fixed	48.2	NA
AD	Fish	Zeng 2017	NA	$\mathrm{RR}^{\text {b }}$	0.88	0.79-0.99	7	7	0	0	Random	55.3	NA
MS	Fish	Rezaeizadeh 2022	2,370/7,170	$\mathrm{RR}^{\text {a }}$	0.77	0.64-0.92	6	6	0	0	Random	54.7	0.051
Non-significant associations													
Mild cognitive impairment	Fish	Zeng 2017	NA	$\mathrm{RR}^{\text {a }}$	1.03	0.78-1.37	2	2	0	0	Fixed	0	NA

${ }^{\text {a) }}$, highest versus lowest/none; ${ }^{\text {b) }}$, one serving/week. AD, Alzheimer's disease; CI, confidence interval; MA, meta-analysis; MS, multiple sclerosis; NA, not available; RR, relative risk.
Table 6 Associations between fish consumption and allergic disease

Outcome	Category	Study	No. of cases/total	MA metric	Estimates	95\% CI	No. of studies in MA	Cohort	Case control	RCT	Effects model	1^{2}	Egger test P value
Significant associations													
Current asthma	Fish	Papamichael2018	NA	OR ${ }^{\text {a }}$	0.75	0.60-0.95	3	3	0	0	Random	11.5	NA
Current wheeze	Fish	Papamichael2018	NA	OR ${ }^{\text {b }}$	0.62	0.48-0.80	2	2	0	0	Random	0	NA
Current asthma	Fatty fish	Papamichael2018	NA	OR ${ }^{\text {c }}$	0.35	0.18-0.67	2	2	0	0	Random	0	NA
Eczema	Fish	Zhang 2017	NA/13,823	$\mathrm{RR}^{\text {g }}$	0.61	0.47-0.80	4	4	0	0	Random	68	NA
Allergic rhinitis	Fish	Zhang 2017	NA/9,987	RR^{9}	0.54	0.36-0.81	3	3	0	0	Random	74	NA
Non-significant associations													
Current wheeze	Fish	Papamichael2018	NA	OR ${ }^{\text {d }}$	0.81	0.64-1.02	9	9	0	0	Random	82.4	NA
Asthma	Fish	Yang 2013	NA	RR ${ }^{\text {e }}$	0.90	0.69-1.18	2	2	0	0	Fixed	0	NA
Sensitization	Fish	Zhang 2017	NA/3,099	RR ${ }^{\text {f }}$	0.88	0.65-1.21	2	2	0	0	Random	33	NA
Eczema	Fish	Zhang 2017	NA/15,945	RR ${ }^{\text {n }}$	0.88	0.75-1.04	10	10	0	0	Random	53	NA
Allergic rhinitis	Fish	Zhang 2017	NA/32,589	RR ${ }^{\text {f }}$	0.95	0.62-1.45	3	3	0	0	Random	44	NA
Wheeze	Fish	Zhang 2017	NA/42,096	RR ${ }^{\text {n }}$	0.94	0.83-1.07	8	8	0	0	Random	26	NA
Asthma	Fish	Zhang 2017	NA/37,295	RR ${ }^{\text {f }}$	0.94	0.75-1.18	4	4	0	0	Random	52	NA
Wheeze	Fish	Zhang 2017	NA/8,597	RR^{9}	0.94	0.77-1.14	2	2	0	0	Random	0	NA
Asthma	Fish	Zhang 2017	NA/8,902	RR^{9}	0.84	0.69-1.02	3	3	0	0	Random	0	NA

${ }^{\text {a) }}$, children ($0-4$ years old) for 'all fish' intake versus 'no fish'; b), children ($0-4.5$ years old) for 'all fish' intake versus 'no fish'; c), 'fatty fish' intake versus 'no fatty fish' in children ($8-14$ years); ${ }^{\text {d }}$, children ($0-13$ years old) for 'all fish' intake versus 'no fish'; ${ }^{\text {e }}$, highest versus lowest in adults; ${ }^{\dagger}$, maternal fish intake during pregnancy; ${ }^{9}$), fish intake in infancy. CI , confidence interval; MA, meta-analysis; NA , not available; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk.
Table 7 Associations between fish consumption and AMD, IBD, skeletal, and arthritis disease

| Outcome | Category | Study | No. of
 cases/total | MA
 metric | Estimates | $95 \% \mathrm{Cl}$ | No. of
 studies in MA | Cohort | Case
 control | RCT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

myeloid leukemia risk (RR: 1.74; 95\% CI: 1.22, 2.47) was observed in high-compared with low-intake categories (44). The subgroup analysis by sex showed a protective effect of fish consumption on lung cancer was present only in females (39), and when the subgroup analysis was conducted by geographic location, a protective effect was only observed in HCC and lung cancer for Asian populations, as well as oral cancer and ESCC for European populations (28,32,39,43).

According to dose-response analyses, fish intake of one serving per week was associated with a decreased risk of brain cancer (RR: $0.95 ; 95 \%$ CI: $0.91,0.98$) and HCC (RR: $0.94 ; 95 \%$ CI: $0.91,0.98)(29,32)$. There was no relevance between a high intake of fish with the risk of prostate cancer (RR: 1.01; 95\% CI: 0.90, 1.14), renal cancer (RR: 0.99; 95\% CI: 0.92, 1.07), ovarian cancer (RR: 1.04; 95\% CI: 0.89, 1.22), gastric cancer (RR: 0.87; 95\% CI: 0.71, 1.07), thyroid cancer (RR: 1.01; 95\% CI: 0.83, 1.23), bladder cancer (RR: $0.86 ; 95 \%$ CI: $0.61,1.12$), breast cancer (RR: 1.04; $95 \% \mathrm{CI}$: $0.97,1.12$), endometrial cancer (RR: $1.04 ; 95 \% \mathrm{CI}: 0.84$, 1.30), pancreatic cancer (RR: $1.04 ; 95 \%$ CI: $0.95,1.13$), colon cancer (RR: $0.91 ; 95 \%$ CI: $0.80,1.03$), rectal cancer (RR: 0.84; 95\% CI: 0.69, 1.02), esophageal adenocarcinoma (EAC) (RR: 0.86; 95\% CI: 0.61, 1.22), leukemia (RR: 1.02; 95\% CI: 0.89, 1.17), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) (RR: 0.99; 95\% CI: 0.83 , 1.19), and multiple myeloma (MM) (RR: 0.94; 95\% CI: 0.67, $1.33)(22,36,38,43,44,47,48,51,53,55,56,62,63)$. However, for endometrial cancer, although the null association was observed for every one additional serving/week of fish intake, an inverse association was detected in studies conducted in Europe (RR: 0.90; 95\% CI: 0.84, 0.97) and studies adjusted for smoking (RR: 0.95 ; $95 \% \mathrm{CI}: 0.91,1.00$), and a significant positive association was detected in studies conducted in Asia (RR: 1.15; 95\% CI: 1.10, 1.21) (62). In addition, studies conducted in Europe (RR: 0.71 ; 95% CI: $0.61,0.82$) and Australia (RR: $0.76 ; 95 \%$ CI: $0.63,0.92$) have shown that fish consumption is associated with a significantly reduced risk of ovarian cancer, and studies adjusted for the use of oral contraceptives (RR: $0.79 ; 95 \% \mathrm{CI}: 0.63,0.99$) and parity (RR: $0.79 ; 95 \%$ CI: $0.63,0.99$) (48). In addition, a slightly increased risk of thyroid cancer was observed among those consuming high amounts of fish in iodine nondeficient areas (RR: 1.18; 95\% CI: 1.03, 1.35) (53).

Cardiovascular outcomes and ischemic diseases

Fish consumption was associated with a decreased risk
of acute coronary syndrome (ACS) (RR: $0.78 ; 95 \% \mathrm{CI}$: $0.70,0.88$), cerebrovascular disease (RR: $0.88 ; 95 \% \mathrm{CI}$: $0.84,0.93$), heart failure (HF) (RR: $0.89 ; 95 \% \mathrm{CI}: 0.80$, 0.99), myocardial infarction (MI) (RR: $0.73 ; 95 \%$ CI: 0.59 , 0.87), and stroke (HR, $0.90 ; 95 \% \mathrm{CI}: 0.85,0.96$), multiple sclerosis (MS) (OR: 0.77 ; $95 \% \mathrm{CI}: 0.64,0.92$), especially hemorrhagic stroke (HR, $0.88 ; 95 \% \mathrm{CI}: 0.80,0.96$) (65-69). Considering the different types of fish, the consumption of fatty fish (RR: $0.84 ; 95 \% \mathrm{CI}: 0.72,0.98$) could decrease the risk of cerebrovascular disease, while no significant association was found for lean fish (RR: $1.03 ; 95 \%$ CI: 0.90 , $1.19)$ (66). In contrast, the reduction of stroke risk was associated with the consumption of lean fish (RR: $0.81 ; 95 \%$ CI: $0.67,0.99$), but not fatty fish (RR: $0.88 ; 95 \%$ CI: 0.74 , 1.04) (13).

According to dose-response analyses, an increment of two servings per week of fish consumption could decrease the risk of cerebrovascular disease by 4% (RR: $0.96 ; 95 \% \mathrm{CI}: 0.93,0.99$) (66). A linear dose-responses analyses showed the risk of stroke decreased by $2-12 \%$ with increased fish consumption up to one-seven servings/ week (69). Also, an increase of one serving of fish per day could decrease the risk of HF (RR: $0.80 ; 95 \% \mathrm{CI}: 0.67$, 0.95) by 20%, and an increase of one serving per week was associated with a 4% decreased risk of MI (RR: 0.96; 95% CI: $0.94,0.99$) in Asia (RR: 0.94; 95\% CI: 0.91, 0.97) and a 5% reduced risk of ACS (RR: $0.95 ; 95 \% \mathrm{CI}: 0.92,0.97$), respectively $(65,67,68)$.

There was a small association between consumption of fish and CHD risk comparing the highest categories and the lowest categories, a small association was seen between fish intake and risk of CHD (RR: 0.94; 95\% CI: 0.88, 1.02), atrial fibrillation (AF) (RR: 1.01; 95\% CI: 0.94, 1.09) and venous thromboembolism (VTE) (RR: 1.02; 95\% CI: 0.93, 1.11), but neither association reached significance $(70,73,77)$. In addition, dose-responses analyses showed the intake of one serving of fish per day was associated with a 12% (RR: $0.88 ; 95 \% \mathrm{CI}: 0.79,0.99$) decreased risk of CHD, particularly for females (RR: $0.64 ; 95 \%$ CI: $0.50,0.81$) (70).

In addition, a meta-analysis of 14 RCTs showed consumption of fish, especially fatty fish, was associated with a moderately significant reduction in plasma triglycerides levels [mean difference (MD): $-0.11 \mathrm{mmol} /$ L; 95\% CI: -0.18, 0.04] and an increase in high-density lipoprotein (HDL) levels (MD: $0.06 \mathrm{mmol} / \mathrm{L} ; 95 \% \mathrm{CI}: 0.02$, $0.11)$ (74). Highest compared with the lowest category (RR: $1.01 ; 95 \% \mathrm{CI}: 0.92,1.10$) and dose-responses analyses (RR: $1.07 ; 95 \% \mathrm{CI}: 0.98,1.16$) of fish intake were not statistically
significantly associated with the risk of hypertension, respectively (75).

Metabolic outcomes

The consumption of fish increased serum 25-hydroxyvitamin D $[25(\mathrm{OH}) \mathrm{D}]$ concentrations by a weighted MD of $4.4 \mathrm{nmol} / \mathrm{L}$ (MD: $4.4 \mathrm{nmol} / \mathrm{L} ; 95 \% \mathrm{CI}: 1.7,7.1$), and long-term (~ 6 months) (MD: $8.3 \mathrm{nmol} / \mathrm{L} ; 95 \% \mathrm{CI}: 2.1$, 14.5) consumption showed a higher MD than short-term (4-8 weeks) (MD: $3.8 \mathrm{nmol} / \mathrm{L} ; 95 \% \mathrm{CI}: 0.6,6.9$). Considering the type of the fish, the consumption of fatty fish resulted in a MD of $6.8 \mathrm{nmol} / \mathrm{L}$ (MD: $6.8 \mathrm{nmol} / \mathrm{L} ; 95 \%$ CI: 3.7, 9.9), whereas for lean fish the MD was $1.9 \mathrm{nmol} / \mathrm{L}$ (MD: $1.9 \mathrm{nmol} / \mathrm{L} ; 95 \% \mathrm{CI}:-2.3,6.0$) (78). Moreover, consumption of fish was associated with a reduced risk of metabolic syndrome (MetS) (RR: 0.71 ; $95 \% \mathrm{CI}: 0.58,0.87$), and an increase of one serving/week fish intake could reduce the risk by 6% (RR: $0.94 ; 95 \%$ CI: $0.90,0.98$) (79). In addition, total fish (RR: $1.04 ; 95 \% \mathrm{CI}: 0.95,1.13$) and lean fish consumption (RR: 1.03 ; 95\% CI: 0.87, 1.22) were not significantly related to the risk of type 2 diabetes mellitus (T2DM), while fatty fish consumption (RR: $0.89 ; 95 \% \mathrm{CI}$: $0.82,0.98$) was inversely associated with the risk of T2DM $(80,82)$.

Cognitive outcomes

Highest compared with the lowest category of fish intake was associated with a decreased risk of developing depression (RR: $0.83 ; 95 \% \mathrm{CI}: 0.74,0.93$) in Europe (RR: $0.72 ; 95 \% \mathrm{CI}: 0.63,0.82$) (88). Analyses of high versus low consumption of fish indicated dementia risk was reduced by 20% (RR: $0.80 ; 95 \%$ CI: $0.74,0.87$) regardless of income level, and dose-response models showed fish consumption could decrease the risk of dementia by $16 \%, 22 \%$, and 23% for low level consumers (consumed fish once weekly) (RR: 0.84; 95% CI: $0.72,0.98$), middle level consumers (\geq twice weekly) (RR: $0.78 ; 95 \%$ CI: $0.68,0.90$), and high level consumers (\geq once daily) (RR: 0.77 ; $95 \% \mathrm{CI}: 0.61$, 0.98), respectively (94). For Alzheimer's disease (AD), an inverse association was observed for the highest compared with the lowest fish intake category (RR: $0.80 ; 95 \%$ CI: 0.65 , 0.97), and for each additional one serving per week (RR: $0.88 ; 95 \%$ CI: $0.79,0.99)(95)$. However, increasing fish intake had no obvious effect on the risk of mild cognitive impairment (MCI) (RR: 1.03; 95\% CI: 0.78, 1.37) (96). Fish consumption was also associated with a decreased risk of

MS (OR, 0.77; 95\% CI: 0.64, 0.92) (97).

Allergic outcomes

Comparing the highest group of fish consumption with the lowest group, no significant association was found between fish and asthma among adults (98). Additionally, maternal fish intake during pregnancy did not affect any atopic outcome in children and adults, whereas total fish or fatty fish consumption during the infancy period seemed to have a protective impact on asthma, wheeze, eczema, and allergic rhinitis in children, especially up to 4.5 years old or $8-14$ years old, respectively $(99,100)$.

Other outcomes

There was no dose-response association between fish consumption and risk of rheumatoid arthritis (RA) (RR: $0.96 ; 95 \%$ CI: 0.91, 1.01) (101). Fish consumption was inversely associated with risk of hip fracture [estimated size (ES), 0.88; 95% CI: $0.79,0.98$] (102), while it conferred a beneficial effect on the development of agerelated macular degeneration (AMD) (RR: 0.82; 95\% CI: $0.75,0.90$), regardless of whether early (RR: $0.84 ; 95 \%$ CI: $0.73,0.97$) or late AMD (RR: $0.79 ; 95 \% \mathrm{CI}: 0.70$, 0.90) (103). In addition, using a random-effects model, a marginally negative association was observed between fish consumption and inflammatory bowel disease (IBD) (ES, $0.68 ; 95 \% \mathrm{CI}: 0.46,1.00$), while a strong inverse association regarding Crohn's disease (CD) (ES, 0.54; 95\% CI: $0.31,0.96$) was detected in studies conducted in Asian countries (ES, $0.54 ; 95 \% \mathrm{CI}: 0.37,0.78$) and in studies adjusted for BMI and smoking (ES, $0.35 ; 95 \%$ CI: 0.19 , 0.66 (106).

Heterogeneity

Approximately, 44% of the meta-analyses had low heterogeneity, with $\mathrm{I}^{2}<25 \% ; 8 \%$ had very high heterogeneity, with $\mathrm{I}^{2}>75 \%$; and 42% had moderate-to-high heterogeneity, with I^{2} ranging from $25-75 \%$. The individual studies in each meta-analysis differed for a number of factors, including geography and ethnicity, treatment differences, methods used to determine fish consumption, measurements of fish consumption, duration of followup, and evaluation of outcomes. The remaining 6% of the included meta-analyses did not disclose the heterogeneity of the studies that included specific comparisons, nor were
they re-analyzed using randomized or fixed models.

Publication bias

Egger's regression test was performed in the present umbrella review. P value for publication bias were reported in 36 included meta-analyses, three of which reported statistical evidence of publication bias. These included CHD mortality ($\mathrm{P}=0.018$), NHL $(\mathrm{P}=0.002)$, and brain tumor $(\mathrm{P}=0.02)(23,29,45)$. While not report significant publication bias was reported in the remaining metaanalyses, in all probability that unmeasured publication bias exists in numerous of the conclusive evaluations we have rendered and not assessed.

Strength of epidemiologic evidence

A total of 15 inverse associations (including all-cause mortality, prostate cancer mortality, CVD mortality, ESCC, glioma, oral cancer, NHL, ACS, cerebrovascular disease, triglycerides, MetS, AMD, IBD, CD, and MS), two positive associations (vitamin D and HDL-cholesterol), and nine nonsignificant associations [comprising CRC mortality, EAC, prostate cancer, renal cancer, ovarian cancer, hypertension, VTE, ulcerative colitis (UC), and RA] showed moderate/high epidemiologic evidence.

In total, 15 additional inverse associations (mortality of total aortic diseases, aortic dissection mortality, brain cancer, EC, CRC, liver cancer, lung cancer, stroke, hemorrhagic stroke, MI, HF, depression, dementia, AD , and hip fracture) and one positive association (myeloid leukemia) showed statistically significant risk estimates, and their credibility was weak.

The other 24 outcomes (such as total cancer mortality, aortic aneurysm mortality, CHD mortality, colon cancer, rectal cancer, gastric cancer, leukemia, CLL/SLL, MM, thyroid cancer, breast cancer, pancreatic cancer, endometrial cancer, bladder cancer, ischemic stroke, CHD, AF, T2DM, asthma, sensitization, eczema, allergic rhinitis, wheeze, and MCI) did not show significant associations, and the quality of evidence was low or very low.

Discussion

Main findings

This umbrella review of meta-analyses of RCTs and observational studies provides a comprehensive overview
and critical assessment of the consumption of fish associated with human health. A total of 64 outcomes, including mortality, cancer, CVD, metabolic, cognitive, allergy, and other outcomes, have been studied. The methodologic quality varied considerably across the published metaanalyses. The quality of evidence was graded as moderate or high for all-cause mortality, prostate cancer mortality, CVD mortality, ESCC, oral cancer, ACS, cerebrovascular disease, triglycerides, MetS, AMD, IBD, and CD, for which fish consumption reduced their risks; for vitamin D and HDLcholesterol, whose levels were raised by fish consumption; and for CRC mortality, EAC, prostate cancer, renal cancer, ovarian cancer, hypertension, UC, and RA, whose risks were not related to fish consumption. For the other outcomes, the quality of evidence was low or very low, which might be explained by the high proportion of meta-analyses that included fewer than five studies or had high heterogeneity.

Outcome interpretation

Fish consumption and mortality outcomes

The results showed a higher intake of fish was associated with a decreased risk of all-cause mortality, prostate cancer mortality, and CVD mortality but no association between fish consumption and CRC mortality was found, for which we found moderate quality of evidence $(21,22,25,27)$. Our results support the recommendation made by the recent 2015-2020 Dietary Guidelines for Americans to consume more than 227 g fish per week (107). It is worth noting that subgroup analysis by geographic location showed a significant association of fish consumption with allcause mortality for studies conducted in Asia, but not in Europe (21). The different results appeared possibly due to the different dietary pattern of fish consumption in Asian and Western populations, of which the former have a higher intake, which may impact the significance of the results (25).

Although intake of fish had a protective effect on the risk of CHD mortality (low and moderate fish consumption, not high fish consumption), total aortic disease and its subtype aortic dissection mortality, total cancer mortality, and aortic aneurysm mortality, the quality of evidence was only low and further investigation is needed $(23,24,26)$.

Fish consumption and cancer outcomes

Our findings confirm Australian Dietary Guidelines recommendations for a higher intake of fish, and we observed a moderate quality of evidence for an inverse association with oral cancer, glioma, NHL, and ESCC,
and a nonsignificant association with prostate cancer, renal cancer, ovarian cancer, and EAC (22,28,30,43,45,47,48,108).

The World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) recommend a higher intake of fish, for which we also found an inverse association with the risk of brain cancer, EC, CRC, liver cancer, and lung cancer, but the quality of evidence was low $(29,32,38,39,42,109)$. We also found low quality of evidence for a positive association of fish intake with the risk of myeloid leukemia, and a null association with the risk of colon cancer, rectal cancer, gastric cancer, leukemia, CLL/SLL, MM, thyroid cancer, breast cancer, pancreatic cancer, endometrial cancer, and bladder cancer (36,44,51,53,55,56,62,63). It may be that heavy metals, which are frequently linked to the increased intake of fish, lead to the increased risk of myeloid leukemia in the highest fish consumption levels $(44,110,111)$. These results indicate that more studies are needed. Additionally, a previous metaanalysis indicated an increase of one serving/week of salted fish intake, but not fresh fish, was significantly associated with an increased risk of gastric cancer (50). This may be because highly salted or smoked fish products can contain chemical carcinogens (112).

Fish consumption and cardiovascular outcomes

Recommendations for improving the cardiovascular health of all Americans with a dietary pattern including consumption of fish at least one to two servings per week, are included in the guidelines of the American Heart Association (AHA) Goals and Metrics Committee of the Strategic Planning Task Force issued 2020 Impact Goals (113). This information accords with our results which show a higher intake of fish was associated with a decreased level or risk of ACS, cerebrovascular disease and triglycerides, and an increased level of HDL-cholesterol, for which we found high quality of evidence $(65,66,74)$. Particularly, fatty fish, but not lean fish could play an important role in the prevention of cerebrovascular diseases (66). In addition, we found moderate quality evidence that consumption of fish was not significantly associated with the risk of hypertension and VTE $(75,77)$.

Our results also confirmed the inverse association of fish consumption with the risk of stroke, hemorrhagic stroke, MI, and HF, and a null association with ischemic stroke, CHD, and AF, but the quality of evidence for these associations was low, indicating further investigation is needed (67-70,73). Interestingly, lean fish, but not fatty fish, could confer a decreased risk of stroke, which was
somewhat opposite to the general knowledge that fatty fish is "better" than lean fish (13). Nevertheless, a Norwegian diet study gives a possible explanation that lean fish contains more iodine, selenium, and less energy than fatty fish, which are beneficial to health (114). Generally, both fatty fish and lean fish are good for cardiovascular and cerebrovascular health, and frequent consumption of fatty fish is better than lean fish.

Fish consumption and other outcomes

In this umbrella review, we found high quality evidence that consumption of fish was associated with an increased level of vitamin D , while it was not significantly associated with the risk of RA $(78,101)$. A randomized intervention trial came to similar conclusions concerning the beneficial association between fish intake and the level of vitamin D (115). In particular, long-term fish consumption or consumption of fatty fish resulted in higher serum $25(\mathrm{OH}) \mathrm{D}$ concentrations than short-term or lean fish, respectively (78). Moreover, our findings showed that higher consumption of fish was associated with a decreased risk of MetS, AMD, IBD, and CD but no association between fish consumption and UC was found, for which we found a moderate quality of evidence $(79,103,106)$.

Although we also observed a reduced risk of MS, depression, dementia, AD , and hip fracture, and a null association of T2DM and MCI with consumption of fish, respectively, the quality of evidence for these associations was low and further investigation is needed $(80,88,94,95,97,102)$.

Possible mechanisms

Although the precise mechanisms by which fish consumption beneficially affects health are not wellestablished, fish is a rich source of $n-3$ PUFA, vitamins, essential amino acids, and trace elements, which exert chemopreventive activity, anti-carcinogenic, antiinflammatory, and synergistic antioxidant properties, which may at least partly explain its protective effects (116-119). For example, fish is a good source of trace elements, especially selenium, which may have synergistic antioxidant effects against all-cause mortality (21). In addition, n-3 PUFA, which has antiarrhythmic properties and reduces serum triacylglycerol (TAG) and platelet aggregation, has been observed to play an important role in the protective effect of fish on CHD risk $(120,121)$. Also, it has been shown that higher consumption of n -3 PUFA may be associated with lower risk of cancer,
partially due to its favorable effects of chemopreventive activity, including inhibition of eicosanoid biosynthesis derived from arachidonic acid, promotion of vasodilation, attenuation of inflammation, inhibition of mutations, and enhancement of cell apoptosis (122-124). Fish is also a good source of vitamin D , which has been linked to inverse T2DM risk (125). Considering the synergic effect of many components in fish, such as n-3 PUFA, trace elements, amino acid, and vitamins, comprehensive analysis of the potential mechanism behind the association between fish consumption and health is necessary.

Strengths and limitations

There are also some restrictions that should be considered. Firstly, this umbrella reviewer relied on existing systematic reviews and meta-analyses. As a consequence, the quality of the included articles might impact the quality of systematic reviews and meta-analyses directly. Secondly, although a large number of studies were included in the present meta-analysis, potential publication bias should also be considered. Thirdly, reporting bias might cause a form of reverse causation, and fourthly, a number of health-related outcomes were inappropriately covered, and this gap has been emphasized. Fifthly, due to the lack of a dose-response meta-analysis, we did not examine the original article and therefore did not conduct a re-analysis, and finally, we did not go back to original publications and re-calculate meta-analyses and we do not have information about confounding. The outcomes such as total cancer mortality, aortic aneurysm mortality, CHD mortality, colon cancer, rectal cancer, gastric cancer, leukemia, CLL/SLL, MM, thyroid cancer, breast cancer, pancreatic cancer, endometrial cancer, bladder cancer, ischemic stroke, CHD, AF, T2DM, asthma, sensitization, eczema, allergic rhinitis, wheeze, and MCI did not show significant associations, and the quality of evidence was low or very low. Further research is required.

Conclusions

Taken together, in this umbrella review, the relevance between fish consumption and multiple health outcomes has been examined in several meta-analyses. Evidence indicates fish consumption often has beneficial or harmless associations with various health outcomes. Although the methodological quality of the included meta-analyses was mostly high, the quality of evidence was moderate/high
only for 15 inverse associations (all-cause mortality, prostate cancer mortality, CVD mortality, glioma, NHL, ESCC, oral cancer, ACS, cerebrovascular disease, MetS, AMD, IBD, CD, triglycerides, and MS), two positive associations (vitamin D and HDL-cholesterol), and eight nonsignificant associations (CRC mortality, EAC, prostate cancer, renal cancer, ovarian cancer, hypertension, UC, and RA). According to dose-response analyses, consumption of fish, especially fatty types, seems generally safe at one to two servings per week and could exert obvious protective effects. Our findings strongly support the important role of fish as part of a healthy diet, which was recommended by the dietary guidelines in various countries, such as Australian Dietary Guidelines, Dietary Guidelines for Americans, and European Food Safety Authority (EFSA) Dietary Guidelines $(108,126,127)$. Additional multicenter high quality RCTs with a large sample size are needed to verify these findings in the future.

Acknowledgments

Funding: This work was supported by the Health Commission Funding Project of Hunan Province (No. B2019145), Science and Technology Funding Project of Chenzhou City (No. zdyf201848), and Science and Technology Funding Project of Hunan Province (No. 2017SK4010). The content of the paper is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Footnote

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://atm. amegroups.com/article/view/10.21037/atm-22-6515/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Xu M, Fang YJ, Chen YM, et al. Higher freshwater fish and sea fish intake is inversely associated with colorectal cancer risk among Chinese population: a case-control study. Sci Rep 2015;5:12976.
2. Moratal S, Dea-Ayuela MA, Cardells J, et al. Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020;9:1913.
3. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol 2005;6:1191-7.
4. Raatz SK, Silverstein JT, Jahns L, et al. Issues of fish consumption for cardiovascular disease risk reduction. Nutrients 2013;5:1081-97.
5. He K. Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease--eat fish or take fish oil supplement? Prog Cardiovasc Dis 2009;52:95-114.
6. Bourre JM. Dietary omega-3 fatty acids for women. Biomed Pharmacother 2007;61:105-12.
7. Del Brutto OH, Mera RM, Gillman J, et al. Dietary Oily Fish Intake and Blood Pressure Levels: A Population-Based Study. J Clin Hypertens (Greenwich) 2016;18:337-41.
8. Rajaram S, Haddad EH, Mejia A, et al. Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: a randomized controlled study. Am J Clin Nutr 2009;89:1657S-63S.
9. Sittiprapaporn P, Bumrungpert A, Suyajai P, et al. Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial. Foods 2022;11:2595.
10. Brown MD, Hart CA, Gazi E, et al. Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br J Cancer 2006;94:842-53.
11. Welch AA, Lund E, Amiano P, et al. Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 2002;5:1273-85.
12. Nahab F, Pearson K, Frankel MR, et al. Dietary fried fish intake increases risk of CVD: the REasons for Geographic

And Racial Differences in Stroke (REGARDS) study. Public Health Nutr 2016;19:3327-36.
13. Qin ZZ, Xu JY, Chen GC, et al. Effects of fatty and lean fish intake on stroke risk: a meta-analysis of prospective cohort studies. Lipids Health Dis 2018;17:264.
14. Lee KH, Seong HJ, Kim G, et al. Consumption of Fish and $\omega-3$ Fatty Acids and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Adv Nutr 2020;11:1134-49.
15. Ioannidis JP. Why most discovered true associations are inflated. Epidemiology 2008;19:640-8.
16. Corrigan-Curay J, Sacks L, Woodcock J. Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness. JAMA 2018;320:867-8.
17. Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007;7:10.
18. Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol 2011;64:1311-6.
19. Wan Y, Zheng J, Wang F, et al. Fish, long chain omega-3 polyunsaturated fatty acids consumption, and risk of allcause mortality: a systematic review and dose-response meta-analysis from 23 independent prospective cohort studies. Asia Pac J Clin Nutr 2017;26:939-56.
20. Zhao LG, Sun JW, Yang Y, et al. Fish consumption and all-cause mortality: a meta-analysis of cohort studies. Eur J Clin Nutr 2016;70:155-61.
21. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2017;105:1462-73.
22. Szymanski KM, Wheeler DC, Mucci LA. Fish consumption and prostate cancer risk: a review and metaanalysis. Am J Clin Nutr 2010;92:1223-33.
23. Zheng J, Huang T, Yu Y, et al. Fish consumption and CHD mortality: an updated meta-analysis of seventeen cohort studies. Public Health Nutr 2012;15:725-37.
24. Yamagishi K, Iso H, Shimazu T, et al. Fish intake and risk of mortality due to aortic dissection and aneurysm: A pooled analysis of the Japan cohort consortium. Clin Nutr 2019;38:1678-83.
25. Jayedi A, Shab-Bidar S, Eimeri S, et al. Fish consumption and risk of all-cause and cardiovascular mortality: a doseresponse meta-analysis of prospective observational studies. Public Health Nutr 2018;21:1297-306.
26. Zhang Z, Chen GC, Qin ZZ, et al. Poultry and Fish

Consumption in Relation to Total Cancer Mortality: A Meta-Analysis of Prospective Studies. Nutr Cancer 2018;70:204-12.
27. Geelen A, Schouten JM, Kamphuis C, et al. Fish consumption, $\mathrm{n}-3$ fatty acids, and colorectal cancer: a meta-analysis of prospective cohort studies. Am J Epidemiol 2007;166:1116-25.
28. Hu S, Yu J, Wang Y, et al. Fish consumption could reduce the risk of oral cancer in Europeans: A meta-analysis. Arch Oral Biol 2019;107:104494.
29. Lian W, Wang R, Xing B, et al. Fish intake and the risk of brain tumor: a meta-analysis with systematic review. Nutr J 2017;16:1.
30. Zhang Z, Xin J. Dietary fresh fish and processed fish intake and the risk of glioma: A meta-analysis of observational studies. Cell Mol Biol (Noisy-le-grand) 2019;65:48-53.
31. Lei H, To C, Lei U. Association between fish intake and glioma risk: a systematic review and meta-analysis. J Int Med Res 2020;48:300060520939695.
32. Huang RX, Duan YY, Hu JA. Fish intake and risk of liver cancer: a meta-analysis. PLoS One 2015;10:e0096102.
33. Gao M, Sun K, Guo M, et al. Fish consumption and n-3 polyunsaturated fatty acids, and risk of hepatocellular carcinoma: systematic review and meta-analysis. Cancer Causes Control 2015;26:367-76.
34. Wang CB, Fu QX, Liu HY, et al. Fish consumption doesn't reduce the risk of hepatocellular carcinoma. Int J Clin Exp Med 2015;8:10825-34.
35. Luo J, Yang Y, Liu J, et al. Systematic review with metaanalysis: meat consumption and the risk of hepatocellular carcinoma. Aliment Pharmacol Ther 2014;39:913-22.
36. Vieira AR, Abar L, Chan DSM, et al. Foods and beverages and colorectal cancer risk: a systematic review and metaanalysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann Oncol 2017;28:1788-802.
37. Pham NM, Mizoue T, Tanaka K, et al. Fish consumption and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 2013;43:935-41.
38. Wu S, Feng B, Li K, et al. Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. Am J Med 2012;125:551-9.e5.
39. Song J, Su H, Wang BL, et al. Fish consumption and lung cancer risk: systematic review and meta-analysis. Nutr Cancer 2014;66:539-49.
40. Gnagnarella P, Caini S, Maisonneuve P, et al.

Carcinogenicity of High Consumption of Meat and Lung

Cancer Risk Among Non-Smokers: A Comprehensive Meta-Analysis. Nutr Cancer 2018;70:1-13.
41. Salehi M, Moradi-Lakeh M, Salehi MH, et al. Meat, fish, and esophageal cancer risk: a systematic review and doseresponse meta-analysis. Nutr Rev 2013;71:257-67.
42. Jiang G, Li B, Liao X, et al. Poultry and fish intake and risk of esophageal cancer: A meta-analysis of observational studies. Asia Pac J Clin Oncol 2016;12:e82-91.
43. Han YJ, Li J, Huang W, et al. Fish consumption and risk of esophageal cancer and its subtypes: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr 2013;67:147-54.
44. Sergentanis TN, Ntanasis-Stathopoulos I, Tzanninis IG, et al. Meat, fish, dairy products and risk of hematological malignancies in adults - a systematic review and metaanalysis of prospective studies. Leuk Lymphoma 2019;60:1978-90.
45. Yang L, Shi WY, Xu XH, et al. Fish consumption and risk of non-Hodgkin lymphoma: A meta-analysis of observational studies. Hematology 2020;25:194-202.
46. Wang YZ, Wu QJ, Zhu J, et al. Fish consumption and risk of myeloma: a meta-analysis of epidemiological studies. Cancer Causes Control 2015;26:1307-14.
47. Bai HW, Qian YY, Shi BY, et al. The association between fish consumption and risk of renal cancer: a meta-analysis of observational studies. PLoS One 2013;8:e81939.
48. Jiang PY, Jiang ZB, Shen KX, et al. Fish intake and ovarian cancer risk: a meta-analysis of 15 case-control and cohort studies. PLoS One 2014;9:e94601.
49. Kolahdooz F, van der Pols JC, Bain CJ, et al. Meat, fish, and ovarian cancer risk: Results from 2 Australian casecontrol studies, a systematic review, and meta-analysis. Am J Clin Nutr 2010;91:1752-63.
50. Fang X, Wei J, He X, et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer 2015;51:2820-32.
51. Wu S, Liang J, Zhang L, et al. Fish consumption and the risk of gastric cancer: systematic review and meta-analysis. BMC Cancer 2011;11:26.
52. Poorolajal J, Moradi L, Mohammadi Y, et al. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol Health 2020;42:e2020004.
53. Cho YA, Kim J. Dietary Factors Affecting Thyroid Cancer Risk: A Meta-Analysis. Nutr Cancer 2015;67:811-7.
54. Liu ZT, Lin AH. Dietary factors and thyroid cancer risk: a meta-analysis of observational studies. Nutr Cancer 2014;66:1165-78.
55. Li Z, Yu J, Miao Q, et al. The association of fish consumption with bladder cancer risk: a meta-analysis. World J Surg Oncol 2011;9:107.
56. Wu J, Zeng R, Huang J, et al. Dietary Protein Sources and Incidence of Breast Cancer: A Dose-Response MetaAnalysis of Prospective Studies. Nutrients 2016;8:730.
57. Zheng JS, Hu XJ, Zhao YM, et al. Intake of fish and marine $\mathrm{n}-3$ polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 2013;346:f3706.
58. Zhihui W, Weihua Y, Zupei W, et al. Fish consumption and risk of breast cancer: meta-analysis of 27 observational studies. Nutr Hosp 2016;33:282.
59. Nindrea RD, Aryandono T, Lazuardi L, et al. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac J Cancer Prev 2019;20:327-32.
60. Kim AE, Lundgreen A, Wolff RK, et al. Red meat, poultry, and fish intake and breast cancer risk among Hispanic and Non-Hispanic white women: The Breast Cancer Health Disparities Study. Cancer Causes Control 2016;27:527-43.
61. Bandera EV, Kushi LH, Moore DF, et al. Consumption of animal foods and endometrial cancer risk: a systematic literature review and meta-analysis. Cancer Causes Control 2007;18:967-88.
62. Hou R, Yao SS, Liu J, et al. Dietary n-3 polyunsaturated fatty acids, fish consumption, and endometrial cancer risk: a meta-analysis of epidemiological studies. Oncotarget 2017;8:91684-93.
63. Jiang W, Wang M, Jiang HZ, et al. Meta-analysis of fish consumption and risk of pancreatic cancer in 13 prospective studies with 1.8 million participants. PLoS One 2019;14:e0222139.
64. Qin B, Xun P, He K. Fish or long-chain (n-3) PUFA intake is not associated with pancreatic cancer risk in a metaanalysis and systematic review. J Nutr 2012;142:1067-73.
65. Leung Yinko SS, Stark KD, Thanassoulis G, et al. Fish consumption and acute coronary syndrome: a metaanalysis. Am J Med 2014;127:848-57.e2.
66. Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 2012;345:e6698.
67. Djoussé L, Akinkuolie AO, Wu JH, et al. Fish consumption, omega-3 fatty acids and risk of heart failure: a meta-analysis. Clin Nutr 2012;31:846-53.
68. Jayedi A, Zargar MS, Shab-Bidar S. Fish consumption and risk of myocardial infarction: a systematic review and dose-
response meta-analysis suggests a regional difference. Nutr Res 2019;62:1-12.
69. Zhao W, Tang H, Yang X, et al. Fish Consumption and Stroke Risk: A Meta-Analysis of Prospective Cohort Studies. J Stroke Cerebrovasc Dis 2019;28:604-11.
70. Bechthold A, Boeing H, Schwedhelm C, et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019;59:1071-90.
71. Larsson SC, Orsini N. Fish consumption and the risk of stroke: a dose-response meta-analysis. Stroke 2011;42:3621-3.
72. Xun P, Qin B, Song Y, et al. Fish consumption and risk of stroke and its subtypes: accumulative evidence from a meta-analysis of prospective cohort studies. Eur J Clin Nutr 2012;66:1199-207.
73. Li FR, Chen GC, Qin J, et al. DietaryFish and LongChain n-3 Polyunsaturated Fatty Acids Intake and Risk of Atrial Fibrillation: A Meta-Analysis. Nutrients 2017;9:955.
74. Alhassan A, Young J, Lean MEJ, et al. Consumption of fish and vascular risk factors: A systematic review and meta-analysis of intervention studies. Atherosclerosis 2017;266:87-94.
75. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2017;8:793-803.
76. Yang B, Shi MQ, Li ZH, et al. Fish, Long-Chain n-3 PUFA and Incidence of Elevated Blood Pressure: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2016;8:58.
77. Zhang Y, Ding J, Guo H, et al. Associations of Fish and Omega-3 Fatty Acids Consumption With the Risk of Venous Thromboembolism. A Meta-Analysis of Prospective Cohort Studies. Front Nutr 2020;7:614784.
78. Lehmann U, Gjessing HR, Hirche F, et al. Efficacy of fish intake on vitamin D status: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2015;102:837-47.
79. Kim YS, Xun P, He K. Fish consumption, long-chain omega-3 polyunsaturated fatty acid intake and risk of metabolic syndrome: a meta-analysis. Nutrients 2015;7:2085-100.
80. Schwingshackl L, Hoffmann G, Lampousi AM, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017;32:363-75.
81. Yang X, Li Y, Wang C, et al. Meat and fish intake and type

2 diabetes: Dose-response meta-analysis of prospective cohort studies. Diabetes Metab 2020;46:345-52.
82. Namazi N, Brett NR, Bellissimo N, et al. The association between types of seafood intake and the risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Health Promot Perspect 2019;9:164-73.
83. Zhou Y, Tian C, Jia C. Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies. Br J Nutr 2012;108:408-17.
84. Wallin A, Di Giuseppe D, Orsini N, et al. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care 2012;35:918-29.
85. Xun P, He K. Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438,000 individuals in 12 independent prospective cohorts with an average 11year follow-up. Diabetes Care 2012;35:930-8.
86. Muley A, Muley P, Shah M. ALA, fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review and meta-analysis. Curr Diabetes Rev 2014;10:158-65.
87. Tian S, Xu Q, Jiang R, et al. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017;9:982.
88. Li F, Liu X, Zhang D. Fish consumption and risk of depression: a meta-analysis. J Epidemiol Community Health 2016;70:299-304.
89. Molendijk M, Molero P, Ortuño Sánchez-Pedreño F, et al. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J Affect Disord 2018;226:346-54.
90. Grosso G, Micek A, Marventano S, et al. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J Affect Disord 2016;205:269-81.
91. Yang Y, Kim Y, Je Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia Pac Psychiatry 2018;10:e12335.
92. Cao L, Tan L, Wang HF, et al. Dietary Patterns and Risk of Dementia: a Systematic Review and Meta-Analysis of Cohort Studies. Mol Neurobiol 2016;53:6144-54.
93. Wu S, Ding Y, Wu F, et al. Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: a meta-analysis. Neurosci Biobehav Rev 2015;48:1-9.
94. Bakre AT, Chen R, Khutan R, et al. Association between fish consumption and risk of dementia: a new study from China and a systematic literature review and meta-analysis. Public Health Nutr 2018;21:1921-32.

Page 20 of 21

95. Zeng LF, Cao Y, Liang WX, et al. An exploration of the role of a fish-oriented diet in cognitive decline: a systematic review of the literature. Oncotarget 2017;8:39877-95.
96. Zhang Y, Chen J, Qiu J, et al. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr 2016;103:330-40.
97. Rezaeizadeh H, Mohammadpour Z, Bitarafan S, et al. Dietary fish intake and the risk of multiple sclerosis: a systematic review and meta-analysis of observational studies. Nutr Neurosci 2022;25:681-9.
98. Yang H, Xun P, He K. Fish and fish oil intake in relation to risk of asthma: a systematic review and meta-analysis. PLoS One 2013;8:e80048.
99. Papamichael MM, Shrestha SK, Itsiopoulos C, et al. The role of fish intake on asthma in children: A metaanalysis of observational studies. Pediatr Allergy Immunol 2018;29:350-60.
100. Zhang GQ, Liu B, Li J, et al. Fish intake during pregnancy or infancy and allergic outcomes in children: A systematic review and meta-analysis. Pediatr Allergy Immunol 2017;28:152-61.
101.Di Giuseppe D, Crippa A, Orsini N, et al. Fish consumption and risk of rheumatoid arthritis: a doseresponse meta-analysis. Arthritis Res Ther 2014;16:446.
101. Sadeghi O, Djafarian K, Ghorabi S, et al. Dietary intake of fish, $n-3$ polyunsaturated fatty acids and risk of hip fracture: A systematic review and meta-analysis on observational studies. Crit Rev Food Sci Nutr 2019;59:1320-33.
102. Dinu M, Pagliai G, Casini A, et al. Food groups and risk of age-related macular degeneration: a systematic review with meta-analysis. Eur J Nutr 2019;58:2123-43.
104.Zhu W, Wu Y, Meng YF, et al. Fish Consumption and Age-Related Macular Degeneration Incidence: A MetaAnalysis and Systematic Review of Prospective Cohort Studies. Nutrients 2016;8:743.
103. Chong EW, Kreis AJ, Wong TY, et al. Dietary omega-3 fatty acid and fish intake in the primary prevention of agerelated macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 2008;126:826-33.
104. Mozaffari H, Daneshzad E, Larijani B, et al. Dietary intake of fish, $\mathrm{n}-3$ polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review and metaanalysis of observational studies. Eur J Nutr 2020;59:1-17.
105. Hauk L. DGAC Makes Food-Based Recommendations in the 2015-2020 Dietary Guidelines for Americans. Am Fam Physician 2016;93:525.
106. Santo K, Hyun K, de Keizer L, et al. The effects of a
lifestyle-focused text-messaging intervention on adherence to dietary guideline recommendations in patients with coronary heart disease: an analysis of the TEXT ME study. Int J Behav Nutr Phys Act 2018;15:45.
107. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008;67:253-6.
110.Bosch AC, O'Neill B, Sigge GO, et al. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 2016;96:32-48.
108. Zhou Q, Gu Y, Yue X, et al. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals. Mol Med Rep 2017;15:859-66.
109. Chen W, Weisburger JH, Fiala ES, et al. Gastric carcinogenesis: 2-chloro-4-methylthiobutanoic acid, a novel mutagen in salted, pickled Sanma hiraki fish, or similarly treated methionine. Chem Res Toxicol 1996;9:58-66.
110. Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation 2010;121:586-613.
114.Nøstbakken OJ, Rasinger JD, Hannisdal R, et al. Levels of omega 3 fatty acids, vitamin D , dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk-benefit assessments of oily seafood. Environ Int 2021;147:106322.
111. Graff IE, Øyen J, Kjellevold M, et al. Reduced bone resorption by intake of dietary vitamin D and K from tailor-made Atlantic salmon: A randomized intervention trial. Oncotarget 2016;7:69200-15.
112. Rangel-Huerta OD, Aguilera CM, Mesa MD, et al. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials. Br J Nutr 2012;107 Suppl 2:S159-70.
117.Pilz S, Tomaschitz A, Drechsler C, et al. Vitamin D supplementation: a promising approach for the prevention and treatment of strokes. Curr Drug Targets 2011;12:88-96.
113. Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 2002;23:381-93.
114. D'Elia L, Iannotta C, Sabino P, et al. Potassium-rich diet and risk of stroke: updated meta-analysis. Nutr Metab Cardiovasc Dis 2014;24:585-7.
120.Harris WS. Fish oils and plasma lipid and lipoprotein
metabolism in humans: a critical review. J Lipid Res 1989;30:785-807.
121.von Schacky C. n-3 fatty acids and the prevention of coronary atherosclerosis. Am J Clin Nutr 2000;71:224S-7S.
115. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999;83:217-44.
116. Tapiero H, Ba GN, Couvreur P, et al. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 2002;56:215-22.
124.Hilakivi-Clarke L, Olivo SE, Shajahan A, et al. Mechanisms mediating the effects of prepubertal (n-3) polyunsaturated fatty acid diet on breast cancer risk in rats. J Nutr 2005;135:2946S-52S.
125.Pannu PK, Piers LS, Soares MJ, et al. Vitamin D status is inversely associated with markers of risk for type 2

Cite this article as: Zhao H, Wang M, Peng X, Zhong L, Liu X, Shi Y, Li Y, Chen Y, Tang S. Fish consumption in multiple health outcomes: an umbrella review of metaanalyses of observational and clinical studies. Ann Transl Med 2023;11(3):152. doi: 10.21037/atm-22-6515
diabetes: A population based study in Victoria, Australia. PLoS One 2017;12:e0178825.
126. McGuire S. U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv Nutr 2011;2:293-4.
127.EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. European Food Safety Authority, 2014. doi: 10.2903/ j.efsa.2014.3761.
(English Language Editor: B. Draper)

[^0]: Table 3 (continued)

[^1]: ${ }^{\text {a) }}$, highest versus lowest/none; ${ }^{\mathrm{b})}$, one serving $=100 \mathrm{~g} /$ day; ${ }^{\text {c) }}$, one serving/week; ${ }^{\mathrm{d})}, 2-4$ versus ≤ 1 serving a week; ${ }^{\text {e) }}, \geq 5$ versus ≤ 1 serving a week. MA, meta-analysis; CI , confidence interval; RCT, randomized controlled trial; NA, not available; HR, hazard ratio; RR, relative risk; MD, mean difference; ACS, acute coronary syndrome; MI,
 myocardial infarction; CHD, coronary heart disease; HF, heart failure; HDL, high-density lipoprotein; AF, atrial fibrillation; VTE, venous thromboembolism.

