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Background: The prognosis of esophageal squamous cell carcinoma (ESCC) is improved by neoadjuvant 
chemoradiotherapy (nCRT), especially for patients with pathologic complete response (pCR). Despite the 
efforts to predict treatment response using multimodality, no molecule has proven to be a strong biomarker. 
This study aimed to profile the expression of exosome transcriptome that could predict pCR in ESCC before 
and after nCRT. 
Methods: We collected paired blood samples of 15 patients with ESCC who received nCRT and radical 
surgery. They were divided into 3 groups: (A) residual tumor in the first clinical response evaluation  
(CRE-1), (B) no residual tumor in CRE-1 but with residual tumor in CRE-2 which was performed after  
5–6 weeks, and (C) no residual tumor in CRE-1 or CRE-2. For each patient, the blood sample was collected 
before nCRT (time point 0); and then 6 weeks after nCRT, the clinical response was evaluated, and another 
blood sample was collected (time point 1). 
Results: Using the intersection of different sets, we found 23 progression-associated messenger RNAs 
(mRNAs) and 67 remission-associated mRNAs. Between remission-associated mRNAs and the targets of 
progression-associated (carcinogenic) microRNAs (miRNAs), the intersection was acquired, and 2 miRNA-
mRNA networks (IFIT2-miR-3615-IFIT2-miR-484 and BTN3A3-miR-6803-3p) were identified. Among 
the intersection of progression-associated (carcinogenic) mRNAs and the targets of remission-associated 
miRNAs, there is a network with miR-132-3p (remission-associated miRNA) located at the core, matched 
with DICER1, KLHL8, ANKRD12, ASH1L, and IMP4. 
Conclusions: Our findings identified altered plasma exosome RNAs among the different groups and 
between different time points of nCRT, as well as the corresponding enrichments and regulatory networks, 
which may serve as potentially predictors of treatment response for patients with ESCC after nCRT.
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Introduction

Esophageal cancer is one of the most aggressive malignancies 
of the gastrointestinal tract, with a 5-year survival rate of less 
than 25% (1). In China, esophageal squamous cell carcinoma 
(ESCC) is the most commonly observed malignant 
type, with Chinese cases accounting for more than half 
of the global burden. Neoadjuvant chemoradiotherapy 
(nCRT) followed by surgery is currently still the major 
treatment strategy for locally advanced ESCC and was 
demonstrated to improve survival by the landmark CROSS 
and NEOCRTEC5010 studies (2,3). Despite the survival 
benefits, half of patients still relapse after nCRT and surgery, 
especially those without pathologic complete response 
(pCR). This suggests that more effective biomarkers are 
required to increase the accuracy of predicting pCR to 
identify the patients most suited to receive nCRT.

Liquid biopsy-based biomarkers in cancer diagnostics 
are associated with low cost and minimal invasiveness (4). 
Significant efforts have been made in the use of liquid biopsy 
for the early detection and treatment stratification of cancer, 
as well as residual disease and recurrence monitoring. 
Although circulating tumor cells and circulating tumor DNA 
have been used for early detection of tumors, exosomes and 
other extracellular vesicles have become a platform with 
potentially wider and complementary applications (5). The 
exosomes secreted by tumor cells consist of many molecules 
closely related to the characteristics of tumor. Analysis of 

exosomes is benefit to the diagnose of tumor and prediction 
of the tumor prognosis (6). Previous study has shown that 
the exosomes secreted by tumors can enter into circulatory 
system and be detected in the blood (7). Separating the 
exosomes in the blood could realize the non-invasive way to 
identify the characteristics of tumors at an early stage and 
potential therapeutic targets. Therefore, plasma exosomes 
are attractive as biomarkers for disease progression and risk 
stratification for applying nCRT in patients with ESCC.

Exosomes have been reported to promote tumorigenesis 
in several cancers, particularly through transfer of miRNAs. 
Circulating exosome-miRNAs (exo-miRNAs) have been 
suggested as specific and stable molecular biomarkers (8,9). 
Besides miRNAs, the combination of other RNA types 
[i.e., messenger RNA (mRNA), long noncoding RNA 
(lncRNA), and circulating RNA (cRNA)] can provide 
more comprehensive information and a reference for 
the molecular mechanism regarding nCRT. Exosome 
transcriptome could represent a more detailed and specific 
molecular biomarker compared with a single RNA type. 
The use of exosome transcriptome to predict the treatment 
response of nCRT has been widely used in other cancers 
(such as breast cancer and gastric cancer) (10,11); however, 
it is still in its infancy and has not been reported in ESCC. 
In addition, the current efficacy prediction mainly uses exo-
miRNA panels, which cannot reveal the deep relationship 
between the three important types of exo-RNAs (mRNA, 
miRNA, and lncRNA). Therefore, we aimed to determine 
the associations between miRNA, mRNA, and lncRNA 
expression and nCRT response in patients with ESCC. To 
the best of our knowledge, this is the first study to use the 
exosome transcriptome with three types of RNA to examine 
the biomarkers in patients with ESCC who received nCRT 
and surgery. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-23-452/rc).

Methods

Patients and specimens

The patient population consisted of 15 patients with 
ESCC who received nCRT and surgery in Shanghai 
Chest Hospital. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) (12).  
This study was approved by the institution ethics 
committee of Shanghai Chest Hospital (No. KS2160). All 
patients provided written informed consent for the use 
of blood and specimens. The study flowchart is shown in 
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Key findings 
• Two miRNA-mRNA networks (IFIT2-miR-3615-IFIT2-

miR-484 and BTN3A3-miR-6803-3p) were identified as predictive 
biomarkers in patients with esophageal squamous cell carcinoma 
who have received neoadjuvant chemoradiotherapy.

What is known and what is new?  
• A profile of an exosome transcriptome in patients with esophageal 

cancer who have received surgery alone has been established in the 
existing bioinformatics database.

• This present exosome transcriptome-based analysis revealed 
novel biomarkers to predict treatment response in patients with 
locally advanced esophageal squamous cell carcinoma undergoing 
neoadjuvant chemoradiotherapy.

What is the implication, and what should change now? 
• Our results expanded upon the expression profile of exosome 

transcriptome in patients with esophageal squamous cell carcinoma 
who have received neoadjuvant chemoradiotherapy, which could be 
applied to predict treatment response after further confirmation.
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Figure 1. The CROSS regimen (i.e., 5 weekly cycles of 
carboplatin and paclitaxel with concurrent radiation) was 
used in nCRT. Previous study showed that roughly 40% 
of patients with ESCC have a pathologically complete 
response (pCR) in the resection specimen after nCRT (3).  
For these patients surgical resection might not be necessary. 
Hence, an active surveillance strategy has been proposed 
in which patients will undergo frequent clinical response 
evaluations. We conducted a second response to increase 
the diagnostic accuracy and therefore patients will be 
divided into three groups. For each patient, a blood sample 
was collected (time point 0) before nCRT. The clinical 
response was evaluated at 6 weeks after nCRT, and another 
blood sample was collected (time point 1). Subsequently, 
radical esophagectomy was performed. According to the 

pathologic results, patients were divided into 3 groups. 
For group A, the clinical assessment observed residual 
tumor, and this was confirmed by the surgery. For group 
B, no residual disease was observed after nCRT, but 
tumor progression was discovered after 6-week follow-
up. For group C, complete tumor remission was achieved 
(ypT0N0M0). Five patients in each group were selected 
(with similar baseline information), and for each patient,  
2 blood samples at different time points of the same patient 
were sent for exosome purification and sequencing. 

Exosomal RNA purification

The exosomes were isolated from the blood plasma samples. 
Quality control were indicated with representative images of 
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Figure 1 Study flowchart. For each patient, a blood sample was collected (time point 0) before nCRT. Clinical response was evaluated at 
6 weeks after nCRT, and another blood sample was collected (time point 1). Subsequently, radical esophagectomy was performed. Three 
groups were created according to the pathologic results. For group A, the clinical assessment observed residual tumor, which was confirmed 
by the surgery. For group B, no residual tumor was observed after nCRT, but tumor progression was discovered after 6-week follow-up and 
was confirmed by surgery. For group C, complete tumor remission was achieved (ypT0N0M0). Five patients in each group were selected 
(with similar baseline information), and for each patient, 2 blood samples at different time points of the same patient were sent for exosome 
purification and sequencing. nCRT, neoadjuvant chemoradiotherapy; CRE, clinical response evaluation.
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transmission electron microscopy (Figure S1) and western 
blotting for positive markers of exosomes (Figure S2).  
The diluted serum specimens were centrifuged (500 g 
for 5 min and 2,000 g for 10 min). The supernatant was 
collected and centrifuged (10,000 g) for another 30 min. 
The pellet was filtered with a 0.22-μm filter and sent for 
ultracentrifugation (110,000 g for 90 min). The resuspended 
solution was later ultracentrifuged for another 90 min at 
110,000 g. After removal of the supernatant, resuspension 
of the final pellet (with phosphate-buffered saline (PBS)] 
was later concentrated at 4,000 g using the MilliporeAmicon 
Ultra-15 Centrifugal Filter Unit. When the volume 
reached 100 μL, the process was stopped. The concentrated 
exosomes were placed at  −80 ℃. During exosome analysis, 
the particle size of nanoparticle suspension was examined 
using scattered light detection. Then, the size and structure 
of exosomes were directly observed under transmission 
electron microscopy. Plasma exosomes were further 
confirmed with following protein markers under Western 
blotting: positive for CD9/TSG101/HSP70 and negative 
for calnexin. RNA was isolated using the RecoverAll Total 
Nucleic Acid Isolation Kit (Thermo Fisher, Inc. Waltham, 
MA, USA). Amplification and complement DNA (cDNA) 
labeling were performed using the SensationPlus FFPE 
Amplification Kit (Thermo Fisher Scientific) according to 
manufacturer’s instructions.

Gene expression analysis

Raw reads in FastQ format were acquired using the Illumina 
HiSeq2500 platform. Clean data were obtained by removing 
low-quality reads and those containing adapter or ploy-N. 
For miRNA analysis, the filtered ribosomal RNA (rRNA), 
transfer RNA (tRNA), small nuclear RNA (snRNA), small 
nucleolar RNA (snoRNA), and other ncRNA and repeats 
were removed. The remaining reads were used to detect 
known miRNAs and novel miRNAs as predicted via the 
comparison with the known miRNAs from miRBase. For 
lncRNA analysis, the HISAT2 software was used. Sequence 
alignment and subsequent analysis were performed based 
on the GRCh38 reference. After alignment, the reads 
were assembled using StringTie software. The mRNA, 
miRNA, and lncRNA expression profile were analyzed for 
differentially expressed genes (DEGs). According to the 
grouping information, the sample expression data were 
imported into the “DEGseq” R package (The R Foundation 
for Statistical Computing) to compare the expression 
differences between samples. The fold change (FC) and 

adjusted P value were obtained for each transcript. Then, 
according to the threshold of P value <0.05 and |log2(FC)| 
≥0.585, the DEGs of each data set were acquired. Volcano 
plots were produced for DEGs and DE transcripts using the 
“ggplot2” R package. In particular, we paid attention to the 
DE mRNAs/lncRNAs and miRNAs with opposite change 
directions. The intersection of different sets was visualized 
in a Venn diagram. For each comparison, a heatmap of 
DEGs between 2 groups was drawn.

Target prediction of key miRNAs and screening of key 
oncogenes and tumor-suppressor genes

The mRNAs potentially targeted by key miRNAs were 
predicted using the miRWalk online tool (http://mirwalk.
umm.uni-heidelberg.de/). The following pairs were 
specifically scrutinized: tumor-promoting miRNAs, tumor-
suppressor mRNAs, tumor-suppressor miRNAs, and tumor-
promoting mRNAs.

Enrichment analysis

Based on key oncogenes and tumor-suppressor genes, we 
used the Metascape tool to explore the enriched Gene 
Ontology (GO) terms, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, Reactome sets, canonical 
pathways, TRRUST sets, and enriched transcription factor-
targets. Terms with a P value <0.05, a minimum count of 3, 
and an enrichment factor >1.5 were collected.

Protein-protein interaction (PPI) analysis

Using all the key genes, PPI enrichment analysis was 
conducted based on Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING; https://string-db.
org/). All interactions except text mining (physical score 
>0.14) were used to establish the PPI network.

Results

Remission- and progression-associated DEGs (mRNAs)

First, we compared the exosome transcriptome at 2 time 
points (before and after nCRT) in 3 cohorts (n=5 per 
group). In group A, there were 73 upregulated mRNAs 
and 184 downregulated mRNAs (Figure 2A); in group B, 
there were 68 upregulated and 26 downregulated ones 
(Figure 2B); in group C, there were 118 upregulated and 
26 down-regulated ones (Figure 2C). The intersection of 

https://cdn.amegroups.cn/static/public/ATM-23-452-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-23-452-Supplementary.pdf
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://string-db.org/
https://string-db.org/
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Figure 2 Remission- and progression-associated DEGs (mRNAs) compared in 2 time points and 2 groups. (A) The volcano plots and 
heatmap of DE-mRNAs in group A. (B) The volcano plots and heatmap of DE-mRNAs in group B. (C) The volcano plots and heatmap of 
DE-mRNAs in group C. (D) Venn diagram of the intersection of upregulated and downregulated genes. (E) The volcano plots and heatmap 
of DE-mRNAs in the comparison of C1 vs. A1. (F) The volcano plots and heatmap of DE-mRNAs in the comparison of C1 vs. B1. (G) 
Left: The intersection of C1-A1 upregulation and C1-B1 upregulation included 3 genes (named CvAB-Up) which may be associated with 
remission; Right: The intersection of C1-A1 downregulation and C1-B1 downregulation included 1 gene (named CvAB-Down), which may 
be associated with progression. FC, fold change; DEG, differentially expressed gene; mRNA, messenger RNA; DE-mRNA, differentially 
expressed mRNA.
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upregulated and downregulated genes was visualized in a 
Venn diagram (Figure 2D). Theoretically, the 74 unique 
upregulated genes in the C1 vs. C0 comparison (but not B1 
vs. B0 or A1 vs. A0) were associated with nCRT response 
or tumor remission (Figure 2D, named only-C-Up set); the 
unique downregulated genes in the C1 vs. C0 comparison 
(but not B1 vs. B0 or A1 vs. A0) were associated with 
ESCC progression (Figure 2D, named only-C-Down set). 
Among the common genes between A1-A0 DEGs and 
B1-B0 DEGs, the unique upregulated gene (not among 
C1-C0 DEGs) appeared to be associated with ESCC 
progression (Figure 2D, named only-AB), while the unique 
downregulated gene (not among C1-C0 DEGs) appeared 
to be associated with ESCC remission (Figure 2D, named 
only-AB-Down set). The significance of these 4 sets is 
particularly important in nCRT treatment. 

Next, at the second time point, the DEGs of C1 
vs. A1 and C1 vs. B1 were acquired, including 95 C1-
A1 upregulated (Figure 2E) and 45 C1-B1 upregulated  

(Figure 2F) DEGs. The intersection of C1-A1 upregulation 
and C1-B1 upregulation included 3 genes (Figure 2G, 
named CvsAB-Up) potentially associated with remission, 
and the intersection of C1-A1 downregulation and C1-B1 
downregulation included 1 gene (Figure 2G, named CvsAB-
Down) potentially associated with progression. Overall, 
ESCC remission was associated with 3 sets: only-C-Up, 
only-AB-Down, and CvAB-Up, while ESCC progression 
was associated with another 3 sets: only-C-Down, only-AB-
Up, and CvAB-Down.

Enrichment analysis of ESCC progression and remission 
genes

In the progression gene enrichment, we removed unknown 
genes and input the remaining 23 genes. In GO enrichment 
(Figure 3A), the following terms are enriched: lymphocyte 
differentiation, female pregnancy, and positive regulation 
of leukocyte cell-cell adhesion, among others. In enriched 
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Figure 3 The enrichment analysis of ESCC progression-associated genes. (A) Top enriched GO/KEGG/Reactome terms. (B) The 
transcription factor-target enrichment. (C) The TRRUST enrichment. (D) The PPI network. ESCC, esophageal squamous cell carcinoma; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.



Annals of Translational Medicine, Vol 11, No 4 February 2023 Page 7 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(4):182 | https://dx.doi.org/10.21037/atm-23-452

the canonical pathways, the TAP63 pathway was enriched. 
In the transcription-factor targets, the following factors 
appeared enriched: SP1, EGR3, MEIS1AHOXA9, OCT1, 
EGR2, FOXD3, RP58, NFKB, and SOX9, among others 
(Figure 3B). The TRRUST enrichment showed that RARA 
may modulate these progression genes (Figure 3C). Based 
on these 23 genes, a PPI network showed that MS4A1, 
CD79B, FUT7, CD3EAP, IMP4, DICER1, and ASH1L were 
located at the key positions, which indicated the crucial role 
of these genes in ESCC progression (Figure 3D). 

Similarly, 76 remission-associated genes were enriched 
in many GO terms, including in hemopoiesis, cortical 
cytoskeleton, and cellular response to leukemia inhibitory 
factor (Figure 4A). Reactome analysis also indicated that up-
specific processing proteases, RUNX1 regulates transcription 
of genes involved in differentiation of hematopoietic stem 
cells (HSCs), vesicle-mediated transport, and others, were 

enriched. Meanwhile, biosynthesis of amino acids and carbon 
metabolism were the enriched KEGG pathways. In the 
transcription factor-target analysis, the following factors were 
enriched: PSMB5, ZNF436, GTF2A2, COBLL1, AFP1, and 
SOX5, among others (Figure 4B); and remission associated 
genes appeared to be largely regulated by MYB, MYCN, 
HIF1A, MYC, and E2F1 (Figure 4C). The PPI network 
of the remission-associated genes is shown as Figure 4D,  
in which UBB, IFIT1B, AHSP, MAT2A, SELENBP1, SPTA1, 
and TNS1 appear as the hub genes. Taken together, these 
results showed that the filtered hub genes play an important 
role in tumorigenesis and development.

Remission and progression associated miRNAs

The DE miRNAs were analyzed in the same protocol. The 
altered miRNAs in A1 vs. A0, B1 vs. B0, and C1 vs. C0 
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Figure 4 The enrichment analysis of ESCC remission-associated genes. (A) The top enriched GO, KEGG, and Reactome terms. (B) The 
transcription factor-target enrichment. (C) The TRRUST enrichment. (D) The PPI network. ESCC, esophageal squamous cell carcinoma; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
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Figure 5 The remission- and progression-associated DE-miRNAs and the key miRNA-mRNA pairs. (A) The volcano plots of DE-miRNAs 
in group A. (B) The volcano plots of DE-miRNAs in group B. (C) The volcano plots of DE-miRNAs in group C. (D) Left: The intersection 
of upregulated genes in time point 1 vs. time point 0; Right: The intersection of downregulated genes in time point 1 vs. time point 0. (E) 
The volcano plots of DE-miRNAs in the comparison of C1 vs. A1. (F) The volcano plots of DE-miRNAs in the comparison of C1 vs. B1. 
(G) Upper: the intersection of the C1-A1 upregulation and C1-B1 upregulation sets; Lower: the intersection of the C1-A1 downregulation 
and C1-B1 downregulation sets. (H) The key miRNA-mRNA pairs. Left: the intersection between the remission-associated mRNAs and 
the targets of progression-associated (carcinogenic) miRNAs. Two miRNA-mRNA networks were identified: IFIT2-miR-3615-IFIT2-
miR-484 and BTN3A3-miR-6803-3p. Right: based on the intersection of progression-associated (carcinogenic) mRNAs and the targets of 
remission associated miRNAs, a network with miR-132-3p (remission-associated miRNA) was located at the core. FC, fold change; miRNA, 
microRNA; DE-miRNA, differentially expressed miRNA.
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are shown in Figure 5A-5D. In Figure 5E-5G, there are 3 
miRNAs in the only-C-Up set and 5 miRNAs in the only-
C-Down set (hsa-miR-92b-3p, hsa-miR-6803-3p, hsa-
miR-484, hsa-miR-941, and hsa-miR-3615 are within the 
only-C-Down set; hsa-miR-122-5p is within the CvsAB-
Down set; hsa-miR-335-5p and hsa-miR-132-3p are within 
the only-C-Up set; and there are no known miRNAs in the 
only-AB-Up, only-AB-Down, or CvsAB-Up sets).

Key miRNA-mRNA pairs

The targets of remission- and progression-associated 
miRNAs were then screened. Between the remission-
associated mRNA and the targets of progression-associated 
(carcinogenic) miRNAs, the intersection was acquired, and 
2 miRNA-mRNA networks were identified (Figure 5H): 
IFIT2-miR-3615-IFIT2-miR-484 and BTN3A3-miR-6803-
3p. Meanwhile, we screened the intersection of progression-
associated (carcinogenic) mRNAs and the targets of 
remission-associated miRNAs. Based on network analysis, 
miR-132-3p (remission-associated miRNA) was located at 
the core and matched with DICER1, KLHL8, ANKRD12, 
ASH1L, and IMP4.

Remission- and progression-associated lncRNAs

Finally, the DE lncRNAs were analyzed. There were 80 
lncRNAs in the only-C-Up set, 2 lncRNAs in the only-
AB-Down set, and 53 lncRNAs in the only-C-Down 
set (Figure 6A-6E). Additionally, there were 61 C1-A1 
upregulated lncRNAs and 60 C1-B1 upregulated lncRNAs, 
between which 7 DE lncRNAs were shared (Figure 6F,6G). 
Meanwhile, we discovered 76 C1-A1 downregulated 
lncRNAs and 61 C1-B1 downregulated lncRNAs, between 
which 12 lncRNAs were shared (Figure 6H,6I). For these 
remission- and progression-associated lncRNAs, we 
screened all the cis-target genes and trans-target genes, 
but no common ones were found with the remission- and 
progression-associated mRNAs. Finally, the lncRNA targets 
of key miRNAs (as mentioned above) were collected, but 
no common ones were shared with these remission- and 
progression-associated lncRNAs.

Discussion

The significant transcriptomes associated with ESCC 
have been widely investigated through high-throughput 
approaches. For example, known ESCC-related miRNAs 

include miR-23b-5p, miR-877-3p, and miR-17-92, among 
others (13-16). Several published works demonstrated 
that chemotherapy resistance can be affected by mRNAs 
like TUG1, ZFX, and NRF2, and miRNAs like miR-130a-
3p, miR-125a-5p, and miR-224 (17-21). However, the 
key prognostic molecules in the therapeutic mechanism of 
ESCC, especially in nCRT, still need to be investigated. 
In this study, we used transcriptome analysis to assess the 
global signature of exo-RNAs and identified distinct exo-
RNA signatures that may effectively predict treatment 
outcomes of nCRT. Here, CCDC85B (only-AB-Up) and 
stearoyl-CoA desaturase (SCD) (CvsAB-Down) were found 
to be 2 important progression-associated mRNAs, while 
IFIT2 was found to be a key remission-associated mRNA 
(CvsAB-Up). Additionally, several important miRNA-
mRNA networks were identified: miR-484-IFIT2, miR-
3615-IFIT2, miR-6803-3p-BTN3A3, and miR-132-3p-
DICER1-KLHL8-ANKRD12-ASH1L-IMP4. All these 
findings are highly novel, as the roles of these molecules 
in the development of ESCC and treatment response to 
nCRT are completely unknown or not well studied.

In colorectal cancer, CCDC85B (also known as DIPA) is a 
carcinogenetic gene (22). It could be found on the centrosome 
and directly interacts with p78 and influences malignant 
transformation by modulating gene transcription (23).  
It has been reported that CCDC85B is a master regulator 
that can transform the cellular state of fast-growing subtype 
cells into the slow-growing subtype (24). SCD is a member 
of the de novo fatty-acid synthesis pathway (25), and it has 
been associated with esophageal cancer (26). Additionally, we 
found IFIT2 to be a key remission-associated mRNA, and the 
consistent result of the miR-484-IFIT2 axis was a particularly 
striking finding in this work. Currently, the direct association 
between ESCC and IFIT2 has not been clearly reported. 
IFIT2 (interferon-induced protein with tetratricopeptide 
repeats 2) enables RNA-binding activity, and it is involved in 
the negative regulation of protein-binding activity, positive 
regulation of apoptotic process, and response to virus. In 
osteosarcoma cells, it is a cell death-promoting factor and 
can augment cisplatin-induced apoptosis (27), which is in line 
with our result. Similarly, lncRNA LINC00161 was reported 
to sensitize osteosarcoma cells to cisplatin-induced apoptosis 
by regulating the miR-645-IFIT2 axis (27). Indeed, interferon 
signaling is generally associated with tumor apoptosis 
or remission (28). A microarray study showed that the 
expression of IFIT2 is upregulated in ESCC (29). Therefore, 
it is reasonable to hypothesize that a high expression of IFIT2 
plays a role in the anti-ESCC process. The role of BTN3A3 
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Figure 6 Remission- and progression-associated DE lncRNAs. (A) The volcano plots of DE lncRNAs in group A. (B) The volcano plots 
of DE lncRNAs in group B. (C) The volcano plots of DE lncRNAs in group C. (D) The intersection of upregulated genes in time point 
1 vs. time point 0. (E) The intersection of downregulated genes in time point 1 vs. time point 0. (F) The volcano plots of DE lncRNAs 
in the comparison of C1 vs. A1. (G) The intersection of the C1-A1 upregulation and C1-B1 upregulation sets. (H) The volcano plots of 
DE lncRNAs in the comparison of C1 vs. B1. (I) The intersection of the C1-A1 downregulation and C1-B1 downregulation sets. FC, fold 
change; DE lncRNA, differentially expressed lncRNA; lncRNA, long noncoding RNA.
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as a remission-associated mRNA in ESCC was another 
novel finding, and similar roles in tumor research have 
been reported. BTN3A3 is expected to become a potential 
therapeutic target for breast cancer (30), and the upregulation 
of BTN3A3 has been significantly correlated with better 
overall and relapse-free survival (31). Moreover, it has been 
noted to be a novel prognostic factor for hepatocellular 
carcinoma (32). In non-small cell lung cancer, knocking 
down BTN3A3 was shown to promote cell proliferation, 
migration, and invasion, and patients with a low expression 
of BTN3A3 have poor survival (33). A potential mechanism 
of its anticancer effect is that the BTN3A family proteins 
might be involved in the activation and proliferation of γδ 
T cells in the tumor microenvironment (34). Collectively, 
IFIT2, BTN3A, CCDC85B, SCD, and the hub genes in the 
remission/progression PPI networks (i.e., PSMB5, ZNF436, 
GTF2A2, COBLL1, AFP1, SOX5, MS4A1, CD79B, FUT7, 
CD3EAP, IMP4, DICER1, and ASH1L) are promising targets 
for ESCC treatment.

In this study, 4 miRNAs were found to be especially 
important: miR-484, miR-3615, miR-6803-3p, and miR-
132-3p. Recently, miRNA expression profiling for the 
prediction of resistance to nCRT in ESCC has been 
reported (35), with miR-484 being reported to be an anti-
ESCC marker. However, it is a carcinogenic miRNA, as 
shown in Figure 5H. Another study based on The Cancer 
Genome Atlas (TCGA) samples established a novel 
lncRNA panel for the prognosis of ESCC according to the 
competing endogenous RNA (ceRNA) mechanism (36). It 
was found that miR-3615 (another carcinogenic miRNA 
in our study) was positively correlated with patients’ 
overall survival. However, the association between miR-
6803-3p or miR-132-3p and ESCC has not thus far been 
established. However, miR-132-3p does play an antitumoral 
role in bladder cancer, colorectal cancer, and osteosarcoma 
progression (37-39). In subsequent studies on ESCC, the 
roles of these 2 miRNAs warrant further attention.

This work has some limitations. First, we included only 15 
patients and 3 groups, which may represent an insufficiently 
large sample to construct a prognostic model based on the 
correlations found in this study. Future studies will focus on 
the above key progression and remission markers in exo-
RNAs and develop novel models to predict the treatment 
response to nCRT. Second, the lncRNA results showed no 
meaningful links to the miRNA-mRNA axes, either in the 
ceRNA networks or cis-regulatory networks. Our subsequent 
research will endeavor to clarify the molecular mechanisms, 
specifically, the miRNA precursor mechanism. Third, the 

difference in findings concerning the functions related to 
miR-484 and miR-3615 between our study and other works 
needs be further examined. Finally, in vitro and in vivo 
experiments are needed in the next research plan to validate 
the representative genes.

Conclusions

We identified the significantly altered plasma exo-
RNAs among outcome groups and between different 
time points of nCRT, and clarified the corresponding 
enrichment and regulatory networks. They may serve 
as minimally invasive predictors of the progression and 
remission of patients with ESCC. In particular, several 
genes were found to have previously unknown roles in 
ESCC treatment, including IFIT2, BTN3A, CCDC85B, 
SCD, miR-484, miR-3615, miR-6803-3p, and miR-132-
3p. The novel candidates in this study merit further 
investigation and may provide a deep understanding of 
the molecular mechanisms. Studies with a larger cohort 
of patients are needed to confirm the potential use of 
exosome transcriptome miRNAs as predictive biomarkers 
of the treatment response to nCRT.
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Supplementary

Figure S1 Representative image of transmission electron 
microscopy.

Figure S2 Representative image of western blotting. CD9, 
TSG101 and HSP70 are positive markers for exosomes, while 
Calnexin is considered as negative marker.


