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Background: Atherosclerosis is an underlying cause of cardiovascular disease which is a leading cause of 
death worldwide. Foam cells play a crucial role in atherosclerotic lesion development, and macrophages and 
vascular smooth muscle cells (VSMCs) appear to contribute to the formation of the majority of atheromatous 
foam cells via oxidized low-density lipoprotein (ox-LDL) uptake. 
Methods: An integrated, microarray-based analysis using GSE54666 and GSE68021, which contain 
samples of human macrophages and VSMCs incubated with ox-LDL, was conducted. The differentially 
expressed genes (DEGs) in each dataset were investigated via the linear models for microarray data (limma) 
v. 3.40.6 software package in R v. 4.1.2 (The R Foundation for Statistical Computing). Gene ontology (GO) 
and pathway enrichment were performed via the ClueGO v. 2.5.8 and CluePedia v. 1.5.8 databases and the 
Database of Annotation, Visualization and Integrated (DAVID; https://david.ncifcrf.gov). The convergent 
DEGs in the two cell types were obtained, and the protein interactions and network of transcriptional 
factors were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) v. 11.5 and 
the Transcriptional Regulatory Relationships Unraveled by Sentence-based Text-mining (TRRUST) v.  
2 databases. The selected DEGs were further validated using external data from GSE9874, and a machine 
learning algorithm of the least absolute shrinkage and selection operator (LASSO) regression and receiver 
operating characteristic (ROC) analysis were applied to explore the candidate biomarkers. 
Results: We discovered the significant DEGs and pathways that were shared or unique among the  
2 cell types, coupling with enriched lipid metabolism in macrophages, and upregulated defense response 
in VSMCs. Moreover, we identified BTG2, ABCA1, and SLC7A11 as potential biomarkers and molecular 
targets for atherogenesis. 
Conclusions: Our study provides a comprehensive summary of the landscape of the transcriptional 
regulations in macrophages and VSMCs under ox-LDL treatment from a bioinformatics perspective, which 
may contribute to a better understanding of the pathophysiological mechanisms of foam cell formation.
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Introduction

Atherosclerotic cardiovascular disease (ASCVD) is the 
leading cause of mortality and morbidity worldwide, 
accounting for approximately 17.6 million deaths  
annually (1).  The role of low-density l ipoprotein 
cholesterol (LDL-C) in the development of ASCVD is at 
the forefront of current research, and both observational 
and epidemiological studies consistently demonstrate 
that individuals with low plasma levels of LDL-C have 
lower rates of ASCVD throughout the course of life (2-4).  
Thus, LDL-C is the key target of therapy for primary 
and secondary prevention, which is in accordance with 
the recommendations of international guidelines (5,6). 
However, despite appropriate lifestyle modification and 
the administration of lipid-lowering drugs, patients remain 
at a substantial residual risk for ASCVD recurrence (7,8), 
and much work is still required if we are to reach the 
aspirational vision of ASCVD prevention at the initial phase 
of disease. 

Evidence from many decades of research supports the 
concept of oxidized-LDL (ox-LDL) accumulation as one 
of the essential processes responsible for atherogenesis and 
foam cell formation within the lipid-rich subendothelial 
space of the affected artery (9). Additionally, recent 
studies suggest that monocyte-derived macrophages 
and vascular smooth muscle cells (VSMCs) contribute 
to the formation of the majority of atheromatous foam 
cells via ox-LDL uptake (10,11). Both cell types express 

scavenger receptors responsible for taking up different 
forms of modified lipoprotein as well as regulating several 
inflammatory responses (12,13). Thus, studying the 
potential mechanisms of foam cell formation during the 
initial stage of atherogenesis may uncover the significant 
cellular processes at play and help to discern the relative 
contributions of heterogeneous foam cell populations with 
shared functions. In turn, these findings may contribute 
extensively to realizing the future development of foam cell-
specific treatment.

Since its rapid development and adoption, transcriptome 
analysis has become a productive approach to unravelling 
the dynamic expression of genes and holistically elucidating 
the relevant cell physiology and molecular mechanisms 
(14,15). In this study, we conducted a series of microarray 
data bioinformatics reanalyses and used a machine-learning 
algorithm to investigate the distinctive and shared gene 
expression variations in human macrophages and VSMCs 
treated with ox-LDL. The results were validated using 
an external dataset, and they may contribute to a better 
understanding of the pathophysiological mechanisms of 
foam cell formation and drive new therapeutics in reducing 
ASCVD. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3761/rc).

Methods

Microarray datasets collection

In the discovery phase, the gene expression datasets 
GSE54666 and GSE68021 were downloaded from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/), which serves as a public data archive 
providing access to high-throughput gene expression and 
genomics datasets submitted by the research community (16).  
The series GSE54666, tested on the Illumina HumanHT-12 
v. 4.0 Expression BeadChip platform (San Diego, CA, 
USA), contains gene expression profiles of human 
monocyte-derived macrophages treated with ox-LDL 
(50 μg/mL ox-LDL for 48 h) or control buffer (17). 
The series GSE68021, tested on the Affymetrix Human 
Gene 1.0 ST Array platform (Santa Clara, CA, USA), 
consists of expression data of human VSMCs in response 
to ox-LDL treatment (7.5 μg/mL ox-LDL for 1, 5, and  
24 h) (18). The normalized data were acquired and reanalyzed 
with a systematic bioinformatics approach to identifying the 
differentially expressed genes (DEGs) and the downstream 
functional annotations. The overview of the analytic procedure 

Highlight box

Key findings 
•	 We identified several multicellular biomarkers and candidate 

pathways that might participate in initial atherogenic events.  

What is known and what is new?  
•	 Foam cells  play a crucial  role in atherosclerotic lesion 

development, and macrophages and vascular smooth muscle cells 
(VSMCs) appear to contribute to the formation of the majority of 
atheromatous foam cells via oxidized low-density lipoprotein (ox-
LDL) uptake.

•	 We elucidated the comprehensive landscape of the transcriptional 
regulations in macrophages and VSMCs under ox-LDL treatment.

What is the implication, and what should change now? 
•	 Our findings show considerable promise for the emerging 

capability to ascertain corresponding mechanisms and offer 
projections on developing new approaches for potential therapeutic 
modulation in cardiological practice. 

https://atm.amegroups.com/article/view/10.21037/atm-22-3761/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3761/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Annals of Translational Medicine, Vol 11, No 5 March 2023 Page 3 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(5):189 | https://dx.doi.org/10.21037/atm-22-3761

is shown in Figure 1. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Data preprocessing and DEG screening

The reference matrix files were downloaded from the 
platforms, and the official gene symbols were matched with 
the gene probes. For a situation in which multiple probes 
matched a single gene symbol, the average gene expression 
value was retained. The following procedures were analyzed 
according to the processed matrix file. The limma package 
(linear models for microarray data; version 3.40.6) in R 
(The R Foundation for Statistical Computing) was used 
to screen DEGs between early and advanced phases of 
atherosclerosis (9). The fold change (FC) of logarithmic 
operations with 2 as the base number was calculated for 
the expression of each DEG in the ox-LDL–treated and 
control samples, and the statistical significance was defined 
by an adjusted P value <0.05 corrected by the Benjamini-
Hochberg method. The results of probe-matching and 
DEG identification were also verified via GEO2R (19). For 

GSE68021, the human VSMCs used in this study were not 
terminally differentiated and, therefore, were sufficiently 
plastic to present a contractile phenotype after physiological 
stimulation (20). To retain as many samples as possible, the 
samples of VSMCs under ox-LDL treatment at each time 
point (1, 5, 24 h) were taken as a whole group in order to 
compare them with the negative control. The overlap of 
DEGs in the 2 datasets were identified and visualized by 
Venn diagrams. The top 5 upregulated and downregulated 
overlapped DEGs were selected according to the sum values 
of FC in GSE54666 and GSE68021. 

Gene Ontology enrichment analysis

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID; https://david.ncifcrf.gov) was 
used to investigate Gene Ontology (GO) enrichment, 
including the categories of biological process (BP), cellular 
component (CC), molecular function (MF), and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) based 
on the top 20 upregulated and downregulated DEGs in 

Figure 1 The flowchart of the analytic procedure. Ox-LDL, oxidized low-density lipoproteins; VSMCs, vascular smooth muscle cell; DEG, 
differentially expressed gene; GO, Gene Ontology; PPI, protein-protein interaction; TF, transcriptional factor; LASSO, the least absolute 
shrinkage and selection operator; ROC, receiver operating characteristic.

Ox-LDL treatment

DEGs screening DEGs screeningCommon DEGs

GO analysis GO analysis

PPI and TFs regulatory network analysis

External validation

LASSO regression and ROC analysis

GO analysis

Macrophages samples
(n=12)

VSMCs samples
(n=12)

GSE54666 GSE68021

https://david.ncifcrf.gov


Xu and Yang. Candidate biomarkers in foam cell formationPage 4 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(5):189 | https://dx.doi.org/10.21037/atm-22-3761

each dataset (21). The GO annotation for the overlapped 
DEGs of the 2 datasets was conducted and visualized 
with the ClueGO v. 2.5.8 and CluePedia v. 1.5.8 tool kits 
(22,23), which can interpret functionally grouped GO 
annotation networks and extract representative terms using 
a hypergeometric test via Cytoscape software (version 3.9.1). 
A P value <0.05 was considered statistically significant.

Protein interactions and the transcriptional factor network 
of overlapped DEGs

The Search Tool for the Retrieval of Interacting Genes v. 
11.5 (STRING; http://string-db.org) online database was 
used to construct the protein-protein interaction (PPI) 
network of the overlapped DEGs (24), and interactions 
with a combined score of more than 0.15 were included. 
Then, the PPI network was displayed using Cytoscape 
software. The Molecular Complex Detection (MCODE) 
Cytoscape plugin (v. 2.0.0), an automated kit that can find 
densely connected regions or molecular complexes based 
on the topology of the PPI network, was used to screen the 
gene clusters according to the following parameters: degree 
cutoff, 2; node score cutoff of 0.2; max depth, 100; and 
k-score, 2. The Transcriptional Regulatory Relationships 
Unraveled by Sentence-based Text-mining (TRRUST) v. 2 
database (www.grnpedia.org/trrust) was applied to predict 
the key regulators in transcriptional factor (TF)-gene 
interactions in order to assess the effect of the TFs on the 
expression and functional pathways of the top overlapped 
DEGs (25). The visualization of the regulatory network was 
presented via Cytoscape.

External validation of the overlapped DEGs

For the va l idat ion of  the top 5  upregulated and 
downregulated overlapped DEGs, the series GSE9874 
dataset was downloaded from the GEO database. It contains 
15 samples of baseline macrophages and foam cells from 
individuals with atherosclerosis tested on the Affymetrix 
Human Genome U133A Array (26). 

Selection of candidate biomarkers via least absolute 
shrinkage and selection operator Cox regression

The least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis was conducted via the 
glmnet package in R software to calculate and select the 
linear models and preserve valuable DEGs (27). The 

expression levels of the overlapped DEGs and the cell 
types of the 15 samples were obtained from the probe-
matched matrix file, and the 1 standard error of the 
minimum criterion (the 1-SE criterion) lambda value 
was applied to build the classification model with good 
performance but the least number of variables. The pROC 
package in R software was used for the calculation of the 
receiver operating characteristic (ROC) analysis, and the 
discriminatory power of the selected biomarkers correlated 
to foam cell formation was identified by the area under the 
curve (AUC) (28). 

Statistical analysis

All calculations were performed via the R v. 4.1.2 software. 
The Euclidean genetic distance combining complete 
distance hierarchical cluster method was used for the 
cluster analysis based on Z score transformation. In external 
validation, the expressions of the DEGs were extracted 
from the microarray dataset and analyzed by paired-samples 
t-test. A P value <0.05 was defined as statistically significant.

Results

Identification of DEGs in response to ox-LDL treatment

To investigate the variations of gene expression in foam 
cell formation from different cellular origins, we conducted 
limma analysis of the dataset series, GSE54666 and 
GSE68021 (Figure 2; see https://cdn.amegroups.cn/static/
public/atm-22-3761-1.xlsx for details). For monocyte-
derived macrophages under the treatment of ox-LDL, a 
total of 504 DEGs were identified. The top 5 upregulated 
DEGs were AKR1C3, PLIN2, PDK4, TMEM158, and 
FABP4, while the top 5 downregulated DEGs were 
LDLR, F13A1, SQLE, INSIG1, and CD93 (Figure 2A). For 
VSMCs, a total of 4400 DEGs were identified. The top 
5 upregulated DEGs were RGS7BP, RFTN2, CALCRL, 
OCLN, and HSD17B6, and the top 5 downregulated DEGs 
were ACTG2, BEX1, IFI30, TGM2, and TFPI2 in response 
to ox-LDL treatment (Figure 2C). These results indicated 
that at the transcriptomic level, both human macrophages 
and VSMCs could respond to ox-LDL exposure via altering 
gene expressions, and the different cell types show their 
own characteristic patterns of variation.

GO functional annotations in foam cell formation

Based on the previous step, the top 20 upregulated and 

http://string-db.org
https://cdn.amegroups.cn/static/public/atm-22-3761-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3761-1.xlsx
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Figure 2 The top 5 upregulated and downregulated DEGs in macrophages (A) and VSMCs (C). Orange and green circles represent 
upregulated and downregulated genes, respectively, with the size of the circles varying according to the log2(FC) value. The radar diagram 
in the middle shows the average abundance of the genes in the different groups. GO analysis of the top DEGs in macrophages (B) and 
VSMCs (D). The chord diagram shows the relationship between DEGs and annotated pathways. GO, Gene Ontology; PPAR, peroxisome 
proliferator-activated receptor; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; DEG, 
differentially expressed gene; VSMC, vascular smooth muscle cell.

downregulated DEGs identified in each dataset were 
subjected to GO enrichment analysis using the DAVID 
database (see https://cdn.amegroups.cn/static/public/atm-
22-3761-1.xlsx and Tables S1 for details). As shown in 
Figure 2B, for macrophages, the predominant changes in the 
functional pathways of DEGs were significant enrichment of 
the lipid biosynthetic process (GO:0008610; P=1.15E-13), 
cho le s tero l  b iosynthet i c  proces s  (GO:0006695 ; 
P=1.15E-13), and secondary alcohol biosynthetic process 
(GO:1902653; P=1.15E-13). Additionally, approximately 
half of the selected DEGs were annotated to participate 
in the lipid metabolic process (GO:0006629; gene count 
=19; P=2.45E-11; available online: https://cdn.amegroups.
cn/static/public/atm-22-3761-1.xlsx). In the category of 
cellular component, the endoplasmic reticulum membrane 

(GO:0005789; P=9.82E-5) was annotated as the leading 
term, and 17 DEGs were matched to the extracellular 
region (GO:0005576; P=2.21E-2). For the annotation 
of molecular function, the following were found to be 
significant and potentially involved in the biosynthesis of 
esters and fatty acids: organic acid binding (GO:0043177; 
P=7.15E-6); oxidoreductase activity (GO:0016628) acting 
on the CH-CH group of donors, NAD, or NADP as 
the acceptor (P=2.65E-5); and carboxylic acid binding 
(GO:0031406; P=8.45E-5). Moreover, the KEGG pathways 
were also annotated as follows: steroid biosynthesis 
(hsa00100; P=2.85E-5), peroxisome proliferator-activated 
receptor (PPAR) signaling pathway (hsa03320; P=1.51E-3), 
and metabolic pathways (hsa01100; P=3.351E-2), which 
further highlighted the relevance of lipid-related metabolic 
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pathways in the conversion of macrophages to foam cells.
In contrast to macrophages, VSMCs exhibited quite 

different functional pathway variations in response to ox-
LDL treatment. As shown in Figure 2D, positive regulation 
of the inflammatory response (GO:0050729; P=2.62E-4), 
positive regulation of the response to external stimulus 
(GO:0032103; P=6.12E-4), and positive regulation of the 
defense response (GO:0031349; P=6.44E-4) were identified 
as dominant terms of the biological process, and all the 
significantly enriched terms of the cellular component were 
found to be related to the extracellular region, including the 
exosome, vesicle, and organelle. These results indicated that 
the initial responses of VSMCs under ox-LDL stimulus 
could be considered a series of functional defenses against 
atherogenesis, suggesting the immunoinflammatory nature 
of atherogenic pathophysiology.

The common DEGs in heterogeneous cellular origins 
related to foam cell formation

To investigate whether there were common transcriptional 
and functional variations in the conversion of foam 
cells from different cell types incubated with ox-LDL, 
we identified the overlapped DEGs in GSE54666 and 
GSE68021. Of all the DEGs, there were 34 upregulated 
(Figure 3A) and 26 downregulated (Figure 3B) DEGs 
overlapped in the 2 datasets (Table S2). Next, we 
investigated the functional enrichment of these overlapped 
DEGs, and despite the differences in the most significant 
pathways of heterogeneous cellular origins, as shown 
in Figure 3C, there were still several representative and 
common functional pathways, including cellular response 
to reactive oxygen species (GO:0034614; P=2.33E-3), 
regulation of lipid storage (GO:0010883; P=7.79E-3), 
long-chain fatty acid transport (GO:0015909; P=1.37E-2), 
integral component of the luminal side of the endoplasmic 
reticulum membrane (GO:0071556; P=2.26E-3), caveola 
(GO:0005901; P=1.69E-2), prostanoid metabolic process 
(GO:0006692; P=7.95E-3), and positive regulation of 
lymphocyte proliferation (GO:0050671; P=1.95E-3), 
according to the hypergeometric test conducted via 
ClueGo (see Figure S1 and Table S3 for details). To further 
narrow down the target DEGs, the top 5 upregulated 
and downregulated DEGs were selected as candidate 
biomarkers based on their FC in both datasets; the detailed 
descriptions are summarized in Table 1. The heatmaps of 
the selected DEGs in these 2 datasets showed accurate 
hierarchical clustering of altered transcriptions in various 

groups (Figure 3D,3E), facilitating the classification of 
cell status by collecting similar expression patterns. All 
these analyses revealed the characteristics and functions 
of common DEGs between the 2 cell types, which may 
become potential targets for interventions in the initial 
phase of the atherosclerotic process via both macrophages 
and VSMCs simultaneously. 

PPI and TF regulatory network analysis 

To comprehensively analyze the molecular mechanisms and 
functional versatility of the common DEGs in foam cell 
formation, we constructed the PPI network based on the 
topological features acquired from the STRING database, 
and a total of 55 nodes and 107 edges were filtered into the 
PPI network (Figure 4A). According to the criterion of node 
degree >5, the following 12 DEGs were identified to have 
strong connectivity: ABCA1 (degree =12), CD74 (degree 
=11), ANXA1 (degree =10), TGFBR2 (degree =9), SGK1 
(degree =9), KLF2 (degree =8), FABP4 (degree =8), BTG2 
(degree =8), SLC7A11 (degree =6), UTRN (degree =6), 
IGBP1 (degree =6), and CTSC (degree =6). Five of these 
were also the candidate biomarkers selected in the previous 
step with distinct FC expression. The plug-in kit, MCODE, 
was used to analyze the significant clusters. As shown in 
Figure 4A, cluster 1 (shown in green) had 4 nodes and  
5 edges, and both cluster 2 (shown in yellow) and cluster 3 
(shown in purple) had 3 nodes and 3 edges, representing the 
prominent subnetworks of closely connected DEGs.

For the 10 candidate biomarkers we identified, a gene-
TF regulatory network was constructed, including 5 genes 
and 32 TFs (Figure 4B). Specifically, 3 key TFs, nuclear 
factor kappa B subunit 1 (NFKB1), RELA proto-oncogene, 
NF-KB subunit (RELA), and Sp1 transcription factor (SP1) 
were identified with close interactions, having more than 
1 DEG from the gene-TF regulatory network. NFKB1 
and RELA, which could regulate BTG2 and ABCA1, and 
SP1, which could regulate ABCA1 and TGFBR2, could 
potentially be underlying targets for the prevention of 
atherosclerosis via gene transcription regulation.

External validation of the candidate biomarkers in foam 
cell formation

The above-mentioned series of bioinformatics analyses 
screened for potential biomarkers and the associated 
molecular mechanisms used in the conversion of foam 
cells from human macrophages and VSMCs under an ox-

https://cdn.amegroups.cn/static/public/ATM-22-3761-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3761-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-3761-supplementary.pdf
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Figure 3 Analysis of overlapped DEGs in GSE54666 and GSE68021. (A) The overlapped upregulated DEGs in GSE54666 and GSE68021. 
(B) The overlapped downregulated DEGs in GSE54666 and GSE68021. (C) The ontological relations of the annotated terms based on 
the common DEGs. (D,E) The heatmaps with clustering analysis show the normalized expression values of the selected DEGs in the 
GSE54666 and GSE68021 datasets, respectively. ER, endoplasmic reticulum; COPII, coat protein complex II; ox-LDL, oxidized low-
density lipoprotein; VSMC, vascular smooth muscle cell.
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LDL stimulus. To verify the reliability of these biomarkers 
in atherogenesis, an external cohort, the GSE9874, which 
contains 15 samples of baseline macrophages and foam 
cells from patients with atherosclerosis, was included. 
The expression values of the candidate biomarkers were 
extracted and analyzed independently. As shown in  
Figure 5A, 8 (n=8) out of the 10 (n=10) selected biomarkers 
were detected and matched in GSE9874. Consistent with 
the previous results, these biomarkers all exhibited a similar 
trend of variation, particularly SLC7A11 (P<0.0001), 
ABCA1 (P<0.0001), FABP4 (P<0.05), and SEMA3C 
(P<0.05), which were significantly upregulated, while BTG2 
(P<0.0001) was significantly downregulated in foam cell 
formation under the stimulus of ox-LDL.

To further filter for the optimal biomarkers, the LASSO 
regression model for the 8 matched biomarkers from 
GSE9874 was conducted to investigate an optimal linear 
combination in the prediction of foam cell formation  
(Figure 5B,5C). With coefficients −0.0192, 0.0086, and 
0.0076 for BTG2, ABCA1, and SLC7A11, respectively, 
the model could perfectly discriminate the samples from 
macrophages and foam cells. We further conducted an ROC 
analysis to investigate the feasibility of BTG2, ABCA1, and 

SLC7A11 as independent variables, and the results showed 
good predictive accuracy (Figure 5D). For SLC7A11, the 
AUC was 90.67% with a 95% confidence interval (CI) of 
1.00–0.80; for ABCA1, the AUC was 96.00%, with a 95% 
CI of 1.00–0.90; and for BTG2, the AUC was 95.56%, with 
a 95% CI of 1.00–0.89.

Together, the expression levels of SLC7A11, ABCA1, 
FABP4, SEMA3C, and BTG2 were validated in an external 
cohort which further demonstrated their importance in 
foam cell formation, suggesting their feasibility as potential 
biomarkers for exploring molecular mechanisms and targets 
for intervention.

Discussion

It has long been demonstrated that atherogenesis is 
a complicated process involving numerous cellular 
mechanisms and pathways in which foam cells are pivotal 
in the formation of atherosclerosis and the lethal clinical 
consequences, including myocardial infarction or stroke (9).  
A previous misconception considered that all foam cells 
of atherosclerotic plaques are derived exclusively from 
macrophages, while recent studies have clearly indicated 

Table 1 Detailed information of the top 5 upregulated and downregulated DEGs that overlapped in GSE68021 and GSE54666 

Gene name Description
GSE68021 GSE54666

Log2FC Adjusted P value Log2FC Adjusted P value

Upregulated

SLC7A11 Solute carrier family 7-member 11 0.9580 3.28E-2 1.4540 3.98E-3

ABCA1 ATP binding cassette subfamily A member 1  1.2683 4.00E-2 0.8465 5.51E-3

FABP4 Fatty acid binding protein 4 0.4687 2.39E-2 1.4704 2.03E-5

PTGR1 Prostaglandin reductase 1  0.4400 1.71E-3 1.2743 6.20E-6

SEMA3C Semaphorin 3C 0.6273 2.78E-3 1.0839 1.44E-2

Downregulated

HTR2B 5-hydroxytryptamine (serotonin) receptor 2B  −1.3784 4.79E-3 −1.4981 9.80E-3

TMEM173 Transmembrane protein 173 −0.6550 1.18E-3 −1.3948 7.03E-4

HLA-DPA1 Major histocompatibility complex, class II, DP alpha 1 −0.8343 1.60E-3 −0.8223 3.10E-2

TGFBR2 Transforming growth factor beta receptor 2  −0.9837 1.68E-5 −0.3800 5.24E-3

BTG2 B-cell translocation gene 2, anti-proliferation gene family −0.6687 5.63E-3 −0.6412 2.61E-2

Description of the genes were obtained from Human Genome Resources at NCBI. The log2FC and adjusted P value were calculated via a 
comparison of the ox-LDL treatment group with controls in the 2 datasets. DEG, differentially expressed gene; NCBI, National Center for 
Biotechnology Information; ox-LDL, oxidized low-density lipoprotein; FC, fold change.
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that VSMCs and macrophages are prominent sources 
of foam cells and resident in the arterial wall (29,30). 
Correspondingly, the pathophysiology of atherosclerosis 
remains a promising scientific topic, and the development 
of novel antiatherosclerosis therapies continues. The 
discovery of new genomic paradigms in cardiovascular 
diseases has been accelerated by the application of recent 

advances in high-throughput sequencing and computational 
bioinformatics. These technologies are having a tremendous 
impact on state-of-the-art diagnostics, biomarkers, and 
medications in the era of precision medicine, aiming 
to comprehensively measure and quantify such holistic 
biological information in a fast and cost-effective 
manner (31,32). Microarray is one of the transcriptome 

Figure 4 Analysis of PPI and TF networks. (A) The construction of the PPI network based on the common DEGs. The purple, yellow, 
and green circles represent the identified gene clusters, respectively. (B) TF regulatory network of the selected DEGs. The blue circles 
represent the genes, while the grey circles represent the TFs. DEGs, differentially expressed genes; PPI, protein-protein interaction; TF, 
transcriptional factor.

A

B
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Figure 5 External validation and LASSO Cox regression analysis of the selected DEGs. (A) Validation of the selected DEGs in GSE9874. 
The expressions of the genes were extracted out from the microarray dataset and analyzed by paired-samples t test. The blue dots represent 
the expression values in the macrophage group, and the red dots represent the expression values in the foam cell group. (B) Construction of 
the LASSO cox regression model. The red dots represent the values of binomial deviance, while the grey lines represent the standard error 
(SE); the vertical dotted lines represent optimal values by the minimum criterion and 1-SE criterion from left to right, respectively. “Lambda” 
represents the tuning parameter. (C) The plot determines the coefficients by the 1-SE criterion of LASSO regression model of −0.0192, 
0.0086, and 0.0076 for BTG2, ABCA1, and SLC7A11, respectively. (D) The ROC curves of BTG2, ABCA1, and SLC7A11 in discriminating 
the samples with different statuses. LASSO, the least absolute shrinkage and selection operator; DEG, differentially expressed gene; ROC, 
receiver operating characteristic; AUC, area under the curve.
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measurements based on the specific hybridization of RNA 
transcripts to DNA probes, and it can broadly reflect the 
functional state of a cell or tissue via screening of its gene 
expression pattern, providing valuable insights into the 
molecular targets and pathways controlled by transcriptional 
regulators (33). In the present study, we comprehensively 
performed a series of bioinformatics analyses to investigate 
and compare the DEGs and their related biological 
pathways in both human macrophages and VSMCs under 
the treatment of ox-LDL. We also applied machine learning 
to statistically evaluate and select the candidate biomarkers, 
which we further validated in an external cohort. The 
results may provide relevant transcriptional signatures and 
potential therapeutic targets to inhibit the development of 
atherosclerosis.

In order to capture the variations in cellular transcript 
levels in response to ox-LDL treatment, from a holistic 
perspective, we first analyzed the DEGs in VSMC-
derived and macrophage-derived foam cells separately. As 
expected, the transcriptome exerted significant differences 
in different cell types (Figure 2) as apparent from the fact 
that expression responses to exogenous exposure were often 
highly cell-specific, with an examples being the differences 
in expression of molecular targets (34). Furthermore, the 
annotated functional pathways in the 2 cell types based 
on leading DEGs also showed distinct discrepancies. For 
macrophages, the predominant variations in functional 
pathways were mainly enriched in terms related to lipid 
metabolism. Macrophages are capable of recognizing and 
binding to ox-LDL for uptake, esterification, and storage in 
the cell, and excessive intracellular lipid accumulation results 
in the formation of foam cells, thus exerting proatherogenic 
functions, leading to a greater likelihood of plaque rupture 
and, consequently, cardiovascular accidents (11,35). In 
addition, the cell component annotation showed terms 
associated with the endoplasmic reticulum membrane, where 
cytoplasmic lipid droplets containing cholesterol esters can 
be generated after the re-esterification of free cholesterol 
by the enzyme acyl cholesterol transferase 1 (ACAT1) (36).  
Notably, the classic PPAR signaling pathway was also 
annotated in our results. The activation of PPAR pathways 
was found to be an important regulator of lipid uptake and 
efflux in macrophages, potentially promoting cholesterol 
efflux and reducing foam cell formation (37). Moreover, 
PPAR can also regulate immunoinflammatory processes, 
with several animal atherosclerosis models and human 
clinical trials suggesting the suppression of proinflammatory 
cytokines via the application of PPAR agonists (38,39), 

making it a highly promising antiatherogenic target. 
Interestingly, we found that several annotated pathways 
were related to human 3α-hydroxysteroid dehydrogenase 
(3α-HSD) isoforms, members of the aldo-keto reductase 
(AKR) enzyme superfamily, especially the type 1 3α-HSD 
(AKR1C4) and the type 2 3α(17β)-HSD (AKR1C3). A 
previous study based on chromatin immunoprecipitation 
(ChIP)/microarray technology identified that AKR1C4 
was involved in cholesterol degradation modulated by  
oxysterols (40). Our study further suggested the putative 
roles of these DEGs in the formation of foam cells from 
macrophages incubated with ox-LDL.

In contrast to that in macrophages, the annotated 
biological process based on the DEGs in VSMCs showed 
tight regulation of immunoinflammatory responses, 
with significantly overexpressed characteristic cytokines, 
such as interleukin-33 (IL-33) and tumor necrosis factor 
superfamily member 4 (TNFSF4), as well as complement 
C3, the central component of the complement system. A 
growing body of evidence supports the conclusion that 
IL-33 triggers proinflammatory, proatherogenic, and 
proangiogenic effects, all processes known to be involved 
in cardiovascular diseases (41,42). In humans, increased 
expression of IL-33 has been observed in VSMCs of 
atherosclerotic coronary artery sections compared to 
arteries without lesions (43). Importantly, IL-33 may also 
serve a protective role in cell preservation and repair in 
response to mechanical stress (44). The expression of 
TNFSF4 has been shown to be susceptible risk factor for 
the pathogenesis of atherosclerosis, with several genetic 
studies indicating its variation and polymorphisms to be 
associated with atherothrombosis incidence (45,46). One 
study demonstrated that interruption of the TNFSF4-
related pathway could attenuate atherogenesis and increase 
the levels of anti–ox-LDL immunoglobulin M in LDL 
receptor-deficient mice (47). The complement system is a 
crucial component of innate immunity that participates in 
the regulation of inflammation. In our results, complement 
C3 dominated the GO annotation; however, its expression 
level decreased in response to ox-LDL treatment. This 
was in line with a published study in mice models of 
atherosclerosis (ApoE−/− and Ldlr−/− background) and 
knock-out C3 expression (C3−/−) which indicated that the 
C3-deficient mice had a more proatherogenic lipoprotein 
profile and a larger lesion size of atherosclerotic plaque (48). 
Accordingly, from our results, it is reasonable to propose 
that these versatile transcriptomic responses triggered 
by the presence of ox-LDL could generate a series of 
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inflammatory processes through communication with the 
immune system, suggesting that the initial response of 
human VSMCs towards a proatherogenic stimulus could be 
considered a functional defense process (49).

Based on the previous results, we further attempted to 
identify the crosstalk and the compensatory mechanisms 
between the macrophages and VSMCs responsible 
for regulating ox-LDL metabolism, highlighting the 
potentiality of targeting more than one process at a time 
to show greater efficacy at slowing down the rate of foam 
cell formation. We investigated the covariant DEGs in 
macrophages and VSMCs, and due to the heterogeneity 
of cellular origins, only a minority of the DEGs were 
overlapped. Although, as mentioned above, there were 
notable divergences in the main functional pathways of 
the 2 cell types, we nonetheless found some co-occurring 
biological processes in response to ox-LDL stimulation. 
The most representative pathways were cellular responses 
to reactive oxygen species (ROS), which accounted for 
about 40% of the annotations, with upregulation of the 
membrane receptor cluster of differentiation 36 (CD36), 
which was also one of the cluster genes in the PPI network. 
The presence of ox-LDL is capable of inducing ROS 
production, and the oxidative stress triggered by ROS 
further stimulates CD36 expression on the surface of various 
cells, which in turn recognizes ox-LDL and mediates its 
uptake into cells, thus forming a feedback loop that figures 
centrally in atherogenesis (50,51). Additionally, the ox-
LDL-CD36 signaling axis has been found to be necessary 
for macrophage foam cell formation (52). In our results, the 
co-upregulation of adenosine triphosphate (ATP) binding 
cassette transporter A1 (ABCA1) and annexin A1 (ANXA1) 
was found to be significant, as were the pathways related to 
lipid storage and transport. ABCA1 promotes cholesterol 
efflux and reduces cholesterol accumulation in cells (53), 
and recent studies have also suggested that it could reduce 
inflammatory responses via the removal of ROS (54). 
Interestingly, ABCA1 mediates ANXA1 release, the effect 
of which could also exert anti-inflammatory actions to 
inhibit the development of atherosclerosis (55). However, 
the direct mechanisms of ANXA1 and the ABCA1-
ANXA1 interaction in atheroprogression have not been 
investigated in any detail. We also noticed an association 
between ANXA1 expression and prostanoid metabolic 
process pathways. The biosynthesis of prostaglandins was 
strongly induced in macrophages stimulated with ox-LDL, 
indicating an anti-inflammatory response to ox-LDL-
induced injury for alleviating cytotoxicity (56). 

We then targeted the screening of statistically significant 
covariants in macrophages and VSMCs based on the FCs 
in both datasets. To further validate the reliability of these 
candidate biomarkers, we examined their expression levels 
in an external dataset, applied a machine-learning algorithm 
of LASSO regression to select the biomarkers with decent 
performances in discriminating the samples with different 
statuses, and finally filtered the cystine/glutamate antiporter 
solute carrier family 7 member 11 (SLC7A11), ABCA1, and 
B-cell translocation gene 2 (BTG2) as candidate biomarkers. 
SLC7A11 encodes a multipass transmembrane protein that 
mediates cystine/glutamate antiporter activity, which was 
recently discovered to be associated with ferroptosis in 
cancer cells (57). Ferroptosis is a newly discovered form of 
iron-dependent cell death induced by the accumulation of 
lipid peroxides and the production of ROS that overwhelm 
the balance between free radical formation and depletion 
in the cellular membrane (58). An increasing amount of 
research supports the notion that iron-induced oxidative 
stress is involved in various pathological conditions of 
cardiovascular diseases (59-61), but the mechanisms 
involved have not been well characterized. BTG2 is 
a well-known tumor suppressor and has found to be 
downregulated in several types of cancer. Furthermore, the 
knockdown of BTG2 expression was shown to enhance lipid 
accumulation and upregulate the expression of adipogenic 
marker genes (62), yet there is no direct evidence of its 
association with atherosclerosis. Through the study and 
further in-depth exploration of the ferroptosis and BTG2-
related cellular pathways involved in foam cell formation, 
future therapies could potentially target these pathways and 
provide an additional therapeutic route. 

Our study had several limitations. First, the samples 
included in this study were from different datasets, which 
might have induced interexperiment variabilities, such 
as different experimental procedures and different array 
platforms from different laboratories. To minimize the 
impact of these confounding factors on the results, rather 
than simply merging the datasets, we analyzed them 
separately and independently after rigorous data testing 
before implementing the intersection and performing 
external validation. Additionally, the information acquired 
from the GO databases will need to be revised if the 
databases update the latest annotations. Moreover, the 
results of this study are preliminary, and further biological 
proof-of-concept studies are required to verify the potential 
mechanisms. Nevertheless, our study has the merit of 
providing a comprehensive summary of the landscape of 
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transcriptional regulations in macrophages and VSMCs 
under ox-LDL treatment from a bioinformatics respective 
and of suggesting several multicellular biomarkers and 
candidate pathways that might participate in the initial 
atherogenic events. There is considerable promise then 
for the emerging capability to ascertain corresponding 
mechanisms and offer insights into developing new 
approaches for potential therapeutic modulation in 
cardiological practice.

Conclusions

Our study provides a comprehensive summary of 
the landscape of the transcriptional regulations in 
macrophages and VSMCs under ox-LDL treatment from 
a bioinformatics perspective, which may contribute to a 
better understanding of the pathophysiological mechanisms 
of foam cell formation.
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Supplementary

Figure S1 Detailed information of GO groups. (A) The percentage of terms per group of the representative functional pathways selected by 
the hypergeometric test. (B) The detailed information of the representative GO groups. The bar chart shows the percentage of associated 
genes in each term. *P<0.05, **P<0.01 with Bonferroni step-down correction. GO, Gene Ontology.
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Table S1 Results of gene ontology (GO) enrichment analysis of the top 20 up-regulated and down-regulated DEGs in GSE68021

Category Term Count % P value Genes

GOTERM_BP_FAT GO:0050729~positive regulation of inflammatory response 5 12.5 2.62E-04 C3, IL33, DDT, TNFSF4, TGM2

GOTERM_BP_FAT GO:0032103~positive regulation of response to external 
stimulus

6 15 6.12E-04 C3, IL33, DDT, TNFSF4, MOSPD2, TGM2

GOTERM_BP_FAT GO:0031349~positive regulation of defense response 7 17.5 6.44E-04 C3, IL33, MAP3K1, DDT, TNFSF4, PSMB8, TGM2

GOTERM_BP_FAT GO:0006954~inflammatory response 8 20 0.002211652 C3, IL33, CALCRL, DDT, TNFSF4, SCN9A, TGM2, 
PTGS1

GOTERM_BP_FAT GO:0031347~regulation of defense response 8 20 0.00518392 C3, IL33, MAP3K1, CALCRL, DDT, TNFSF4, PSMB8, 
TGM2

GOTERM_BP_FAT GO:0006952~defense response 11 27.5 0.005187356 C3, IL33, MAP3K1, CALCRL, DDT, TNFSF4, SCN9A, 
IFI30, PSMB8, TGM2, PTGS1

GOTERM_BP_FAT GO:0050727~regulation of inflammatory response 6 15 0.008055839 C3, IL33, CALCRL, DDT, TNFSF4, TGM2

GOTERM_BP_FAT GO:0048584~positive regulation of response to stimulus 12 30 0.009950163 C3, IL33, HINT1, OCLN, MAP3K1, LURAP1L, DDT, 
TNFSF4, MOSPD2, IGFBP6, PSMB8, TGM2

GOTERM_BP_FAT GO:0080134~regulation of response to stress 10 25 0.010439443 C3, IL33, OCLN, MAP3K1, CALCRL, DDT, TNFSF4, 
IGFBP6, PSMB8, TGM2

GOTERM_BP_FAT GO:0002826~negative regulation of T-helper 1 type immune 
response

2 5 0.01336065 IL33, TNFSF4

GOTERM_BP_FAT GO:2000425~regulation of apoptotic cell clearance 2 5 0.020917158 C3, TGM2

GOTERM_BP_FAT GO:0032101~regulation of response to external stimulus 7 17.5 0.022871461 C3, IL33, CALCRL, DDT, TNFSF4, MOSPD2, TGM2

GOTERM_BP_FAT GO:0032736~positive regulation of interleukin-13 production 2 5 0.026547555 IL33, TNFSF4

GOTERM_BP_FAT GO:1903351~cellular response to dopamine 2 5 0.030283638 ID1, TGM2

GOTERM_BP_FAT GO:1903350~response to dopamine 2 5 0.032146444 ID1, TGM2

GOTERM_BP_FAT GO:0002830~positive regulation of type 2 immune response 2 5 0.034005768 IL33, TNFSF4

GOTERM_BP_FAT GO:0032656~regulation of interleukin-13 production 2 5 0.039562912 IL33, TNFSF4

GOTERM_BP_FAT GO:0032616~interleukin-13 production 2 5 0.039562912 IL33, TNFSF4

GOTERM_BP_FAT GO:0002822~regulation of adaptive immune response based 
on somatic recombination of immune receptors built from 
immunoglobulin superfamily domains

3 7.5 0.044807988 C3, IL33, TNFSF4

GOTERM_BP_FAT GO:0043433~negative regulation of sequence-specific DNA 
binding transcription factor activity

3 7.5 0.048523648 TNFSF4, ID1, ID3

GOTERM_BP_FAT GO:0032753~positive regulation of interleukin-4 production 2 5 0.04875577 IL33, TNFSF4

GOTERM_CC_FAT GO:0005576~extracellular region 20 50 0.001203422 IL33, STEAP4, TFPI2, MAMDC2, PRSS35, RASSF9, 
IFI30, PSMB8, ACTG2, PTGS1, C3, HINT1, RPS28, 
PSG5, DDT, PRC1, TNFSF4, KIF20A, IGFBP6, TGM2

GOTERM_CC_FAT GO:0044421~extracellular region part 16 40 0.008746772 IL33, STEAP4, TFPI2, RASSF9, PSMB8, ACTG2, 
PTGS1, C3, HINT1, RPS28, DDT, PRC1, TNFSF4, 
KIF20A, IGFBP6, TGM2

GOTERM_CC_FAT GO:0070062~extracellular exosome 10 25 0.035165353 C3, HINT1, RPS28, STEAP4, DDT, RASSF9, PSMB8, 
ACTG2, TGM2, PTGS1

GOTERM_CC_FAT GO:1903561~extracellular vesicle 10 25 0.044538826 C3, HINT1, RPS28, STEAP4, DDT, RASSF9, PSMB8, 
ACTG2, TGM2, PTGS1

GOTERM_CC_FAT GO:0043230~extracellular organelle 10 25 0.044750868 C3, HINT1, RPS28, STEAP4, DDT, RASSF9, PSMB8, 
ACTG2, TGM2, PTGS1

GO: gene ontology; DEGs: differentially expressed genes.
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Table S2 Detailed information of the overlapped DEGs in GSE54666 and GSE68021

Category Genes Description
logFC in 

GSE54666
P-value in 
GSE54666

logFC in 
GSE68021

P-value in 
GSE68021

Upregulated FABP4 fatty acid binding protein 4 1.470398373 2.03274E-05 0.46871 0.02385191

SLC7A11 solute carrier family 7 member 11 1.453996274 0.003984236 0.957956667 0.032835465

PTGR1 prostaglandin reductase 1 1.274271736 6.19712E-06 0.439963333 0.001705353

SEMA3C semaphorin 3C 1.08388755 0.014421994 0.627322222 0.002772547

TFPI tissue factor pathway inhibitor 0.924917307 0.000929819 0.664784444 0.003599126

ABCA1 ATP binding cassette subfamily A member 1 0.846461668 0.005506061 1.268332222 0.03971016

TDP2 tyrosyl-DNA phosphodiesterase 2 0.779633808 0.003843368 0.440492222 0.013630915

SEL1L3 SEL1L family member 3 0.773765187 0.022373403 0.25913 0.032317862

PGM2L1 phosphoglucomutase 2 like 1 0.705037816 0.029440242 0.994358889 0.001998438

ZFYVE16 zinc finger FYVE-type containing 16 0.677732427 0.000769758 0.919041111 0.00022816

TBC1D8 TBC1 domain family member 8 0.662905166 0.028884547 0.444135556 0.01108487

DENND4C DENN domain containing 4C 0.655659052 0.000929819 0.670103333 0.000946479

RNF13 ring finger protein 13 0.554044006 0.00246856 0.460828889 0.005946863

CD36 CD36 molecule 0.493873772 0.003055277 0.452388889 0.005693572

LYRM1 LYR motif containing 1 0.477045188 0.035649254 0.633733333 0.002505785

PBX3 PBX homeobox 3 0.453636463 0.035435969 0.440784444 0.00394945

MADD MAP kinase activating death domain 0.445356319 0.001883216 0.274126667 0.030344524

UTRN utrophin 0.439132811 0.005238935 0.519571111 0.009008847

EML4 echinoderm microtubule associated protein like 4 0.43315257 0.038222786 0.51849 0.001063426

ANXA1 annexin A1 0.420941818 0.021242295 0.611922222 0.00338652

GPCPD1 glycerophosphocholine phosphodiesterase 1 0.415897504 0.017506385 0.637488889 0.010380698

CISD2 CDGSH iron sulfur domain 2 0.41394255 0.016131621 0.290182222 0.038600922

SGK1 serum/glucocorticoid regulated kinase 1 0.395067377 0.007787396 0.805446667 2.00114E-05

OSBPL8 oxysterol binding protein like 8 0.378989443 0.013367281 1.058464444 3.57988E-05

PPP1R15A protein phosphatase 1 regulatory subunit 15A 0.373285808 0.02859855 0.276477778 0.033324551

ZDHHC17 zinc finger DHHC-type containing 17 0.371964793 0.044909348 0.496921111 0.026032078

ZNF124 zinc finger protein 124 0.358148968 0.038088786 0.440995556 0.005004091

PKD2 polycystin 2, transient receptor potential cation channel 0.332449968 0.01605121 0.452951111 0.00170309

ZNF470 zinc finger protein 470 0.332167207 0.022425514 0.692992222 0.003611095

MEGF9 multiple EGF like domains 9 0.321921341 0.020480785 0.358144444 0.036084049

RBBP8 RB binding protein 8, endonuclease 0.269548629 0.007787396 0.477151111 0.036973118

ZCCHC9 zinc finger CCHC-type containing 9 0.264656442 0.03057366 0.747607778 0.013451934

CLIP1 CAP-Gly domain containing linker protein 1 0.225783782 0.032893493 0.662831111 0.037673345

LEO1 LEO1 homolog, Paf1/RNA polymerase II complex component 0.222241516 0.018765111 0.586202222 0.004711491

Downregulated AKIP1 A-kinase interacting protein 1 -0.246802143 0.037817118 -0.451817778 0.003066641

IGBP1 immunoglobulin (CD79A) binding protein 1 -0.289358 0.035435969 -0.732567778 3.57004E-05

NAT14 N-acetyltransferase 14 (putative) -0.291233049 0.041978167 -0.534126667 0.010840243

MAP1LC3A microtubule associated protein 1 light chain 3 alpha -0.295163452 0.026124327 -0.458188889 0.002788511

SLC39A1 solute carrier family 39 member 1 -0.316203458 0.046601401 -0.458138889 0.00185456

CCM2 CCM2 scaffolding protein -0.316370761 0.036479906 -0.370675556 0.007525734

EMB embigin -0.332413422 0.018570393 -0.501147778 0.024750481

CAPZB capping actin protein of muscle Z-line beta subunit -0.344201413 0.032948135 -0.687148889 0.000157701

RPL35A ribosomal protein L35a -0.362403265 0.001147074 -0.501533333 0.000412926

TGFBR2 transforming growth factor beta receptor 2 -0.3799682 0.005240623 -0.983735556 1.67658E-05

CTSC cathepsin C -0.380737568 0.023789846 -0.530575556 0.000226825

ADIPOR2 adiponectin receptor 2 -0.394652913 0.007787396 -0.485474444 0.004934487

ANKH ANKH inorganic pyrophosphate transport regulator -0.39773881 0.013969426 -0.849911111 2.48283E-05

CD320 CD320 molecule -0.464479604 0.004564937 -0.556051111 0.001150653

PRPS1 phosphoribosyl pyrophosphate synthetase 1 -0.490871312 0.03201916 -0.716827778 0.000252019

CCNF cyclin F -0.543196612 0.043758047 -0.429723333 0.002671963

LAT2 linker for activation of T-cells family member 2 -0.573973496 0.003903812 -0.233814444 0.048818297

NIPSNAP1 nipsnap homolog 1 (C. elegans) -0.585297238 0.021163195 -0.382478889 0.016602228

CD74 CD74 molecule -0.628614539 0.0332374 -0.382596667 0.042100482

BTG2 BTG anti-proliferation factor 2 -0.64118869 0.026124327 -0.668694444 0.005631023

FSCN1 fascin actin-bundling protein 1 -0.660055218 0.001652681 -0.433043333 0.002569853

KLF2 Kruppel like factor 2 -0.802227564 0.042103046 -0.279002222 0.038932011

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 -0.822339328 0.030990294 -0.834336111 0.001598579

MXD4 MAX dimerization protein 4 -1.003187959 0.037131648 -0.295345556 0.03617515

TMEM173 transmembrane protein 173 -1.394840536 0.000702575 -0.655006667 0.001179075

HTR2B 5-hydroxytryptamine receptor 2B -1.498136873 0.009798765 -1.378401111 0.004793981

FC: fold change; DEGs: differentially expressed genes.
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Table S3 The results of GO analysis based on the overlapped DEGs in GSE54666 and GSE68021

ID Term Ontology source
Term 

P-value

Term P-value 
corrected with 

bonferroni 
step down

Group 
P-value

Group P-value 
corrected with 

bonferroni 
step down

GO 
levels

GO 
groups

% 
Associated  

genes

Nr. 
genes

Associated genes 
found

GO:0005901 caveola GO_CellularComponent-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.02 0.00 0.00 [5, 6] Group0 3.37 3.00 [CD36, TFPI, 
TGFBR2]

GO:0015909 long-chain fatty  
acid transport

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [6, 7] Group1 4.11 3.00 [ANXA1, CD36, 
FABP4]

GO:0032946 positive regulation 
of mononuclear cell 
proliferation

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [5, 6, 7] Group2 3.27 5.00 [ANXA1, CD320, 
CD74, HLA-DPA1, 

TGFBR2]

GO:0050671 positive regulation 
of lymphocyte 
proliferation

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [5, 6, 7, 
8]

Group2 3.31 5.00 [ANXA1, CD320, 
CD74, HLA-DPA1, 

TGFBR2]

GO:0019915 lipid storage GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.02 0.00 0.00 [3, 4] Group3 3.41 3.00 [ABCA1, CD36, 
OSBPL8]

GO:0010883 regulation of lipid 
storage

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [3, 4, 5] Group3 5.45 3.00 [ABCA1, CD36, 
OSBPL8]

GO:0038024 cargo receptor  
activity

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [6] Group3 3.16 3.00 [ABCA1, CD320, 
CD36]

GO:0098576 lumenal side of 
membrane

GO_CellularComponent-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [3, 4, 5] Group4 7.69 3.00 [CD74, HLA-DPA1, 
PKD2]

GO:0098553 lumenal side of 
endoplasmic  
reticulum membrane

GO_CellularComponent-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [4, 5, 6, 
7, 8]

Group4 9.38 3.00 [CD74, HLA-DPA1, 
PKD2]

GO:0030134 COPII-coated ER to 
Golgi transport  
vesicle

GO_CellularComponent-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [5, 6, 8] Group4 3.03 3.00 [CD74, CTSC, HLA-
DPA1]

GO:0071556 integral component 
of lumenal side of 
endoplasmic  
reticulum membrane

GO_CellularComponent-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [5, 6, 7, 
8, 9, 10]

Group4 9.38 3.00 [CD74, HLA-DPA1, 
PKD2]

GO:0046889 positive regulation 
of lipid biosynthetic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [4, 5, 6, 
7]

Group5 3.19 3.00 [ANXA1, CD74, 
HTR2B]

GO:2000106 regulation of  
leukocyte apoptotic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [6, 7] Group5 3.26 3.00 [ANXA1, CD74, 
SLC7A11]

GO:0006692 prostanoid metabolic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [6, 7, 9] Group5 5.56 3.00 [ANXA1, CD74, 
PTGR1]

GO:0006693 prostaglandin 
metabolic process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [7, 8, 
10]

Group5 5.56 3.00 [ANXA1, CD74, 
PTGR1]

GO:0034405 response to fluid 
shear stress

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [3] Group6 8.57 3.00 [ABCA1, KLF2, 
PKD2]

GO:2001057 reactive nitrogen 
species metabolic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [3] Group6 3.33 3.00 [CD36, KLF2, PKD2]

GO:0046209 nitric oxide metabolic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.02 0.00 0.00 [4] Group6 3.37 3.00 [CD36, KLF2, PKD2]

GO:0080164 regulation of nitric 
oxide metabolic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [4, 5] Group6 4.55 3.00 [CD36, KLF2, PKD2]

GO:0006809 nitric oxide 
biosynthetic process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.02 0.00 0.00 [5] Group6 3.70 3.00 [CD36, KLF2, PKD2]

GO:1904407 positive regulation of 
nitric oxide metabolic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [4, 5, 6] Group6 6.38 3.00 [CD36, KLF2, PKD2]

GO:0034614 cellular response 
to reactive oxygen 
species

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.00 0.00 0.00 [5, 6] Group6 3.13 5.00 [ANXA1, CD36, 
KLF2, MAP1LC3A, 

PKD2]

GO:0045428 regulation of nitric 
oxide biosynthetic 
process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [5, 6] Group6 4.76 3.00 [CD36, KLF2, PKD2]

GO:0045429 positive regulation 
of nitric oxide 
biosynthetic process

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [5, 6, 7] Group6 6.67 3.00 [CD36, KLF2, PKD2]

GO:0070301 cellular response to 
hydrogen peroxide

GO_BiologicalProcess-
EBI-UniProt-GOA-ACAP-
ARAP_17.03.2022_00h00

0.00 0.01 0.00 0.00 [5, 6, 7] Group6 3.06 3.00 [ANXA1, KLF2, 
MAP1LC3A]

GO, gene ontology; DEGs, differentially expressed genes.


