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Background: Ulcerative colitis (UC) is an idiopathic, chronic disorder characterized by inflammation, 
injury, and disruption of the colonic mucosa. However, there are still many difficulties in the diagnosis and 
differential diagnosis of UC. An increasing amount of research has shown a connection between ferroptosis 
and the etiology of UC. Therefore, our study aimed to identify the key genes related to ferroptosis in UC to 
provide new ideas for diagnosis UC.
Methods: Gene expression profiles of normal and UC samples were extracted from the Gene Expression 
Omnibus (GEO) database. By combining differentially expressed genes (DEGs), Weighted correlation 
network analysis (WGCNA) genes, and ferroptosis-related genes, hub genes were identified and then 
screened using Lasso regression. Based on the key genes, gene ontology (GO) and gene set enrichment 
analysis (GSEA) analyses were performed. We used NaiveBeyas, Logistic, IBk, and RandomForest 
algorithms to build a disease diagnosis model using the hub genes. The model was validated using GSE87473 
as the validation set.
Results: Gene expression matrices of GSE87466 and GSE75214 were downloaded from the GEO 
database, including 184 UC patients and 43 control samples. A total of 699 DEGs were obtained. From 
FerrDb, 565 genes related to ferroptosis were identified. The 1,513 genes with the highest absolute 
correlation coefficient value in the MEblue module were obtained from WGCNA analysis. Five hub genes 
(LCN2, MUC1, PARP8, PLIN2, and TIMP1) were identified using the Lasso regression algorithm based on 
the overlapped DEGs, WGCNA-identified genes, and ferroptosis-related genes. GO and GSEA analyses 
revealed that 5 hub genes were identified as being involved in the negative regulation of transcription by 
competitive promoter binding, cellular response to citrate cycle_tca_cycle, cytosolic_dna_sensing pathway, 
UV-A, and beta-alanine metabolism. The logistic algorithm’s values of the area under the curve (AUC)were 
1.000 and 0.995 for training and validation cohorts, and sensitivity is 0.962, specificity is 1.000, respectively, 
as determined by comparing various methods.
Conclusions: The previously described hub genes were identified as being intimately related to ferroptosis 
in UC and capable of distinguishing UC patients from controls. By detecting the expression of several genes, 
this model may aid in diagnosing UC and understanding the etiology and treatment of the disease.
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Introduction

Ulcerative colitis (UC) is an idiopathic, chronic disorder 
characterized by inflammation, injury, and disruption of 
the colonic mucosa (1). This condition typically occurs 
in the rectum and develops proximally in a continuous 
manner throughout a section or the whole colon (2). The 
prevalence of UC is on the rise, and it negatively impacts 
financial status and morbidity (3). The pathogenesis of UC 
is not fully understood; however, it might be associated 
with the imbalance of intestinal microbe, immunological 
response, lifestyle, as well as genetic susceptibility (4). 
As a result, in-depth recognition of UC contributes to 
improving its diagnosis, management, and prognosis (5). 
Patients with UC typically undergo 2 periods during 
the disease progression: an active state and the presence 
of more prominent symptoms, and a remission state, in 
which symptoms are absent and the disease is said to be in 
remission (6). UC is a progressive condition that may cause 
diverse disorders in the intestine, namely colon cancer, and 
patients will live in a poor quality of life (7). Early remission 
and maintenance are the goals of the treatment to prevent 
another episode of the disease (8). However, there are still 
many difficulties in the diagnosis and differential diagnosis 
of UC. The existing machine learning diagnosis model has 
low efficiency and single algorithm (9,10).

Ferroptosis, a programmed cell death lately discovered, 
links to the consumption of polyunsaturated fatty acids 

in the plasma membrane and additional accumulation of 
lipid reactive oxygen species (ROS) in an iron-dependent 
manner (11,12). An increasing number of researches have 
shown a connection between ferroptosis and the etiology of 
UC (13-15). Some previous research teams have reported 
that iron chelator administration can considerably decrease 
ROS in the colonic tissues, relieve clinical symptoms, and 
enhance endoscopic presentations for UC patients (16,17). 
In contrast, iron supplementation with a high iron content 
has worsened the disease conditions in patients and murine 
models of UC (18,19). Anecdotally, oral iron supplements 
aggravate inflammatory bowel disease and increase iron 
levels in the irritated mucosa. Desferrioxamine, an iron 
chelator, is allegedly useful in Crohn’s disease (16). Current 
research on ferroptosis in UC is in its infancy, and the 
significance of ferroptosis in the pathophysiology of UC 
is not entirely known. Many diagnostic models have been 
developed using ferroptosis-related genes and machine 
learning algorithms, and they have good diagnostic 
performance (20-22).

In addition to previous research, the present work served 
as a referential basis to determine ferroptosis as a potential 
target against UC. It aimed to elucidate whether there was 
a connection between ferroptosis-associated genes and 
UC. This research demonstrated the potential for hub 
genes to be biomarkers for the diagnosis and treatment 
monitoring of ferroptosis-related illness. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-23-276/rc).

Methods

Gene expression profiles

The GEO database contains 2 microarray datasets of UC 
(GSE87466 and GSE75214). GSE87466 was based on the 
GPL13158 platform (23), and GSE75214 was based on the 
GPL6244 platform (24). This work reviewed data from 87 
UC participants and 21 control samples in GSE87466 and 
97 UC cases and 22 samples for control in GSE75214. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The flowchart is presented in 
Figure 1.

Differential expression analysis

The R package “limma” was employed for differential 
expression analysis and comparison of UC samples and 
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control samples. Genes with abs (logFC) >1.00 and P_
adj <0.01 were considered differentially expressed genes 
(DEGs). The “pheatmap” and “ggplot2” programs were 
used to generate DEG heat maps and volcano plots.ff.

Weighted correlation network analysis (WGCNA)

First, a batch effect was eliminated from the expression 
profiles of both datasets prior to further analysis. 
Network diagrams of gene co-expression were created via  
WGCNA (25). A weighted correlation coefficient was used 
to build an adjacency matrix. Subsequently, based on the data 
obtained, a topological matrix was created. After module 
identification using hierarchical clustering, eigengene was 
determined. Pearson correlation analysis was then carried out 
to determine where there existed a link between phenotype 
and the modules to identify UC-related modules.

Identification of hub genes by intersection and lasso 
regression

Genes associated with ferroptosis were retrieved from 
FerrDb, known as the world’s first manually curated 
database for ferroptosis regulators and ferroptosis-disease 
associations from published journal articles (26). To identify 
the hub genes of UC, the “VennDiagram” package in R 
software was used to intersect genes from DEGs, WGCNA, 

and ferroptosis-related genes. Then, these hub genes were 
further screened using the lasso regression algorithm. As a 
penalized regression method, lasso regression modifies the 
regression coefficient by using the L1 penalty to bring the 
weight of the vast majority of prospective indicators down 
to zero, reducing many potential indicators that have final 
weights other than zero (27).

Enrichment analysis

Functional enrichment was analyzed to understand 
possible molecular processes of hub genes impacting 
UC. We initially investigated the associated genes at the 
biological processes level through gene ontology (GO). 
Tthe findings were shown using the “GOplot” package 
of the R programming language. Gene set enrichment 
analysis (GSEA) was subsequently used to determine the 
specific roles of each gene. In light of the expression of hub 
gene median values, samples were divided into low and 
high expression groups. The “enrichplot” R software tool 
was used to visualize the findings. All analyses employed 
“clusterProfiler” package of the R program, with P adj 0.05 
serving as the screening criterion.

Immune-related factors and immune infiltration

To examine the infiltration of immune cells into the 
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Figure 1 The workflow of the analysis. DE, differentially expressed; WGCNA, weighted correlation network analysis; GO, gene ontology; 
GSEA, gene set enrichment analysis; ROC, receiver operator characteristic.
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microenvironment, CIBERSORT was used, which contains 
22 human immune cells and 547 biomarkers, including 
T cells, myeloid cell subpopulations, plasma, and B cells. 
The approach of linear support vector regression is used 
for immune cell expression matrix deconvolution analysis, 
which serves as the foundation of this instrument. This 
research determined the proportional proportions of  
22 immune cells in each sample.

Model construction and validation with machine learning

To effectively discriminate UC patients from controls, 
machine learning was developed that also analyzed the 
effectiveness of several algorithms for predicting the 
development of UC. Using the NaiveBeyas, Logistic, 
IBk, and RandomForest algorithms, we analyzed receiver 
operator characteristic (ROC) curves to develop a disease 
diagnostic model based on 5 hub genes: LCN2, MUC1, 
PARP8, PLIN, and TIMP1. In view of the imbalance in the 
sample size between UC and normal controls, we divided 
184 UC patients (from GSE87466 and GSE75214) into  
4 groups, with 46 patients in each group (corresponding 
to 43 patients in the normal control group), trained 4 sub-
models respectively, and performed aggregation analysis on 
the results. The parameters of the classifiers were adjusted 
using five-fold cross-validation while the training operation 

was carried out. This was beneficial for the creation of the 
most accurate diagnostic model. The generated model was 
then validated using the microarray dataset GSE87473 (106 
UC participants and 21 control samples). The accuracy of the 
diagnostic performance of the model was evaluated utilizing 
the ROC curves as well as the area under the ROC curve.

Statistical analysis

Differences between two groups were assessed using the 
Student’s t-test. The dimensionality of the selected genes 
was reduced by LASSO regression. Logistic regression, 
RandomForest, NaiveBayes and Ibk algorithms were used 
to construct and validate the diagnosis model. R version 
4.2.0 was used for all data analysis and visualization.

Results

Gene expression profiles

The gene expression matrices GSE87466 and GSE75214 
were acquired from the GEO database, available for gene 
level data of 184 UC patients and 43 control samples. Using 
a screening condition “P adj 0.05 and abs(logFC) >1.00,” 
699 genes with differential expression were identified. Such 
DEGs were visualized using a volcano map (Figure 2A) 
showing the top 50 DEGs in the heatmap (Figure 2B).
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Figure 2 Differentially expressed genes between UC and healthy control samples. (A) Upregulated DEGs are highlighted in red, and 
downregulated DEGs are highlighted in green. Criteria: |logFC| ≥1 and adj. P value ≤0.05. (B) Expression levels of DEGs are shown, 
the darker the red color, the higher the expression level, and the darker the blue color, the lower the expression level. Con group, healthy 
controls; treat group, participants with ulcerative colitis. DEGs, differentially expressed genes; UC, ulcerative colitis; logFC, log fold change.
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Weighted correlation network analysis (WGCNA)

Following the removal of unqualified samples, all genes 
were screened, and the extraction of relevant profiles was 
performed for 10,000 genes from gene expression matrices. 
A network diagram of weighted gene co-expression 
was established after filtering gene expression profiles. 
When the value of a soft threshold was adjusted to 16, 
scale independence was 0.9222, and the average value of 
connection was 26.2 (Figure 3A,3B). Cutting down trees 
dynamically produced 5 distinct co-expression modules 
(Figure 3C). Subsequently, a correlation study was carried 
out between each module and the clinical features. The 
results presented in Figure 3D indicate that the MEturquoise 
module was the most positively associated with UC (r=0.56; 
P=3e26), whereas the MEblue module presented a strong 
negative association with UC (r=0.77; P=1e58). With a 
total of 1,513 genes, the MEblue module was selected for 
additional research because it presented the greatest value 
for the absolute correlation coefficient. Additionally, a 
correlation study between MM and GS uncovered that both 
the module and the phenotype were considerably related to 
these genes (cor=0.74; P=1e200; Figure 3E).

Identification of hub genes associated by intersection and 
lasso regression

From the FerrDB database, 565 genes relevant to iron 
metabolism were extracted. Using the DEGs’ shared genes, 
the WGCNA-retrieved genes, and the ferroptosis-related 
genes, 17 genes were obtained (Figure 4A). Five hub genes 
(LCN2, MUC1, PARP8, PLIN2, and TIMP1) were identified 
by further screening using the Lasso regression algorithm 
(Figure 4B).

GO and GSEA analysis for the hub genes

We carried out enrichment analyses to clarify certain 
likely activities of previously described genes. GO 
analysis indicated that the 5 hub genes were associated 
with negative regulation of transcription by competitive 
promoter binding, cellular response to UV-A, protein 
mono-ADP-ribosylation, protein auto-ADP-ribosylation, 
iron coordination entity transport, and negative regulation 
of metallopeptidase activity (Figure 5A). GSEA analysis 
suggested that such hub genes linked to cytosolic_dna_
sensing pathway, citrate cycle_tca_cycle, beta-alanine 
metabolism, fatty_acid_metabolism, glycosaminoglycan 

degradation, and proteasome (Figure 5B-5F).

Infiltration of immune and immune-related factors

The microenvironment contains multiple extracellular 
matrixes, immune cells, inflammatory substances, and 
many growth factors, all of which substantially affect 
clinical treatment sensitivity and disease diagnosis. This 
investigation adopted a CIBERSORT method to estimate 
the percentage of 22 immune cells present in 184 UC 
samples and 43 control samples. The results of this 
investigation are presented in a histogram (Figure 6A). 
Immune cell infiltration in UC samples was compared 
with that of control using a vioplot (Figure 6B). A markedly 
higher proportion was revealed in the UC group for T 
cell CD4 memory activated, NK cell resting, macrophages 
M0, macrophages M1, dendritic cells activated, mast cell 
activated, and neutrophils (all P<0.001) as well as T cell 
follicular helper (P=0.0047). Meanwhile, a lower proportion 
was found in T cell CD8, T cell regulatory (Tregs), NK 
cells activated, macrophages M2, Mast cell resting, and 
dendritic cell resting (all P<0.001), as well as eosinophils 
(P=0.0439) than the control group. Following that, an 
investigation was carried out to figure out the underlying 
correlation of 5 obtained genes with immune infiltration. 
It was shown using lollipop graphics that there was a 
substantial association between them (Figure 7A-7E). Such 
findings indicated the vital role of each hub gene in the 
immune microenvironment.

Construction and validation of a diagnostic model with 
machine learning

The findings indicated that the AUC of the diagnostic model 
constructed using the logistic algorithm was relatively high 
compared to other methods. Based on the logistic algorithm, 
the AUC values were 1.000 and 0.995 for the training and 
validation cohorts, respectively (Figure 8A,8B) and sensitivity 
is 0.962, specificity is 1.000 (Table 1). The findings of a 
sufficient sample indicated that the current model had some 
referential value for diagnosing UC in clinical practice.

Discussion

As a chronic inflammatory illness of the colon, UC is 
characterized by continuous mucosal inflammation of the 
rectum infiltrating varying intestinal sections. UC symptoms 
include diarrhea with blood, fecal urgency, and crampy 
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Figure 3 Results of the WGCNA analysis of GSE75214 and GSE87466. (A) Analysis of the corresponding scale-free topological model 
fit indices at different soft threshold powers. (B) Analysis of the mean connectivity values at different soft threshold powers. (C) The 
hierarchical clustering tree shows the cluster dendrogram of genes and module colors. (D) Heatmap of the correlations between different 
modules and clinical traits of UC. Red represents a positive correlation, and blue represents a negative correlation. (E) The correlation 
between module membership and gene significance is shown in the turquoise module. WGCNA, weighted correlation network analysis; 
UC, ulcerative colitis.

Soft threshold (power)

Module membership in blue module
SourceUC

−0.35 
(5e−10)

−0.27 
(2e−06)

0.31 
(5e−08)

−0.27 
(2e−06)

−0.77 
(1e−58)

0.29 
(5e−07)

0.56 
(3e−26)

0.52 
(7e−22)

−0.31 
(9e−08)

−0.17 
(0.004)

Scale independence

Module-trait relationships

Gene dendrogram and module colors

Module membership vs. gene significance
cor=0.74, P<1e−200

Mean connectivity

0.8

0.6

0.4

0.2

0.0

−0.2

0.8

0.6

0.4

0.2

0.0

1.0

0.5

0.0

−0.5

−1.0

2000

1500

1000

500

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

S
ca

le
 fr

ee
 to

po
lo

gy
 m

od
el

 F
it,

 s
ig

ne
d 

R
2

G
en

e 
si

gn
ifi

ca
nc

e 
fo

r 
U

C
M

ea
n 

co
nn

ec
tiv

ity

H
ei

gh
t

Module colors

MEturquoise

MEyellow

MEbIue

MEbrown

MEgrey

Soft threshold (power)
10 15 205

0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 15 205

A B

C

D E



Annals of Translational Medicine, Vol 11, No 4 February 2023 Page 7 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(4):177 | https://dx.doi.org/10.21037/atm-23-276

stomach (28). The etiology of UC is currently believed to be 
connected with intestinal microbe imbalance, immunological 
response, lifestyle, and genetic vulnerability (29,30). Normal 
intestinal barrier conditions allow only a limited number of 
luminal antigens and microorganisms to pass into the lamina 
propria. Once there are compromised barrier functions or 
the occurrence of tolerance mechanism failures, numerous 
immunocytes can cause over-infiltration and chemokine and 
cytokine generation, leading to worsened inflammation. Such 
cells infiltrated in are NK T cells (31), macrophages (32), 
neutrophils (33), T cells (34), dendritic cells (35), and innate 
lymphoid cells (36). The activated immunocytes can interact 
through contact by secreting cytokines TNF, IFNg, IL-1b,  
6, and 23, among others. An huge class of inflammatory 
chemicals, chemokines regulate the movement of leukocytes 
and their activation (37). Ferroptosis represents a kind of 
programmed cell death associated with iron due to a fatal 
buildup of lipid hydroperoxides. Ferroptotic damage has 
been linked to several common immunological disorders, 
including neuroinflammation, diabetes, asthma, and 
additional diseases; however, the precise role of ferroptosis in 
such pathology has not been fully defined (38,39). Immune 
cells are affected by ferroptosis in 2 distinct ways. One is 
that it impacts the quantity and function of immune cells. 
In contrast, immune cells may detect ferroptotic cells and 
subsequently elicit various inflammatory or specialized 
responses (40). This work is expected to identify genes shared 
by immunity and ferroptosis that explain and control this 
intricate metabolic cycle. Infiltration of immune cells in 184 
UC samples with inherent individual proportional variable 

characteristics. The change in immune cell infiltration rate in 
184 UC samples presented intrinsic individual heterogeneity. 
The infiltration ratios of 15 immunocyte types (T cells CD8, 
CD4 memory activated, Tregs, and follicular helper, NK cell 
resting and activated, dendritic cells resting and activated, 
macrophages M0, M1, and M2, Mast cells resting, and 
activated, neutrophils, and eosinophils) differed, implying 
that immunological infiltration is positively linked to the 
beginning of UC.

The 5 hub genes (LCN2, MUC1, PARP8, PLIN2, and 
TIMP1) were identified in this research using several 
analyses, including differential analysis, WGCNA, and 
the lasso algorithm. The current study indicated that the 
identified genes might have a tight relationship with UC. 
It provides a foundation for understanding the etiology 
of UC and discovering possible new therapies. MUC1 
is a membrane-bound mucus layer glycoprotein released 
via absorptive cells and intestinal goblets. The expression 
of the MUC1 protein elevates in the inflamed intestine, 
which helps to maintain an integral mucosal barrier in 
the intestine and is a vital factor of UC pathogenesis (24). 
This gene is capable of regulating cell signal transduction 
and immunological control. The expression of MUC1 is 
increased dramatically during the disease development from 
colitis to cancer. Unfortunately, the exact action mechanism 
remains unknown (41). Recent research indicates that 
MUC1 is associated with ferroptosis (42,43). The expression 
of MUC1 has also indicated an increase in UC, which may 
be associated with ferroptosis (44). However, further study 
is required since no increase in MUC1 expression has been 
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reported in animal trials. TIMP1 has been identified as a 
key contender in colorectal cancer promotion associated 
with UC (45). TIMP1, an inducible form, is a member 
of a four-member glycoprotein family that mediates 
extracellular matrix turnover (46). TIMP1 plays a role 
in inhibiting the angiogenic activity of macrophages by 

creating a particular complex with MMP9 (47). TIMP1 and 
MMP9 interactions are of great significance in colorectal 
cancer occurrence and progression associated with UC 
(48,49). Lipocalin-2 (LCN2) is a secreted glycoprotein and 
belongs to the lipocalin superfamily, containing multiple 
kinds of cells, myeloid cells, and intestinal epithelial cells. 
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This is relevant to inflammatory bowel disease (50). LCN2 
can be triggered by diverse proinflammatory stimuli, IL-1 
and IL-22, and the activation of Toll-like receptors (51), 
and a large amount can be released into the gut lumen (52). 
When bacterial siderophores loaded with iron are blocked, 
the 25 kD protein works as an antimicrobial peptide, and 
luminal LCN2 can effectively control gut inflammation 
and microbial composition in humans (53). Serum LCN2, 
which is present in conjunction with MMP-9, coincides 

with endoscopic activity in both Crohn’s disease and UC, 
as revealed by De Bruyn (54). This is the case for both 
conditions. LCN2 is a potential candidate for molecular 
inflammation as it has been shown to have chronic mucosal 
overexpression, even though endoscopic and histological 
repair has been performed (55).

The ineffectiveness of UC diagnosis may be attributed 
partly to the absence of accurate markers and feasible 
prediction models (56,57). Machine learning is relevant to 
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Figure 7 Correlation of 5 hub genes with immune infiltration. (A) LCN2. (B) MUC1. (C) PARP8. (D) PLIN2. (E) TIMP1.
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clinical prediction and beneficial for the clinical diagnosis 
of UC patients (10). In study of UC, logistic regression is 
acknowledged as an extensively applied machine learning 
technique (58). The use of machine learning can realize 
gene grouping of the entire blood sample, which helps 
identify UC prognostic indicators (43). The mathematical 
model established based on the data of histology, and 
endoscopy is employed to enhance the UC diagnostic 
effectiveness. Utilizing NaiveBeyas, Logistic, Ibk, and 
RandomForest algorithms, we analyzed ROC curves to 
develop a disease diagnostic model on the basis of previously 
stated key genes. After analysis, the AUC value for the 
training cohort was 1.000 and 0.995 for the validation 
cohorts compared to different algorithms. The results 
indicated that the currently established model had some 
referential value for the clinical diagnosis of UC. This study 
lacks further cell experiments and animal experiments. The 
putative ferroptosis-related genes in this study need further 
verification with larger samples, and the support of previous 

studies also needs to be verified by laboratory experiments. 
The genes associated with ferroptosis were obtained from 
FerrDb, which is updated regularly, and more genes are yet 
to be discovered.

Conclusions

We found 5 hub genes (LCN2, MUC1, PARP8, PLIN2, and 
TIMP1) that were positively correlated with ferroptosis in 
UC, allowing us to distinguish UC patients from control 
participants. By detecting the expression of some genes, the 
current model can be used to direct the diagnostic process 
for UC individuals. These hub genes could also help us 
understand how UC develops and how drugs can be applied 
to treat this disease.
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