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Introduction

Subarachnoid hemorrhage (SAH) is a devastating stroke 
subtype with more than 50% mortality and morbidity, 
and often leads to permanent neurological and cognitive 
deficits for survivors. Compared to other stroke subtypes, 
SAH seems to occur in the younger populations, half of 
the SAH patients are under 55 years old at the time of 
onset. SAH also mostly concerns females. The incidence 

ratio of female versus male is 70%:30%. In total, 85% of 
SAH cases are caused by intracranial aneurysms rupture, 
and 10% of those SAH patients die before intervention 
because of the sudden attack and severe conditions of the 
disease (1). The long-term outcome after SAH remains 
poor. Early brain injury (EBI) and delayed cerebral 
ischemia (DCI) are considered the most important factors 
contributing to the poor outcome of SAH. EBI occurs 
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within the first 72 h following SAH. The severity of EBI 
is associated with bleeding volume, level of consciousness, 
neuroinflammation and brain edema. According to a recent 
prospective, observational, multicenter, cohort, phase III 
diagnostic trial of spreading depolarizations (SD) in SAH 
patients, the strongest predictor of long-term outcome was 
total focal brain damage detected by neuroimaging two 
weeks after the initial hemorrhage. The most important 
causes of focal brain damage associated with SAH are 
initial intracerebral hemorrhage (ICH) and infarction 
due to either early cerebral ischemia (ECI) (2) or DCI. 
Longitudinal neuroimaging found that the average patient 
admitted to the intensive care unit after aneurysm treatment 
had already lost 46±73 mL of brain tissue to ICH and 
ECI and lost an additional 36±80 mL to delayed ischemic 
infarcts in the following 14 days. Importantly, in contrast to 
EBI, DCI is a potentially modifiable cause of lesions during 
intensive care, as it allows treatment with a neuroprotective 
intervention before the possible insult or shortly thereafter. 
Furthermore, association analyses were performed for 
manually segmented (I) EBI; (II) DCI damage; and (III) 
total brain damage (EBI + DCI). Each of the three multiple 
regression models included a SD variable and the median 
Glasgow Coma Scale (GCS) score from early phase, late 
phase, or total phase neuromonitoring, suggesting that 
both SD variables and GCS are currently the strongest 
predictors of focal brain damage after SAH (3). For 
decades, people have focused on the intense investigation of 
cerebral vasospasm (CVS) as the main contributor to poor 
outcome, yet clinical trials towards mitigating CVS have 
shown to be a disappointment. Under this circumstances, 
further investigation into other mechanisms of brain injury 

following SAH is urgently needed.
As glial cells of neural progenitor origin, astrocytes 

ubiquitously exist in the central nervous system (CNS), 
and interact with all kinds of cell types including neurons, 
microglia, oligodendrocytes, oligodendrocyte progenitor 
cells, perivascular cells as well as meningeal fibroblasts and 
circulating immune cells to form the neuron-glia system. In 
healthy brain, astrocytes participate in many fundamental 
activities. Astrocytes uptake glutamate to regulate neuronal 
metabolism, maintain extracellular environment via ion 
and water channels, regulate cerebral blood flow, stabilize 
cell-cell communications, synthetize neurotransmitter and 
defend against oxidative stress (Figure 1).

Compared to the housekeeping functions in normal 
brains, astrocytes exhibit a quite different response in 
pathological conditions known as astrocyte reactivity that 
was considered homogenous and functionally passive (4).  
Reactive astrocytes are characterized by the distinct 
morphological changes including cell body hypertrophy, 
gl ia l  f ibr i l lary acidic  protein (GFAP) express ion 
upregulation. Reactive astrogliosis is seen virtually in all 
kinds of neurological diseases, including ischemic and 
hemorrhagic stroke, epilepsy, demyelination, traumatic 
brain injury, neurodegeneration disease and neoplastic 
disease (5-7). The function of reactive astrocytes is different 
than the normal ones, they serve important roles including 
axonal remodeling, glial scar formation, regulation of blood-
brain barrier (BBB) permeability, mobilizing progenitors, 
synaptic remodeling, immunomodulation and neurite 
outgrowth. Experimental evidence suggests that astrocytes 
are involved in inverse neurovascular coupling and brain 
edema formation after SAH (8-10) (Figure 2). Furthermore, 
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Figure 1 Astrocytic function under normal condition. BBB, blood-brain barrier.
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Figure 2 Astrocytic function under SAH condition. SAH, subarachnoid hemorrhage.

it seems that the severity of hemorrhage is related to the 
robustness of astrocytes response (2). However, there is still 
a lack of evidence to support whether astrocytic pathway 
after SAH is protective or detrimental.

This review aims at summarizing the role of astrocytes 
activation following SAH, and exploring the roles of 
astrocytes in neuroprotection, neuroinflammation, 
neurotoxicity, BBB disruption, vasospasm and cortical 
spreading depression (CSD) following SAH. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-5486/rc).

Methods

The database PubMed was searched for studies up to 
31 May 2022. The following key terms were used for 
searching: “subarachnoid hemorrhage” OR “SAH” AND 
“astrocytes”. The titles and abstracts were analyzed in the 
initial research. Included articles were reviewed in full 
text. Articles revealed the relationships between SAH and 
astrocytes related to neuroinflammation, neurotoxicity, 
brain edema or BBB disruption, vasospasm and cortical 
spreading depression were included in this review. Studies 
that are unrelated to SAH or astrocytes were excluded. Two 
authors YL and JC evaluated the quality and eligibility of 
each included study independently. The corresponding 
author GKW provided the consensus or discussion if there 
was a discrepancy. We found 198 articles using the searching 
keywords “subarachnoid hemorrhage” OR “SAH” AND 
“astrocytes”. A total of 156 articles were eliminated due to 
unrelated topic. Forty-two articles were reviewed in full 
text and 12 articles were excluded because of our selection 

criteria. We selected the 30 relevant articles and we also 
checked relevant references in each article to generate the 
below systemic review (Table 1).

Results

The concept of reactive astrocytes

Reactive astrocytes are defined as the process by which 
astrocytes change in response to brain insult. GFAP is a 
major constituent of astrocytes intermediate filaments and 
is the most commonly used marker for reactive astrocytes. 
The expression level of GFAP showed a regional difference, 
hippocampal astrocytes exhibited higher GFAP level than 
striatal, cortical, and thalamic astrocytes populations (11). 
Up-regulation of GFAP expression level is a prominent 
feature of reactive astrocytes, it occurs in various 
disorders in the CNS and it is an early response to injury. 
Moreover, the degree of GFAP expression level in reactive 
astrocytes parallels the severity of the injury under most 
circumstances (4). In addition to the GFAP upregulation, 
reactive astrocytes also show prominent morphological 
changes. Hypertrophy of soma and main processes, process 
polarization toward a lesion, ramification changes have been 
seen in reactive astrocytes. Recent studies also revealed 
that astrocytes undergo massive transcriptional changes 
which involves hundreds of genes being up-regulated 
or down-regulated. For instance, Serpina3n and Lcn2 
were significantly induced by lipopolysaccharides (LPS) 
injection or middle cerebral artery occlusion (MCAO) (12).  
In contrast, some genes associated with important astrocytes 
functions such as glutamate transporter-1 (GLT-1),  
glutamine synthase (GS) and potassium channel KIR4.1 are 
down-regulated in multiple diseases (13,14).

https://atm.amegroups.com/article/view/10.21037/atm-22-5486/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5486/rc
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The debate over whether reactive astrocytes are 
protective or harmful remains controversial. Both good 
and bad effects of reactive astrocytes have been observed 
in the past. Reactive astrocytes are able to produce pro-
inflammatory cytokines that exacerbate spinal cord injury, 
and inhibit the axon regeneration after brain injury 
(15,16). Also, reactive astrocytes have shown to be crucial 
for withstanding insult and promoting recovery after 
cerebral ischemia as well as experimental autoimmune 
encephamyelitis (EAE) (17,18). Therefore, it is important 
to identify and categorize the “good” and “bad” reactive 
astrocytes. Though multiple schemes have been brought out 
to categorize this diversity, until now, the concept of reactive 
astrocytes subtypes and how to discriminate amongst them 
still need to be developed. Due to the advances in RNA 
sequencing and proteomics, we are able to assess cells 
from a detailed molecular expression level. Similar to the 
normal healthy CNS, transcriptional analysis has already 
revealed diversified clusters of astrocytes in different CNS 
disease models (19,20). In LPS-induced neuroinflammation 
and MCAO stroke models, reactive astrocytes display two 
phenotypes “A1” and “A2” respectively, indicating that the 
phenotypes of reactive astrocyte strongly depended on the 
type of the inducing injury. In the MCAO model, reactive 
astrocytes exhibited the neuroprotective “A2” phenotype, 
based on the fact that “A2” phenotype up-regulate many 
neurotrophic factors and promote neuronal survival as well 
as tissue repair. In contrast, reactive astrocytes induced by 
LPS injection exhibited the neurotoxic “A1” phenotype, “A1” 
phenotype up-regulate many classical complement cascade 
genes which is known to be destructive to synapses and 

secrete a neurotoxin that induces rapid death of neurons and 
oligodendrocytes (12). They have also shown that activated 
microglia play a role in inducing “A1” neurotoxic reactive 
astrocyte via secretion of various inflammatory cytokines 
in vitro and in vivo (21). Furthermore, “A1” phenotype has 
been found in many different diseases including Alzheimer’s 
disease, prion disease, Parkinson’s disease, Huntington’s 
disease, glioblastoma and amyotrophic lateral sclerosis  
(22-24). However, though the definitions of “A1” and “A2” 
phenotypes are useful, it’s an oversimplification for the 
distinguish of reactive astrocytes. Reactive astrocytes don’t 
simply polarize into binary phenotypes as we mentioned 
“A1”, “A2” or neuroprotective, neurotoxic. Instead, reactive 
astrocytes may adopt multiple functional states based on the 
pathology, with only a small portion of common changes 
among those different states. In the process when the 
astrocytes become reactive, they loss certain homeostatic 
functions, at the same time gain some protective as well 
as detrimental functions. Whether the overall impact of 
reactive astrocytes on the particular disease is protective 
or detrimental will depend on the balance and nature of 
gained and lost function and the relative abundance of 
different astrocytes phenotypes. In addition to distinguish 
and categorize reactive astrocytes from transcriptional 
changes, we can also distinguish them based on their 
structure, proliferative state, the types of cells they are able 
to interact with, as well as the tissue architecture to which 
they contributed (25). There have been two fundamentally 
different subtypes proposed based on the criteria we 
mentioned above, including proliferative, border-forming 
reactive astrocytes and non-proliferative reactive astrocytes. 

Table 1 Literature search method

Items Specifications

Date of search 31/5/2022

Databases and other sources PubMed

Search term used “Subarachnoid hemorrhage”; “SAH”; “astrocytes”

Timeframe From 1998 to May 2022

Inclusion and exclusion criteria Inclusion criteria: focus on the relationship between subarachnoid hemorrhage and astrocytes in terms of 
neuroinflammation, neurotoxicity, brain edema, vasospasm and spreading depression

Exclusion criteria: main topic not related to subarachnoid hemorrhage or astrocytes; main topic not 
related to neuroinflammation, neurotoxicity, brain edema, vasospasm or spreading depression

Selection process Two authors evaluated the quality and eligibility of each included study independently. The corresponding 
author provides the consensus or discussion if there was a discrepancy

SAH, subarachnoid hemorrhage.
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The border-forming reactive astrocytes work as a limitans 
borders that separate and isolate inflamed, damaged and 
fibrotic tissue from adjacent viable tissues, thus protecting 
and preserving adjacent tissues (26,27). Newly proliferated 
reactive astrocytes can be deriving from both existing 
astrocytes and periventricular neural progenitors (28).  
Newly proliferated reactive astrocytes are types of cells who 
located in neural tissue that is not overtly damaged that 
maintain its tissue architecture to responds to injury (29).  
Non-proliferative reactive astrocytes react to injury and 
exhibit multiple changes in molecular expression and cellular 
hypertrophy. Cellular hypertrophy is frequently used to 
describe morphological changes in reactive astrocytes, 
however, study has found that reactive astrocytes show 
hypertrophy of their intermediate filament-rich main 
cellular processes but seem to remain their unique “tiled”  
territories (30). Thus, non-proliferative reactive astrocytes 
are likely to interact with the same elements that they 
interact with in the healthy brain, such as neurons and 
synapses.

Several SAH induced molecular changes in the 
expression of reactive astrocytes have been reported and are 
summarized in Table 2 (31-37).

Astrocytes and neuroinflammation

Astrocytes play a controversial role in neuroinflammation, 

that is to say, astrocytes can be both protective and 
detrimental to neuroinflammation (38-43). Compelling 
evidence have shown that astrocytes responses to various 
cytokines, hormones and growth factors seems to be 
beneficial, it is supported by the fact that the absence of 
astrocytes exacerbates brain injury (44). There are several 
protective pathways in astrocytes. One is mediated by 
the glycoprotein gb130, an essential signal transducer 
for members of the interleukin-6 (IL-6) cytokine family. 
Astrocytic gp130 signaling pathway is essential for glial cell to 
survive. GFAPcre-gp130fl/fl mice showed increased apoptosis 
of astrocyte, worsened mortality rate after toxoplasma 
encephalitis (TE) infection, and deteriorated EAE scores 
(38,45). Ligand binding to the gp130 receptor activates 
mitogen-activated protein kinase (MAPK) (SHP2/Ras/
ERK) signaling cascades and signal transducer and activator 
of transcription (STAT) 1/3, study has observed mice with 
defective SHP2/Ras/ERK signaling pathway increased EAE 
severity, indicating that gb130-mediated SHP2/Ras/ERK 
activation limits neuroinflammation (38,39).

transforming growth factor-β (TGF-β) signaling is 
another signaling inside of astrocytes strongly upregulated 
after brain injury (46,47). Mice with defective TGF-β 
pathway in astrocytes showed aggravated neuroinflammation 
as well as augmented myeloid cell activation after ischemic 
stroke (40). TGF-β signaling inhibits nuclear translocation 
of the proinflammatory transcription factor nuclear factor 

Table 2 Molecular changes in astrocytes after SAH

Molecular changes in astrocytes Remarks Outcome References

GFAP A constituent of intermediate 
filaments

A marker of reactive astrocytes (9)

ET-1 A vasoconstrictor mediator Higher expression level indicates a higher risk of delayed 
ischemia

(31)

AQP4 Water channel protein Increased level causes hydrocephalus (32)

MMP-9 Matrix metalloproteinases Cause BBB disruption (33)

S100B A calcium-binding protein Higher level predicts poor long-term outcome (34)

GLT-1 Glutamate-transporter 1 Downregulated after SAH (35)

HDAC2 Histone deacetylase 2 Inhibition of HDAC2 improved DCI (35)

TLR3, TLR4 Toll-like receptor Activation of TLR leads to synthesis of pro-inflammatory 
cytokines

(36)

HO-1 Heme oxygenase Alleviate neuronal cell death and cognitive impairment (37)

SAH, subarachnoid hemorrhage; GFAP, glial fibrillary acidic protein; ET-1, endothelin-1; AQP4, aquaporin-4; MMP-9, metalloproteinases-9; 
BBB, blood-brain barrier; GLT-1, glutamate-transporter-1; HDAC2, histone deacetylase 2; DCI, delayed cerebral ischemia; TLR, Toll-like 
receptor; HO-1, heme oxygenase-1.
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κB (NF-κB) activation, thus inhibiting NF-κB-mediated 
neuroinflammation (48). Interferon (IFN)-γ plays dual roles 
in neuroinflammation, as it provides neuroprotection by 
negatively regulate the neutrophil and T cell accumulation 
and promote macrophage and microglia activation (49).  
Mice with deficient IFN-γ  pathway in astrocytes 
display enhanced leukocyte infiltration, upregulation 
of inflammatory genes transcription, including CCL2, 
CXCL10, iNOS, and downregulation of anti-inflammatory 
cytokines such as IL-10 and IL-27 in EAE disease (41).

In addition, there are several detrimental signaling 
pathway in astrocytes. During neuroinflammation process, 
IL-17 receptor is upregulated in astrocytes (50). As a 
very important inflammatory cytokine, IL-17 works as an 
inducer of the activation and mobilization of neutrophils 
to inflammation sites. Study had found that IL 17 signaling 
blocking in astrocytes via Act1 knocking down effectively 
reduce infiltrating cell numbers in the brain, such as Th1 
and Th17 cells, and show therapeutic effect in EAE without 
affecting the peripheral immune system (51). Sphingolipids 
is another important detrimental signaling pathway. 
Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) 
are expressed ubiquitously in the brain. In both innate and 
adaptive immune systems, S1P-S1PR signaling in involved 
with immune trafficking and activation (51). Mice with 
deficient S1P1 signaling in astrocytes displayed decreased 
demyelination and axonal loss, indicating the pathogenic 
effect of S1P signaling pathway in astrocytes (42).  
As another lipid mediator, LacCer triggers astrogliosis and 
inflammation. LacCer in astrocytes activates interferon 
regulatory factor 1 (IRF-1) and NF-κB transcription factors, 
which in turn recruit Cfs2 (GM-CSF) promoter (43).

Reactive astrocytes are able to generate and release 
different molecules such as cytokines, chemokines, growth 
factors and neurotrophic factors, which potentially 
aggravate or ameliorate neuroinflammation upon CNS 
injury. Activated astrocytes release several mediators 
regulated by NF-κB, such as CXCL10, CCL2, vascular 
endothelial growth factor (VEGF) (52,53). In vivo study 
shows that astrocytes CCL2 enhance leukocyte recruitment 
into the brain parenchyma, specific depletion of CCL2 
in astrocytes shows immune cell infiltration decrease, 
demyelination, and axonal loss reduction (36). Moreover, 
deletion of CXCL10 in astrocytes displays similar effects. 
Astrocytes also produce neuroprotective mediator such 
as BDNF, elimination of BDNF production in astrocytes 
leads to a more severe EAE course with exacerbated axonal 
damage (33). Heme oxygenase-1 (HO-1) is an enzyme 

found in neuron, microglia and astrocytes (54). HO-1 
metabolize free heme released into the subarachnoid space 
during SAH thus alleviate brain injury following SAH (55).  
Nuclear factor erythroid 2-related factor 2 (Nrf2)-
antioxidant response has been proved to be a crucial anti-
inflammatory pathway in SAH. Depletion of Nrf2 in 
astrocytes tremendously worsens inflammation by activation 
of NF-κB (56).

Besides GFAP, S100B is also a biomarker of reactive 
astrocytes, and the elevation of S100B expressions 
features the CNS pathologies as well. In SAH patients, 
the expression of GFAP and S100B levels upregulated in 
both cerebral spinal fluid (CSF) and serum, and higher 
S100B levels in CSF is associated with poor 1-year clinical 
outcome (57). In animal SAH models, GFAP and astrocytic 
S100B levels were also increased significantly. After SAH, 
astrocytic polarization towards both A1 and A2 phenotypes 
had been seen in rats SAH models (58). Unlike microglia, 
whose dynamics of polarization and transcriptomic diversity 
have been well studied after SAH, more work need to be 
done concerning the astrocytic polarization and subsets in 
SAH (34,59,60).

A recent study has firstly reported the detailed single-
cell transcriptomic characterization of microglia after 
SAH (60). It revealed some interactions between microglia 
and astrocytes in CC-motif chemokine ligand (CCL) 
signaling and Galectin signaling pathway. CCL family 
play many important roles in neurodegenerative and 
neuroinflammatory processes. After SAH, microglia act 
as the main sender and receiver of CCL pathway while 
astrocytes act as a mediator. As glycan-binding proteins, 
Galectins act as endogenous modulators of inflammatory 
response in the brain. Galectin signaling pathway mainly 
depended on microglia after SAH, while astrocytes work as 
an influencer in that pathway. This particular study gives us 
more evidence about the fact that astrocytes are important 
inflammation modulators in SAH (Figure 3). However, 
more clear and evident interactions between microglia and 
astrocytes need to be clarified in the future.

Astrocytes and neurotoxicity

Elevated glutamate concentrations in both CSF and blood 
have been shown to correlate with a worse neurological 
outcome in various neurodegenerative processes. After 
stroke, excessive glutamate over activates glutamate 
receptors, which in turn lead to intracellular Ca2+ overload 
and excitotoxicity (32). Clinical studies have shown that 
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Figure 3 Astrocyte-microglia interaction in SAH. CCL, CC-motif chemokine ligand; SAH, subarachnoid hemorrhage.

the concentration of glutamate in CSF significantly 
increased in aneurysmal subarachnoid hemorrhage (aSAH) 
patients with neurologic deficits and is associated with 
a higher occurrence of CVS, edema and DCI (61). The 
mechanism which may cause the high interstitial glutamate 
concentration is not fully understood. In humans, ischemic 
events after SAH caused failing glutamine synthesis during 
energy crisis as evidenced by microdialysis measurement. 
Despite the failing glutamine synthesis, another possibility 
to cause high concentration of interstitial glutamate is the 
release of glutamine by platelet. The activation of platelets 
also leads to the downregulation of surface glutamate 
receptor 2, a marker of excitotoxity exposure and a possible 
mechanism of neuronal dysfunction (62).

Astrocytic glutamate transporters, known as excitatory 
amino acid transporters (EAATs), are essential in glutamate 
homeostasis in the brain. The brain has several mechanisms 
by which excess glutamate is eliminated to prevent 
neurotoxicity. EAATs take up glutamate from extracellular 
space into the cytosol, where glutamate convert into 
glutamine in astrocytes. Glutamate could also be oxidatively 
metabolized to α-ketoglutarate used for ATP synthesis.

A study showed that excessive glutamate causes GluN1/
GluN2B NMDA receptors and mGluR1 over-stimulation, 
which leads to the calcium overload and cell apoptosis (59). 
Moreover, blockage of GluN1/GluN2B NMDA receptors 
and mGluR1 prevents glutamate-mediated Ca2+ overloading 
and cell deaths in primary neurons in experimental 
SAH (63). The inhibition of EAAT gene transcription is 
associated with histone modification, especially histone 
acetylation. After SAH, it was found that interstitial 
glutamate accumulated in the hippocampus and glutamate-
transporter-1 (GLT-1) decreased in astrocytes. Astrocytic 
histone deacetylase 2 (HDAC2) expression was significantly 

increased after SAH, HDAC2 inhibition not only restore 
GLT-1 expression level by transcription regulation but also 
effectively improved DCI in SAH mice (64).

Excessive ferritin following SAH appear to be related 
to neurotoxic cascades. Dysregulated iron homeostasis and 
downstream oxidative events lead to both neurotoxicity 
and vasospasm (65). Astrocytes are strategically located to 
acquire nutrients from the circulating blood such as iron. 
Therefore, astrocytes participate in brain iron homeostasis 
and prevent neurotoxic cascades after SAH (66).

Astrocytes and brain edema, BBB breakdown

Vasogenic edema causes pathological cell swelling in 
SAH. Aquaporin-4 (AQP4) is the predominant water 
channel protein expressed in astrocytes and mediates water 
homeostasis across the BBB. AQP1 and AQP4 expression 
levels were significantly increased in human brain after  
SAH (67). Following SAH in rats, the expression level 
of AQP1 and AQP4 markedly increased in the ventricle 
region. Furthermore, a positive correlation between AQP1 
and AQP4 expression levels and lateral ventricle area was 
seen (68). After SAH, there were some morphological 
changes of hippocampal astrocytes including cell body 
swelling, processes retracting and AQP4 positive capillary 
coverage reducing (69). Atorvastatin, an inhibitor of the 
3-hydroxy-3-methylglutaryl A (HMG-CoA) reductase, 
reduced AQP4 expression, ameliorated hydrocephalus and 
EBI after experimental SAH (35).

The glymphatic system consists of peri-arterial 
CSF inflow running in the same direction as blood 
flow, propelled by the pulsatility of the arterial wall. 
The glymphatic system clears key proteins involved 
in neurodegeneration, and conversely, inhibition of 
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glymphatic-lymphatic transport accelerates protein 
accumulation and cognitive decline in mouse models of 
Alzheimer’s disease, traumatic brain injury, and Parkinson’s 
disease (70). Recently, the role of glymphatic system after 
SAH has brought certain attention. Following brain injury, 
AQP4 and cation channel protein sulfonylurea receptor 1  
(SUR1) form an ion/water channel complex which may 
responsible for the bulk water influx in swollen astrocytes as 
well as impaired CSF movement (71). Impaired glymphatic 
system is associated with AQP4 polarization loss, and leads 
to impaired brain macromolecular substances elimination 
(72,73). Surgical blockade of cerebral lymphatic drainage 
worsens brain edema and cerebral ischemia during after 
SAH (31,74). After SAH, a long-lasting glymphatic 
malfunction has been reported, which may be associated 
with abnormal aggregation of blood cells and blood 
components within the brain perivascular spaces as well as 
activated astrocytes with loss of AQP4 polarization (75).

Astrocytes is crucial in maintaining the structural 
integrity of BBB (76). Matrix metalloproteinases-9 (MMP-9)  
is associated with tight junctions and basal lamina 
degradation that cause BBB integrity break down (77). 
MMP-9 in particular has been shown to play key roles in 
the pathophysiology of SAH in both animal and patient 
studies (78). Astrocytes and microglia secrete MMP-9 when 
stimulated with a gram-negative cell wall product, LPS (79). 
Astrocyte derived neurotrophic factor (MANF) protein 
exerts BBB protection effects by suppressing MMP-9  
expression after SAH (80). Reactive astrocytes also express 
osteopontin which is known to reduce BBB disruption 
after SAH (81). Therefore, astrocytes may be protective in 
maintaining the integrity of BBB after SAH.

Astrocytes and vasospasm

CVS is a feared complication of SAH and it typically 
occurs within 3 to 15 days after SAH (82). The mechanism 
involved in the development of CVS include pathways for 
nitric oxide (NO), endothelin, hypoxia-induced factors, 
and inflammatory markers (e.g., TNF, IL-1, IL-6) (83). 
Vasoconstriction activator endothelin-1 (ET-1) upregulate, 
as well as hypercontractility of vascular smooth muscle 
cell have been reported to be involved in CVS (84). ET1 
is essential in the initiation and maintenance of CVS (85). 
The level of ET-1 in the CSF significantly elevated in 
SAH patients (86,87). Higher level s of ET-1 in the CSF 
is associated with higher risk of CVS. The expression level 
of ET-1 peaked at 3–5 days and stayed high level until 

10 days following SAH onset (88). After SAH, astrocytes 
predominantly express ET-1 and high level of ET-1 is 
related to worse outcome in mice (89). There are two 
major receptors, ETA and ETB, mediate the ET-1 induced 
constriction (90). The expression levels of ETA and ETB 

increased after experimental animal models of SAH (37,91). 
Furthermore, the expression levels of ETA and ETB mRNA 
significantly elevated in arteries incubated with hemorrhagic 
CSF (88). ET-1 receptor antagonists effectively prevent 
and relieve SAH-induced CVS (92). However, according 
to the recent study, CVS has shown no correlation with 
outcome after SAH, which indicates that CVS is unlikely 
the principal pathomechanism of DCI, although it seems to 
be involved in it as a modulating factor (3).

Astrocytes and SD

SD is described as a propagating wave of depolarization in 
neurons and glial cells in cerebral gray matter (93). This 
pathophysiologic phenomenon of CSD has been observed 
in various diseases including SAH, ischemic stroke and 
ICH (94,95). CSD occur along a continuum from short-
lasting harmless to terminal deleterious events, all of 
which are observed in patients with SAH (96). Prolonged 
CSD is correlate to worse outcomes in SAH patients 
(97,98). After SAH, CSD will lead to vasoconstriction and 
secondary brain injury through mechanisms involving 
decreased blood flow, increased energy demand, cytokine 
release, and BBB disruption. Moreover, CSD has been 
implicated in the mechanism involving cytotoxic, ionic, 
and vasogenic edema (9,99-101). Furthermore, CSD 
triggered CSF influx by the glymphatic pathway (70). The 
key feature of SD is the near-complete breakdown of the 
transmembrane ion gradients associated with the influx of 
water into neurons (8,102). Thus, SD is the mechanism 
initiating the cytotoxic edema of neurons (9). In normal 
tissue, astrocytes remain functional and support neuronal 
recovery from SD. That neurons lead and astrocytes follow 
is exemplified by changes in intracellular calcium which 
rises first in neurons, then in astrocytes (103). Moreover, 
SD and the associated neuronal calcium wave remain 
unaffected when the astrocytic calcium wave is blocked by 
the depletion of internal calcium stores (104). Importantly, 
SD induces tone alterations in resistance vessels, causing 
either transient hyperperfusion in healthy tissue; or severe 
hypoperfusion in tissue at risk for progressive damage. 
In 1998, SD-induced spreading ischemia was discovered 
in a rat model mimicking conditions present following 
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SAH in which artificial cerebrospinal fluid (aCSF) was 
applied topically on the brain containing an increased K+ 
concentration ([K+]aCSF) and either the NO scavenger 
hemoglobin or the NO synthase (NOS) inhibitor  
L-NNA (105). It was proposed that SD-induced spreading 
ischemia may be the pathophysiological correlate of 
DCI after SAH. The important role of NO deficiency in 
this model agrees well with the increasingly recognized 
hypothesis, originally proposed by Furchgott and colleagues, 
that clot-related factors cause NO deficiency after SAH 
(106-109). NO deficiency leads to vasoconstriction both 
directly and indirectly through the lack of its permissive 
effect on other vasodilators (8,108,110). NO deficiency 
also increases susceptibility to SD both in vivo and in brain 
slices (111). Translating this model to the human condition 
required several steps. This started with the discovery that 
clusters of SD occur in SAH patients and are associated 
with initially reversible, waxing and waning episodes of 
delayed neurological deficits (112). The development 
of optoelectrode strips for subdural implantation in 
patients and the introduction of true direct current (DC)-
electrocorticography (ECoG) then enabled to capture the 
entire continuum from normal spreading hyperemia to 
the highly pathologic spreading ischemia in response to 
SD after SAH (113). Meanwhile, the whole sequence of 
progressively prolonged SD-induced spreading ischemia 
and the transition from clustered SD to a negative ultraslow 
potential was demonstrated to be the pathophysiological 
correlate of delayed infarction development in humans 
after SAH when optoelectrodes were placed directly over 
a newly developing delayed cerebral infarct as revealed by 
longitudinal neuroimaging (114). Thus, the phenomenology 
of changes in electrical potential, regional cerebral blood 
flow, and oxygen in brain tissue observed during infarct 
development after SAH in humans are exactly the same 
as in the model of spreading ischemia in the rat, which 
mimics conditions after SAH (105). Several lines of 
evidence suggest that astrocytes are importantly involved 
in the inverse neurovascular response to SD as previously 
discussed in directly showed that the calcium wave in 
astrocytes associated with SD can lead to constriction of 
blood vessels via the astrocytic end-feet (10,103). In general, 
astrocytes are of paramount importance for the orderly 
process of SD. Astrocyte-directed inactivation of connexin 
43 decreased astrocytic gap junctional communication and 
increased tissue susceptibility to SD and the propagation 
speed of SD (115). Selective intoxication of astrocytes 
caused SD that initiated a shallow negative ultraslow 

potential as neurons began to die (116). Astrocytic 
dysfunction may accelerate neuronal death under ischemic 
conditions (117). Accordingly, disturbed astrocyte function 
can abolish the typical slow spread of SD in the ischemic 
zone and can accelerate cellular dying (118). Astrocytes 
play key roles in the regulation of CSD and subsequently 
reactive astrocytes could potentially be involved in SAH-
associated CSD. CSD enhances the expression of TLR3 
and TLR4 in astrocytes, given that TLR3 and TLR4 play 
important role in neuroinflammatory process in the brain, 
we can infer that astrocytic TLR receptors may be involved 
in mechanism of CSD-related neuroinflammation (119).  
Impaired K+ and glutamate clearance by astrocytes cause 
propagation of the CSD (120). At the onset of CSD, 
astrocytes exhibit concurrent Ca2+ waves that are temporally 
and spatially associated with the propagation of CSD and 
neuronal depolarization (104,121). Moreover, after the 
initial concurrent Ca2+ waves, CSD further promoted an 
extended period astrocytic activity that involved enhanced 
Ca2+ oscillations during the recovery phase. CSD-induced 
astrocytic Ca2+ oscillations were temporally associated 
with elevated gliotransmission, which in turn induced slow 
inward currents (SICs) in pyramidal neurons (122).

Conclusions

We summarized the response of astrocytes induced by 
SAH. Both beneficial and detrimental effects of astrocytes 
are implicated in neuroinflammation, neurotoxicity, 
brain edema, vasospasm and cortical SD after SAH. The 
effects of reactive astrocytes on neurological recovery and 
functional outcome after SAH designate astrocytes as a 
potential promising therapeutic target of pharmacological 
and cell-based approaches. A better understanding of 
the astrocytic activity after SAH can help develop new 
therapeutics options for SAH. Indeed, preclinical studies 
have already shown that therapeutic targeting the astrocytes 
response could have a beneficial effect in reducing neuronal 
damage and cognitive impairment after SAH. Translational 
stroke researches are urgently needed to determine the 
precise mechanism of astrocyte-induced brain damage and 
repair following SAH and, most importantly, to develop 
treatments to improve patient prognosis.
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