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Background and Objective: The adoption of targeted therapy and immunotherapy has revolutionised the 

treatment landscape of non-small cell lung cancer. For early staged disease, incorporation of targeted therapy 

and immunotherapy has recently been demonstrated to reduce recurrence. Development of targeted therapies 

in advanced lung cancer is driven by advanced genomic sequencing techniques, better understanding of drug 

resistance mechanisms, and improved drug designs. The list of targetable molecular alteration is continuously 

expanding, and next generation molecular therapies have shown promise in circumventing drug resistance. Lung 

cancer patients may achieve durable disease control with immune checkpoint inhibitors however most patients 

develop immunotherapy resistance. A wide spectrum of resistance mechanisms, ranging from impaired T-cell 

activation, presence of coinhibitory immune checkpoints, to immunosuppressive tumour microenvironment, have 

been proposed. A multitude of novel immunotherapy strategies are under development to target such resistance 

mechanisms. This review aims to provide a succinct overview in the latest development in targeted therapy and 

immunotherapy for NSCLC management. 

Methods: We searched all original papers and reviews on targeted therapy and immunotherapy in non-small cell 

lung cancer (NSCLC) using PubMed in June 2022. Search terms included “non-small cell lung cancer”, “targeted 

therapy”, “immunotherapy”, “EGFR”, “ALK”, “ROS1”, “BRAF V600E”, “MET”, “RET”, “KRAS”, “HER2”, 

“ERBB2”, “NRG1”, “immune checkpoint”, “PD-1”, “PD-L1”, “CTLA4”, “TIGIT”, “VEGF”, “cancer vaccine”, 

“cellular therapy”, “tumour microenvironment”, “cytokine”, and “gut microbiota”.

Key Content and Findings: We first discuss the incorporation of targeted therapy and immunotherapy in 

early staged NSCLC. This includes the latest clinical data that led to the approval of neoadjuvant immunotherapy, 

adjuvant immunotherapy and adjuvant targeted therapy for early staged NSCLC. The second section focuses 

on targeted therapy in metastatic NSCLC. The list of targetable alteration now includes but is not limited to 

EGFR, ALK, ROS1, BRAF V600E, MET exon 14 skipping, RET, KRAS G12C, HER2 and NRG1. Potential 

drug resistance mechanisms and novel therapeutics under development are also discussed. The third section on 

immunotherapy in metastatic NSCLC, covers immunotherapy that are currently approved [anti-PD-(L)1 and anti-

CTLA4], and agents that are under active research (e.g., anti-TIGIT, cancer vaccine, cellular therapy, cytokine and 

other TME modulating agents). 

Conclusions: This review encompasses the latest updates in targeted therapy and immunotherapy in lung cancer 

management and discusses the future direction in the field. 

Keywords: Non-small cell lung cancer (NSCLC); targeted therapy; immunotherapy

29

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-4444


Li et al. Updates in targeted therapy and immunotherapy in lung cancerPage 2 of 29

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(10):358 | https://dx.doi.org/10.21037/atm-22-4444

Introduction

Background

Lung cancer is the leading cause of cancer death worldwide, 
claiming 1.8 million lives annually (1). About 85% of 
lung cancers are non-small cell lung cancer (NSCLC). 
Patients with lung cancer have dismal prognoses, due 
to the fact that more than half of them present with 
metastatic disease, and recurrence is common among 
those who have early-staged disease (2). Conventional 
cytotoxic chemotherapy only offers a modest improvement 
in survival for NSCLC patients (3). The identification 
of actionable driver oncogenes such as EGFR and ALK, 
and immune checkpoints such as PD-L1, have led to 
the development of personalized cancer care. Over the 
past decade, significant advances in targeted therapy and 
immunotherapy have transformed the treatment paradigm 
and survival outcomes of patients with NSCLC. Patients 
receiving genotype-directed therapy achieve more rapid but 
durable tumour responses and usually less treatment related 
toxicities comparing to those who receive conventional 
chemotherapy. Nonetheless, therapeutic resistance remains 
a perennial challenge and much research is dedicated to  
this area. 

Rationale and knowledge gap

A myriad of novel therapeutic approaches has shown 
promise with potential to change future practice. The 
treatment landscape of NSCLC is rapidly evolving and 
turning increasingly complex. An updated review in this 
topic offers oncologists and other clinical practitioners a 
succinct overview in the state-of-the-art and future trends 
in NSCLC management.

Objective

This review discusses the latest development in targeted 
therapy and immunotherapy in NSCLC management. 
This review also addresses the resistance mechanisms 
to targeted therapy and immunotherapy and discusses 
future research direction in this field. We present this 
article in accordance with the Narrative Review reporting 

checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-4444/rc). 

Methods

On June 15th, 2022, a systematic literature search was 
conducted by MSC Li and KKS Mok. Final approval of 
literature search was conducted by MSC Li and KKS 
Mok. An online search of literature utilizing PubMed was 
employed. Selection criteria included NSCLC, targeted 
therapy, immunotherapy, EGFR, ALK, ROS1, BRAF, MET, 
RET, KRAS, HER2, ERBB2, NRG1, immune checkpoint, 
PD-1, PD-L1, CTLA4, TIGIT, VEGF, cancer vaccine, 
cellular therapy, tumour microenvironment, cytokine, and 
gut microbiota from 2005 to 15th June 2022. Only studies in 
English were included (Table 1).

Early staged NSCLC

Historically, neoadjuvant and adjuvant chemotherapy only 
provide an overall 5% survival benefit (4,5). Motivated 
by the success of immunotherapy in advanced stage lung 
cancer (6), much research on immunotherapy has been 
done in the neoadjuvant or adjuvant setting in recent years 
to improve this statistic. 

Neoadjuvant immunotherapy in surgically resectable 
NSCLC

The concept of neoadjuvant immunotherapy is supported 
by the hypothesis that an in-situ tumour may serve as 
a neoantigen source for stimulation of tumour-specific  
T-cells (7). Most neoadjuvant clinical trials evaluated 
pathological response rate as their major study endpoints. 
While overall survival is the gold standard for study 
endpoint in neoadjuvant studies, surrogate endpoints are 
needed for practicality and cost effectiveness. Pathologic 
response is emerging as one important endpoint because it 
has strong correlation to recurrence and survival (8), and is 
more predictive than radiologic response (9).

Earlier trials investigated neoadjuvant immunotherapy 
with anti-programme death-(ligand)-1 (anti-PD-L1/PD-1)  
monoclonal antibodies alone. They resulted in major 
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Table 1 Search strategy summary

Items Specification

Date of search 15th June, 2022

Databases PubMed

Search terms used “non-small cell lung cancer”, “targeted therapy”, “immunotherapy”, “EGFR”, “ALK”, “ROS1”, “BRAF V600E”, 
“MET”, “RET”, “KRAS”, “HER2”, “ERBB2”, “NRG1”, “immune checkpoint”, “PD-1”, “PD-L1”, “CTLA4”, “TIGIT”, 
“VEGF”, “cancer vaccine”, “cellular therapy”, “tumour microenvironment”, “cytokine”, and “gut microbiota”

Timeframe 2005 to 15th June, 2022

Inclusion criteria English literature only

Selection process Systematic literature search was conducted by MSC Li and KKS Mok. Final approval of literature search was 
conducted by MSC Li and KKS Mok

pathologic response rates (MPR, defined as 10% or less 
viable tumor in resected primary tumour) of 20–45% and 
pathologic complete response (pCR, defined as no viable 
tumour cells in resected primary tumour and lymph nodes) 
rates of 7–10% (7,10-12). A phase II study showed that dual 
immunotherapy with nivolumab and ipilimumab achieved 
higher MPR rate (38% versus 22%) and pCR rate (29% 
versus 9%) compared to nivolumab alone (12). 

In general, pathological response rates with single agent 
immunotherapy were lower than immunochemotherapy 
combinations. Single arm studies testing neoadjuvant 
immunochemotherapy combinations reported MPR 
rates of 57–83% and pCR rates of 18–63%. Toxicity was 
understandably higher due to the addition of chemotherapy, 
but surgery was in general feasible (13-15).

The only published phase III trial evaluating chemo-
immunotherapy to date was the CheckMate 816 trial, 
which compared three cycles of neoadjuvant nivolumab 
plus chemotherapy versus chemotherapy in stage IB (tumor 
size ≥4 cm) to IIIA patients (AJCC staging 7th edition) 
without EGFR/ALK alterations. The primary outcomes 
were met, with an event-free survival (EFS) of 31.6 months 
versus 20.8 months (HR 0.63, 97.38% CI: 0.43–0.91), 
pCR of 24% versus 2% (odds ratio 13.94; 99% CI: 3.49–
55.75) in the chemoimmunotherapy versus chemotherapy 
arms respectively. Patients with high PD-L1 expression 
(HR 0.24, 95% CI: 0.10–0.61) or stage III disease (HR 
0.54, 95% CI: 0.37–0.80) benefited more from the 
neoadjuvant immunochemotherapy combination. The trial 
also validated that pCR was strongly predictive of EFS (16). 
A number of phase III neoadjuvant immunochemotherapy 
studies are underway (Table 2).

Future studies will explore combining neoadjuvant 

immunotherapy with antiangiogenic drugs such as 
lenvatinib (NCT04875585), apatinib (NCT04379739) 

and bevacizumab (NCT04973293) ,  or  relat l imab 
(NCT04205552), an anti-LAG3 checkpoint inhibitor. Tri-
modality combinations with chemotherapy, immunotherapy, 
and radiotherapy are also being studied (NCT04245514, 
NCT05157542).

Adjuvant immunotherapy in surgically resected NSCLC

I M p o w e r 0 1 0  w a s  t h e  f i r s t  p u b l i s h e d  p h a s e  I I I 
immunotherapy study in the adjuvant setting in surgically 
treated lung cancer, comparing adjuvant atezolizumab up to 
one year versus supportive care after surgery and adjuvant 
chemotherapy (Table 2). This study showed improved 
disease-free survival (DFS) in stage II to IIIA patients with 
PD-L1 ≥1% (HR 0.66, 95% CI: 0.50–0.88; 3-year DFS 
60% versus 48%) and in all comers of stage II to IIIA (HR 
0.79, 95% CI: 0.64–0.96; 3-year DFS 56% versus 49%). 
Exploratory analysis suggested that the PD-L1 expression 
might be related to outcome, with a HR of 0.43 (95% CI: 
0.27–0.68) in the ≥50%, but 0.97 (95% CI: 0.72–1.31) in 
the ≤1% group (17).

Data from the second interim analysis for adjuvant 
pembrolizumab was presented recently. The KEYNOTE-091 
study was a triple blinded phase III randomized study 
comparing adjuvant pembrolizumab versus placebo for stage 
IB (≥4 cm) to IIIA patients (AJCC staging 7th edition) after 
surgery with or without chemotherapy. The study reported 
a significant DFS benefit with pembrolizumab but unlike 
IMpower010, the DFS outcomes did not correlate with PD-
L1 expression. The reason for this discrepancy in outcome 
was not clear (18). Other phase III trials testing adjuvant 
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Table 2 Key randomized perioperative immunotherapy studies in early staged NSCLC

Study name Intervention
Primary 
endpoint

Accrual status NCT identifier

Neoadjuvant

CheckMate 816 Nivolumab plus platinum based chemotherapy pCR, EFS Results published NCT02998528

CheckMate 77T Nivolumab plus platinum based chemotherapy followed by 
adjuvant nivolumab

EFS Recruiting NCT04025879

KEYNOTE-671 Pembrolizumab plus platinum based chemotherapy 
followed by adjuvant pembrolizumab 

EFS, OS Active, not recruiting NCT03425643

IMpower030 Atezolizumab plus platinum based chemotherapy followed 
by adjuvant atezolizumab 

EFS Active, not recruiting NCT03456063

AEGEAN Durvalumab plus platinum based chemotherapy pCR, EFS Recruiting NCT03800134

Tislelizumab plus platinum based chemotherapy followed 
by adjuvant tislelizumab

MPR, EFS Recruiting NCT04379635

Sintilimab plus platinum based chemotherapy followed by 
adjuvant sintilimab

pCR, EFS Not yet recruiting NCT05116462

SHR-1316 plus platinum based chemotherapy followed by 
adjuvant SHR-1316

MPR, EFS Recruiting NCT04316364

Toripalimab plus platinum based chemotherapy followed 
by adjuvant toripalimab

MPR, EFS Recruiting NCT04158440

Adjuvant

IMpower010 Atezolizumab (after adjuvant chemotherapy) DFS Results published NCT02486718

KEYNOTE-091 Pembrolizumab (after adjuvant chemotherapy but 
chemotherapy not mandatory)

DFS Results published NCT02504372

ANVIL Nivolumab (after adjuvant chemotherapy) DFS, OS Active, not recruiting NCT02595944

BR31 Durvalumab (after adjuvant chemotherapy but 
chemotherapy not mandatory

DFS in PD-L1 
TC ≥25%

Active, not recruiting NCT02273375

LungMate-008 Toripalimab plus platinum based chemotherapy for 4 
cycles

DFS Not yet recruiting NCT04772287

NADIM-ADJUVANT Nivolumab plus carboplatin plus paclitaxel followed by 
maintenance nivolumab

DFS Recruiting NCT04564157

ALCHEMIST-IO Arm 1: adjuvant chemotherapy alone followed by 
maintenance pembrolizumab 
Arm 2: pembrolizumab plus platinum based chemotherapy 
followed by maintenance pembrolizumab

DFS Recruiting NCT04267848

MERMAID-1 Durvalumab plus platinum based chemotherapy DFS in MRD+ 
analysis set

Active, not recruiting NCT04385368

MERMAID-2 Durvalumab DFS in PD-L1 
TC ≥1%

Active, not recruiting NCT04642469

NSCLC, non-small cell lung cancer; DFS, disease-free survival; EFS, event-free survival; MPR, major pathological response; MRD, minimal 
residual disease; OS, overall survival; pCR, pathological complete response; PD-L1, programme death-ligand 1; TC, tumour cells.
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PD-(L)1 blockade in patients with resected NSCLC have 
completed accrual and will provide additional insight into the 
potential biomarkers (Table 2). More importantly, in future, 
testing clinically whether there are differences in outcome 
between a neoadjuvant and adjuvant approach should be 
further pursued. 

Immunotherapy in locally advanced unresectable lung 
cancer

Definitive chemoradiotherapy followed by consolidation 
durvalumab for up to 1 year is now the standard for 
unresectable stage III NSCLC based on the landmark 
PACIFIC trial (19). In the latest update, durvalumab versus 
placebo was associated with median overall survival (OS) of 
47.5 versus 29.1 months. Patients with PD-L1 expression 
≤1% or EGFR/ALK alteration did not yield OS benefit 
from the study drug [HR 1.15 (95% CI: 0.75–1.75) and HR 
0.85 (95% CI: 0.37–1.97) respectively] (20).

Building upon the PACIFIC trial, the COAST trial 
was a phase II trial incorporating oleclumab (anti-CD73 
mAB) or monalizumab (anti-NKG2A mAB), novel drugs 
with immunomodulatory effects, to standard consolidation 
durvalumab. Encouraging response rates of 30.0% (oleclumab 
plus durvalumab), 35.5% (monalizumab plus durvalumab), 
versus 17.9% (durvalumab) were reported (21). This has now 
moved onto a phase III study (NCT05221840).

Integrating immunotherapy into chemoradiotherapy 
was feasible in a phase II trial involving pembrolizumab 
with response rate of about 70% and Grade 3 pneumonitis 
of 7–8% (22). Another similar trial involving concurrent 
durvalumab is  underway (NCT03519971).  Novel 
immunotherapy agents such as anti-TIGIT are being 
investigated as a component of consolidation therapy 
(NCT04513925, NCT05211895) and as part of the 
chemoradiotherapy regime (NCT04866017).

Neoadjuvant and adjuvant therapy in NSCLC with EGFR 
or other driver oncogene

Neoadjuvant tyrosine kinase inhibitor (TKI) is not yet an 
established standard treatment for patients with NSCLC 
harboring driver mutation. The EMERGING-CTONG 
1103 trial compared neoadjuvant erlotinib with neoadjuvant 
chemotherapy in stage IIIA N2 patients with EGFR exon 
19 or 21 mutations. While objective response (54.1% versus 
34.3%, P=0.09) was numerically higher and progression 
free survival (PFS) was statistically significantly better of  

21.5 months versus 11.4 months (P<0.001), neoadjuvant 
erlotinib did not improve overall survival (median OS 
42.2 versus 36.9 months, HR 0.83, P=0.513) (23). This 
trial raised an important message that PFS benefit in an 
neoadjuvant targeted therapy study does not necessarily 
translate into OS benefit. NEOS, a single arm trial of 18 
patients, reported response rate of 73.3% with neoadjuvant 
osimertinib (24).  An ongoing phase III trial called 
NEOADAURA will determine whether osimertinib with 
or without chemotherapy is beneficial in the neoadjuvant 
setting (NCT04351555). 

The most promising data on adjuvant epidermal growth 
factor receptor (EGFR) TKI involved osimertinib in the 
ADAURA trial. This was a phase III trial in which patients 
with resected stage IB to IIIA NSCLC (AJCC staging 7th 
edition) with EGFR exon 19 deletion or L858R mutation 
were randomized to receive either up to three years of 
osimertinib or placebo. The reported 24-month DFS was 
an impressive 90% versus 44% (HR 0.17, P<0.001). Given 
the overwhelming DFS gain the study was unblinded early 
and the drug was Food and Drug Administration (FDA) 
approved for this indication. OS data has yet to mature (25).

Clinical data on perioperative TKI for NSCLC 
harboring other driver oncogenes (e.g., ALK, ROS1) is 
scarce due to rarity of these tumours. ALINA is an ongoing 
phase III study comparing adjuvant alectinib with standard 
platinum-based chemotherapy in patients with resected 
ALK positive NSCLC (NCT0456076). NAUTIKA1 
is a phase II study in which patients receive genotype-
directed, neoadjuvant TKI followed by surgery, adjuvant 
chemotherapy and 2 years of TKI (NCT04302025). 
Primary study outcome is MPR rate. At present, osimertinib 
is the only FDA approved targeted therapy for early staged 
NSCLC harboring a driver mutation. 

Early-staged NSCLC: future direction

The phase III studies presented above have set the stage 
for immunotherapy and targeted therapy in early staged 
NSCLC. Future OS data and results of the other ongoing 
phase III studies will confirm the benefit of immunotherapy 
and targeted therapy in this setting. The classical notion that 
the histological subtype and molecular profile are irrelevant 
in early staged NSCLC management has become obsolete. 
EGFR mutation and PD-L1 expression should be tested at 
diagnosis to guide treatment plan. Multidisciplinary discussion 
is crucial for management of stage III, or even stage II NSCLC 
as different treatment approaches are now viable. Given the 
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improving response rates of neoadjuvant treatment, tumours 
that are determined unresectable at diagnosis may be converted 
to resectable. As a result, the line between unresectable and 
resectable tumours may blur. Future studies will also focus 
on identifying patients, for example those who fail to achieve 
pCR, or those with minimal residual disease after surgery, who 
will benefit from intensive treatment. 

Targeted therapy in metastatic NSCLC

Overview

The foundation of targeted therapy in lung cancer is based 
on the knowledge that certain genetic alterations act as 
primary drivers of cancer formation, such that inhibition of 
the driver oncogene leads to cancer growth arrest and cell 
death. Targeted therapies in NSCLC are conventionally 
referred to small molecule gene-specific tyrosine kinase 
inhibitors. Recently, innovations in drug designs have led 
to development of newer classes of targeted therapies like 
antibody-drug conjugates (ADC) and bispecific antibodies. 
Tyrosine kinase inhibitors (TKIs) have proven enormous 
success in NSCLC treatment as up to one half of lung 
adenocarcinomas (LUAD) harbour a driver oncogene  

(26-28) (Figure 1). To date, there are nine oncogenes in 
NSCLC with FDA approved therapies.

EGFR mutation

Currently, 5 EGFR TKIs (namely erlotinib, gefitinib, 
afatinib, dacomitinib, and osimertinib) are approved for 
treatment naïve, advanced EGFR mutated NSCLC (Table 3)  
(29-41). The FLAURA study randomized 556 patients with 
untreated advanced EGFR-mutated NSCLC to receive 
osimertinib or a first-generation EGFR TKI. Osimertinib 
demonstrated superiority over first-generation TKI in terms 
of PFS, OS, intracranial objective response rate (ORR), as 
well as a more favourable side effect profile, and thus is the 
preferred first-line treatment option for advanced NSCLC 
harbouring a sensitizing EGFR mutation (42,43). 

Treatment strategy upon osimertinib resistance is 
under active research. The standard treatment for patients 
after osimertinib resistance is cytotoxic chemotherapy. 
With growing understanding of the resistance patterns to 
osimertinib and advances in drug designs, multiple new 
treatment approaches have shown promise. 

EGFR exon 20 C797S mutation is the most common 
EGFR-dependent mechanism of osimertinib resistance 
(7–26%) and interferes with drug binding to the EGFR 
protein (51). Preclinical data showed that fourth generation 
EGFR TKIs, such as BLU-701, BLU-945, BBT-176 and 
JBJ-09-063, were active against C797S resistance (52-55). 
Phase I/II studies are now underway to study the clinical 
efficacy and safety of these agents (e.g., NCT 05153408, 
NCT04820023). 

MET  ampli f icat ion accounts  for  up to 20% of 
osimertinib resistance (51). The combination of EGFR TKI 
plus a selective MET inhibitor (e.g., tepotinib, capmatinib, 
savolitinib) was tested in patients with MET overexpression 
or amplification resistance in several phase Ib/II trials. 
Reported ORRs were around 30–60% supporting TKI 
combination as a treatment option for patients with acquired 
MET dysregulation (56-59). Phase III randomized studies 
such as GEOMETRY-E (NCT04816214) and SAFFRON 
(NCT-05261399) will compare such combinations with 
standard platinum-based chemotherapy. EGFR TKI 
resistance mediated by other actionable alterations are 
rare but treatment success of different TKI combinations 
have been reported in literature (60-62), highlighting the 
importance of repeating genomic profiling after TKI failure 
to search for druggable resistance mutations. 

Amivantamab is a bispecific antibody against EGFR 
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Figure 1 Prevalence of actionable driver alterations in lung 
adenocarcinoma. Frequency of driver oncogenes in LUADs 
in Caucasians, adapted from Jordan et al. (28). LUADs, lung 
adenocarcinomas.
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Table 3 Key randomized targeted therapy studies in NSCLC with actionable genomic alterations

Study name Intervention Comparator Treatment line
Median PFS, months, 

HR (95% CI)
Median OS, months, 

HR (95% CI)
Ref

EGFR

IPASS Gefitinib Carboplatin plus 
paclitaxel

1st 9.5 vs. 6.3, HR 0.48 (0.36 
to 0.64)

18.8 vs. 17.4, HR 1.0 
(0.76 to 1.33)

(29,30)

NEJ002 Gefitinib Carboplatin plus 
paclitaxel

1st 10.8 vs. 5.4, HR 0.30 
(0.22 to 0.41)

30.5 vs. 23.6, HR 0.887 
(0.63–1.24)

(31,32)

EURTAC Erlotinib Platinum based 
chemotherapy

1st 9.7 vs. 5.2, HR 0.37 
(0.25–0.54)

19.3 vs. 19.5, HR 1.04 
(0.65–1.68)

(33)

OPTIMAL Erlotinib Carboplatin plus 
gemcitabine

1st 13.1 vs. 4.6, HR 0.16 
(0.10–0.26)

22.8 vs. 27.2, HR 1.19 
(0.83–1.71)

(34,35)

LUX-LUNG-7 Afatinib Gefitinib 1st 11.0 vs. 10.9, HR 0.73 
(0.57–0.95)

27.9 vs. 24.5, HR 0.86 
(0.66–1.12)

(36,37)

ARCHER-1050 Dacomitinib Gefitinib 1st 14.7 vs. 9.2, HR 0.59 
(0.47–0.74)

34.1 vs. 26.8, HR 0.76 
(0.58 to 0.99)

(38,39)

AURA3 Osimertinib Platinum plus 
pemetrexed

2nd, progression after 
first-line EGFR TKI with 

T790M mutation

10.1 vs. 4.4, HR 0.30 
(0.23 to 0.41)

26.8 vs. 22.5, HR 0.87 
(0.67 to 1.12)

(40,41)

FLAURA Osimertinib Erlotinib or gefitinib 1st 18.9 vs. 10.2, HR 0.46 
(0.37 to 0.57)

38.6 vs. 31.8, HR 0.80 
(0.64 to 1.00)

(42,43)

ALK

PROFILE-1014 Crizotinib Platinum plus 
pemetrexed

1st 10.9 vs. 7.0, HR 0.45 
(0.35 to 0.60)

NR vs. 47.5, HR 0.76 
(0.548 to 1.053)

(44,45)

ASCEND-4 Ceritinib Platinum plus 
pemetrexed

1st 16.6 vs. 8.1, HR 0.55 
(0.42 to 0.73)

NR vs. 26.2, HR 0.73 
(0.50 to 1.08)

(46)

ALEX Alectinib Crizotinib 1st 34.8 vs. 10.9, HR 0.43 
(0.32 to 0.58)

NR vs. 57.4, HR 0.67 
(0.46 to 0.98)

(47)

ALTA-1L Brigatinib Crizotinib 1st 24.0 vs. 11.1, HR 0.48 
(0.35 to 0.66)

NR vs. NR, HR 0.81 
(0.51 to 1.22)

(48)

eXalt3 Ensartinib Crizotinib 1st 25.8 vs. 12.7, HR 0.51 
(0.35 to 0.72)

NR vs. NR, HR 0.91 
(0.54 to 1.54)

(49)

CROWN Lorlatinib Crizotinib 1st NR vs. 9.3, HR 0.28 (0.19 
to 0.41)

NR vs. NR, HR 0.72 
(0.41 to 1.25)

(50)

NSCLC, non-small cell lung cancer; ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; HR, hazard ratio; NR, not 
reached; OS, overall survival; PFS, progression free survival; Ref, reference.

and c-MET (63). In the CHRYSALIS and CHRYSALIS-2 
single arm phase II studies, the combination of amivantamab 
and lazertinib (a third-generation EGFR TKI) achieved 
response rates of 36% and 32% respectively in patients who 
progressed on osimertinib (64,65). These data supported 
bispecific antibody to be an alternative approach other 
than tyrosine kinase inhibition in targeting oncogene-
addicted NSCLCs by induction of antibody-dependent 

cellular cytotoxicity (ADCC) and simultaneous inhibition of 
multiple signalling pathways (66). 

HER3 is typically overexpressed on EGFR-mutated 
NSCLC (67) and patritumab deruxtecan (HER3-DXd) is 
an ADC against HER3. In a phase I study, ORR was 39% 
and median PFS was 8.2 months among 57 patients who 
had prior EGFR TKI and platinum-based chemotherapy 
and received HER3-DXd (68). The HERTHENA-Lung02 
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is a phase III study (NCT05338970) comparing HER3-
DXd with platinum-based chemotherapy for patients with 
EGFR-mutated NSCLC failing osimertinib. 

ALK rearrangement

Second and third generation ALK TKIs (namely ceritinib, 
alectinib, brigatinib, ensartinib, lorlatinib) have largely 
supplanted crizotinib for treatment-naïve, advanced ALK-
rearranged NSCLC as all of them demonstrated superior 
PFS comparing with crizotinib in the upfront setting, 
except that ceritinib was compared with chemotherapy. 
(Table 3) (44-46,48-50,69). Although cross-trial comparison 
suggested that lorlatinib offered more durable disease 
control compared to the second generation ALK TKIs  
(3-year PFS 63% with lorlatinib, 45% with alectinib and 
43% with brigatinib) (47,48,70), the optimal first-line 
treatment is still an open debate as lorlatinib usually remains 
effective after second generation ALK TKI failure (71).

Resistant ALK mutations most often occur in the 
gatekeeper region (e.g., L1196M and G1269A) or the 
solvent front region (e.g., G1202R) after first and second 
generation ALK TKI treatment (72). Serial ALK TKI 
treatment potentially predisposes to multiple resistant 
kinase mutations and lorlatinib resistance (73). Fourth 
generation ALK TKIs like TPX-0131 are designed to 
bind precisely to the adenine binding site of ATP to avoid 
clashing with the solvent front, hinge or gatekeeper area, 
and thus may overcome double- or triple-mutant resistant 
kinase mutations (74). TPX-0131 and NVL-655 are now 
being evaluated in phase I clinical studies which involve 
patients who have failed multiple lines of ALK TKI 
including lorlatinib (NCT04849273, NCT05384626).

ROS1 rearrangement

Crizotinib and entrectinib are approved therapies for 
ROS1-rearranged NSCLC. PROFILE 1001 was a single 
arm phase II study in which 50 patients with ROS1-
rearranged NSCLC received crizotinib. Crizotinib achieved 
an ORR of 72% and a median PFS of 19.2 months (75). In 
the integrated analysis of three entrectinib studies (ALKA-
372-001, STARTRK-1, and STARTRK-2), entrectinib 
achieved a similar ORR of 77% and a median PFS of  
19.0 months (76). Entrectinib may be preferred in patients 
with brain metastases in view of its excellent intracranial 
activity (intracranial ORR 52.2%) (77). Besides crizotinib 
and entrectinib, ceritinib and lorlatinib are also both 

active in ROS1-rearranged NSCLC but are not FDA 
approved (78,79). ROS1G2032R solvent-front mutation is the 
most common resistance mechanism following crizotinib 
progression and confers resistance to all commercially 
available ROS1 inhibitors (80). Interim data of the 
TRIDENT-1 phase I/II study showed that repotrectinib 
(TPX-005), a next generation ROS1/TRK inhibitor, was 
active against ROS1 TKI-naïve and pretreated patients (81). 
Enrollment of this study is now ongoing (NCT03093116). 

MET exon 14 skipping

Three highly selective type IB MET inhibitors, namely 
capmatinib, tepotinib, and savolitinib, were proven highly 
efficacious in patients with advanced MET exon 14 skipping 
positive (METex14) NSCLC. In GEOMETRY mono-1, 
treatment naïve patients with advanced METex14 NSCLC 
achieved an ORR of 68% and median PFS of 12.4 months 
with capmatinib. In the pretreated cohort, ORR was 41% 
and median PFS was 5.4 months (82,83). In the VISION 
study, 152 patients with NSCLC harbouring METex14, 
either detected by tissue or liquid biopsy, received tepotinib. 
Response rates were similar at 50% either in the tissue-
biopsy or liquid-biopsy group, regardless of number of 
lines of previous treatment (84). Both drugs exhibited 
intracranial antitumour efficacy (84,85). Savolitinib was 
evaluated in 70 patients with pretreated METex14 NSCLC 
in China. Notably, 25 patients (36%) had pulmonary 
sarcomatoid carcinoma (PSC), which was underrepresented 
in the GEOMETRY mono-1 and the VISION study 
(<8% of patients had PSC). ORR in the intention-to-
treat population and PSC subgroup were 49% and 40% 
respectively (86). Peripheral oedema is the major toxicity 
from MET inhibitors. Currently, capmatinib and tepotinib 
are FDA approved and savolitinib is approved in China for 
advanced METex14 NSCLC. Multiple treatment strategies 
targeting MET-dysregulated NSCLC, such as type II MET 
inhibitor (e.g., merestinib, NCT02920996), MET-based 
ADC (e.g., telisotuzumab vedotin, NCT03539536) and 
bispecific antibody (e.g., amivantamab, NCT02609776), are 
under study.

RET rearrangement

Recently, two selective RET inhibitors, demonstrated 
high efficacy in RET rearranged NSCLC and received 
FDA approvals for this treatment indication. Selpercatinib 
was tested in 144 patients with RET-rearranged NSCLC 
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in the LIBRETTO-001 multicentre single arm phase II 
study. In the treatment-naïve cohort, ORR was 85% and 
median PFS was not reached at data cutoff. In the platinum 
pretreated cohort, ORR was 64% and median PFS was  
16.5 months (87) .  The ARROW study evaluated  
121 patients with RET-rearranged NSCLC who received 
pralsetinib. ORR was 70% in the treatment naïve cohort and 
61% in the pretreated cohort (88). Grade 3 and 4 toxicities 
due to RET inhibitors were rare and mainly included 
hypertension, deranged liver function, and cytopenia. 
The LIBRETTO-431 (NCT04194944) and ACCELE-
RET (NCT04222972) are comparing selpercatinib and 
pralsetinib respectively, with platinum-based chemotherapy 
with or without pembrolizumab in patients with treatment-
naïve advanced RET-rearranged NSCLC. Novel RET 
inhibitors (e.g., TPX-0046, NCT04161391; BOS172738, 
NCT03780517) designed to overcome acquired RET 
resistant mutations are now evaluated in phase I/II clinical 
trials (89,90).

BRAF V600E mutation

The combination of dabrafenib and trametinib is FDA 
approved for the treatment of advanced, BRAF V600E 
mutated NSCLC. Clinical efficacy achieved by the BRAF 
and MEK inhibitor combination (ORR 64% for both 
untreated and treatment naïve patients, median PFS  
14.6 months for untreated cohort and 8.6 months for 
pretreated cohort) was considerably higher than BRAF 
inhibitor monotherapy (ORR about 40% and median 
PFS about 5–6 months) (91-93). Pyrexia is a specific and 
common (up to 50%) side effect from the drug combination 
which is usually ameliorated by antipyretics and dose 
adjustment. 

NTRK rearrangement

Two TRK inhibitors, larotrectinib and entrectinib, received 
FDA approval as tumor agnostic therapies for patients 
with tumours harbouring NTRK fusions. In an updated 
integrated analysis of three phase I/II clinical trials which 
evaluated larotrectinib in 159 patients with NTRK fusion-
positive solid tumours, ORR was 79% and median PFS was  
25.8 months (94). Another integrated analysis of three phase 
I/II clinical trials analysed the clinical efficacy of entrectinib 
in 121 patients with NTRK fusion-positive tumours. The 
ORR was 61% and the median PFS was 13.8 months (95). 
Both larotrectinib and entrectinib showed high efficacy 

across a wide range of tumour types including NSCLC. 
TRK inhibitors are associated with specific on-target side 
events like cognitive impairment, dizziness, weight gain 
and drug withdrawal pain but drug discontinuation due to 
treatment-related adverse events is rare (<10%). In a small-
scale study of 18 patients who progressed on first generation 
TRK inhibitors (larotrectinib or entrectinib), a resistant 
solvent front mutation was identified in 13 of them (96). 
Preclinical data showed that next generation TRK inhibitors 
such as taletrectinib, repotrectinib, and selirectinib, were 
effective against NTRK fusion positive tumours with 
secondary resistant NTRK mutations (81,97,98).

KRAS G12C mutation

KRAS was considered undruggable in the past due to the 
absence of an identifiable drug binding pocket on KRAS 
protein and its strong affinity to ATP rendering design 
of KRAS inhibitors inherently difficult (99). In 2013, the 
Shokat lab identified a small pocket adjacent to the switch-
II region that was only present in GDP-bound, G12C 
mutant KRAS protein. The research team designed a small, 
KRAS G12C allele-specific molecule (ARS-1620) that 
could bind to this pocket and lock the KRAS protein in its 
inactive, GDP-bound state (100). Non-cancer cells that do 
not carry the KRAS G12C mutation could be spared from 
the toxicities, resulting in a much wider therapeutic index. 
Further refinement in drug structure designs have led to 
development of molecules with enhanced potency that are 
tested in clinic today. 

Sotorasib (AMG510) was the first KRAS G12C inhibitor 
adopted in clinic setting. In CodeBreak 100 study, the drug 
was evaluated in 126 patients with pretreated KRAS G12C 
mutated NSCLC. The ORR was 37% and the median PFS 
was 6.8 months (101). Recently, the results of the phase III 
CodeBreak 200 trial were published. Sotorasib achieved 
superior PFS and ORR compared to docetaxel in patients 
who progressed after prior platinum-based chemotherapy 
and immune checkpoint inhibitor (102). Another KRAS 
G12C inhibitor, adagrasib (MRTX849), achieved treatment 
response rate of 43% and median PFS 6.5 months in the 
KRYSTAL-1 phase I-II study enrolling 116 patients (103).  
A number of KRAS G12C inhibitors, such as JDQ443, 
JAB-21822, and GDC-6036, are under clinical investigation 
(NCT05132075, NCT05276726, NCT04449874).

A heterogenous spectrum of resistance mechanisms 
have been identified in the setting of KRAS G12C 
inhibitor resistance, of which secondary KRAS mutations 
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or alterations in RTK-RAS signalling pathway are most 
prevalent (104,105). These data supported the approach 
of combining a KRAS G12C inhibitor with an RTK or 
SHP2 inhibitor in order to achieved more sustained RAS 
inhibition (NCT04330664, NCT04185883). 

Targeting KRAS mutants other than G12C is more 
challenging given the lack of a drug binding pocket and 
even higher affinity to GTP. Nonetheless, preclinical data 
on KRAS G12D, KRAS G12V, and pan-KRAS inhibitors is 
emerging (106-110).

EGFR exon 20 insertion

EGFR exon 20 insertion (EGFRex20ins) is well known to be 
EGFR TKI resistant due to its unique steric configuration. 
Recently, two drugs were approved by the FDA for treatment 
of advanced EGFRex20ins NSCLC in the second line setting. 
Mobocertinib is an oral TKI designed specifically targeting 
EGFRex20ins. The drug achieved an ORR of 28% and 
median PFS of 7.3 months in platinum-pretreated patients 
with advanced EGFRex20ins NSCLC (111). Amivantamab 
is a bispecific EGFR-cMET antibody achieving a tumour 
response rate of 40% and median PFS of 8.3 months in  
81 patients in the CHRYSALIS study (112). 

HER2 mutation

Studies in the past targeting HER2 mutation have yielded 
disappointing results. Various classes of anti-HER2 agents, 
including monoclonal antibodies, TKIs, and ADCs, have 
been investigated in HER2-mutated NSCLC. Recently, a 
few agents have demonstrated signals of antitumour activity 
(113-116). Among all anti-HER2 targeted therapies, 
trastuzumab deruxtecan (T-DXd) has shown the best 
promise. Compared to trastuzumab emtansine (T-DM1), 
T-DXd has a different cytotoxic payload and an enhanced 
linker-payload system enabling a higher drug-to-antibody 
ratio (1 to 8 for T-DXd compared to 1 to 4 for T-DM1) 
while maintaining high stability in plasma (117). Recently, 
the results of DESTINY-Lung01 trial were published. Total 
of 91 patients with HER2-mutated NSCLC were enrolled 
into the study. T-DXd achieved an ORR of 55%, DCR 
of 92% and median PFS of 8.2 months. Interstitial lung 
disease is a specific adverse event of T-DXd that occurred in 
a quarter of patients in this study (118). In August 2022, the 
FDA granted accelerated approval to T-DXd for patients 
with advanced HER2-mutated NSCLC failing first-line 
therapy. The upcoming DESTINY-Lung04 study will 

evaluate T-DXd versus standard of care in patients with 
untreated, advanced NSCLC harbouring a HER2 mutation 
(NCT05048797). 

NRG1 rearrangement

NRG1-rearrangement represents a rare but targetable 
oncogene in NSCLC (0.2%) and causes cancer by inducing 
ErbB2-ErbB3 dimerization. Zenocutuzumab, a bispecific 
HER2/HER3 antibody, and seribantumab, an anti-
HER3 monoclonal antibody, showed encouraging signal 
in targeting NRG1-rearranged solid tumours including 
NSCLC (119-121). Both drugs are now being studied in 
phase II studies (NCT02912949, NCT04383210).

Antibody-drug-conjugates under development

TROP2 is ubiquitously expressed on lung cancer cells and 
thus a favourable target for development of ADC (120). 
Sacituzumab govitecan is a TROP-2 ADC connected to 
an irinotecan derivative payload SN-38. In a single arm 
cohort enrolling 54 heavily pretreated patients, ORR was  
17% (122). Datopotamab deruxtecan (Dato-DXd) is another 
TROP-2 ADC using deruxtecan as the cytotoxic payload. 
In the NSCLC cohort of the TROPION-PanTumor01 
Phase I study, ORR was 24%. Interstitial lung disease 
was present in 11% of patients (123). Dato-DXd was also 
active in patients with actionable genetic alterations (124). 
Tusamitamab ravtansine, an anti-CEACAM5 ADC, has 
shown antitumour efficacy in NSCLC. Tumour response rate 
was 20% in a heavily pretreated population with CEACAM5 
highly expressed NSCLC (125). These drugs are now 
compared with docetaxel in the platinum-refractory setting 
(NCT04656652, NCT05089734, NCT04154956), and 
combinations of TROP-2 ADC with immunotherapy are also 
explored (NCT04526691, NCT04612751, NCT05186974).

Targeted therapy: future direction

Advances in structural bioinformatics and computational 
b iology have led to  drug discover ies  that  target 
“undruggable” alterations such as KRAS and EGFRex20ins. 
Consequently, targeted therapies are no longer limited 
to TKIs and monoclonal antibodies, but also comprise 
allosteric inhibitors, ADCs and bispecific antibodies. 
Increasing adoption of high throughput genomic sequencing 
as well as liquid biopsy testing has facilitated detection of 
rare genetic alterations and depiction of drug resistance 
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(2nd line, PD-L1 ≥1%)

Pembrolizumab + 
chemotherapy  

(1st line, non-SqCC)

Pembrolizumab  
(1st line, PD-L1 ≥50%)

Atezolizumab + bevazicumab + 
chemotherapy  

(1st line, non-SqCC)

Nivolumab + ipilimumab + chemotherapy 
(1st line)

Nivolumab + ipilimumab (1st line)

Atezolizumab (1st line, PD-L1 ≥50%)

Pembrolizumab + 
chemotherapy  
(1st line, SqCC)

Atezolizumab + chemotherapy  
(1st line, non-SqCC)

Pembrolizumab (1st line, PD-L1 ≥1%)

Cemiplimab  
(1st line, PD-L1 ≥50%)

Atezolizumab (2nd line)

Figure 2 Timeline of FDA approval of immunotherapy in metastatic NSCLC. PD-L1, programme death-ligand 1; NSCLC, non-small cell 
lung cancer; non-SqCC, non-squamous.

mechanisms. Ongoing research focuses on characterization 
of TKI resistance mechanisms and development of novel 
therapeutic approaches targeting actionable resistance 
alterations. As a result, molecular profiling is not only 
essential at the time of diagnosis, but it may be clinically 
relevant to track the evolution and genomic changes of the 
tumour during the treatment course in order to establish a 
personalized therapeutic strategy. 

Immunotherapy in metastatic NSCLC

PD-L1 blockade

Immune checkpoint inhibitor (ICI), notably anti-PD-L1/
PD-1 antibody, is the cornerstone of immunotherapy 
for multiple cancer types including NSCLC. PD-1/PD-
L1 binding leads to intratumoral T-cell exhaustion thus 
blocking this interaction may reactivate exhausted T-cells 
for cancer cell killing. PD-(L)1 blockade is now considered 
standard of care for patients with advanced NSCLC without 
actionable oncogenic alterations. At present, multiple 
anti-PD-(L)1 agents have been approved for metastatic 
NSCLC, either as monotherapy or in combination with 

other drugs (Figure 2). Treatment efficacy of anti-PD-(L)1 
directly correlates with PD-L1 expression on tumour cells. 
For patients with treatment naïve, EGFR/ALK negative 
NSCLC with PD-L1 tumour proportion score (TPS) 
≥50%, first-line anti-PD-(L)1 monotherapy was superior to 
chemotherapy in terms of PFS and OS (126-128) (Table 4) 
In the KEYNOTE-024 study, five-year overall survival was 
31% for patients assigned to the pembrolizumab arm (129). 
Pembrolizumab monotherapy is approved but generally not 
recommended for patients with NSCLC with PD-L1 TPS 
1–49%, as subgroup analysis showed no survival benefit 
over chemotherapy (127,130). 

Addition of pembrolizumab to chemotherapy improved 
PFS and OS compared to chemotherapy alone regardless 
of PD-L1 expression and histology, and this regime has 
been adopted as the standard first-line treatment regime 
for advanced NSCLC without actionable alterations 
in multiple countries (131,133). Other studies testing 
immunochemotherapy combination with atezolizumab, 
sintilimab, tislelizumab, camrelizumab, or sugemalimab in 
addition to chemotherapy also consistently showed PFS 
improvement over chemotherapy alone (134-144) (Table 4).  
All of the studies above excluded patients with EGFR or 
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Table 4 Key randomized immunotherapy trials in treatment naïve, EGFR/ALK-ve, NSCLC

Study name Intervention Comparator Key inclusion criteria
Median PFS, months, 
HR (95% CI)

Median OS, 
months, HR  
(95% CI)

Ref

Anti-PD-(L)1 single agent

KEYNOTE-024 Pembrolizumab Platinum based 
chemotherapy

NSCLC PD-L1 TPS 
≥50%

10.3 vs. 6.0, HR 0.50 
(0.37 to 0.68)

30.0 vs. 14.2, HR 
0.63 (0.47 to 0.86)

(126,129)

Impower110 Atezolizumab Platinum based 
chemotherapy

NSCLC PD-L1 ≥50% 
of tumour cells or 
≥10% of tumour-
infiltrating immune 
cells

8.1 vs. 5.0, HR 0.63 
(0.45 to 0.88)

20.2 vs. 13.1, HR 
0.59 (0.40 to 0.89)

(127)

EMPOWER-Lung 
1

Cemiplimab Platinum based 
chemotherapy

NSCLC PD-L1 TPS 
≥50%

8.2 vs. 5.7, HR 0.54 
(0.43 to 0.68)

NR vs. 14.2, HR 
0.57 (0.42 to 0.77)

(128)

KEYNOTE-042 Pembrolizumab Platinum based 
chemotherapy

NSCLC PD-L1 TPS 
≥1%

5.4 vs. 6.5, HR 1.07 
(0.94 to 1.21)

16.7 vs. 12.1, HR 
0.81 (0.71 to 0.93)

(130)

Anti-PD-(L)1 plus chemotherapy combination

KEYNOTE-189 Pembrolizumab-platinum-
pemetrexed

Platinum plus 
pemetrexed

Non squamous, any 
PD-L1 TPS

9.0 vs. 4.9, HR 0.48 
(0.40 to 0.58)

22.0 vs. 10.7, HR 
0.56 (0.45 to 0.70)

(131,132)

KEYNOTE-407 Pembrolizumab-platinum 
based chemotherapy

Platinum based 
chemotherapy

Squamous, any PD-
L1 TPS

6.4 vs. 4.8, HR 0.56 
(0.56 to 0.70)

15.9 vs. 11.3, HR 
0.64 (0.49 to 0.85)

(133)

IMpower150 Atezolizumab-bevacizumab-
carboplatin-paclitaxel

Bevacizumab-
carboplatin-
paclitaxel

Non-squamous, any 
PD-L1 TPS

8.3 vs. 6.8, HR 0.62 
(0.52 to 0.75)

19.2 vs. 14.7, HR 
0.78 (0.64 to 0.96)

(134)

IMpower132 Atezolizumab-platinum-
pemetrexed

Platinum plus 
pemetrexed

Non squamous, any 
PD-L1 TPS

7.6 vs. 5.2, HR 0.60 
(0.49 to 0.72)

17.5 vs. 13.6, HR 
0.86 (0.71 to 1.06)

(135)

IMpower130 Atezolizumab-carboplatin- 
nab-paclitaxel

Carboplatin plus 
nab-paclitaxel

Non squamous, any 
PD-L1 TPS

7.0 vs. 5.5, HR 0.64 
(0.54 to 0.77)

18.6 vs. 13.9, HR 
0.79 (0.64 to 0.98)

(136)

IMpower131 Atezolizumab-carboplatin- 
nab-paclitaxel

Carboplatin plus 
nab-paclitaxel

Squamous, any PD-
L1 TPS

6.3 vs. 5.6, HR 0.71 
(0.60 to 0.85)

14.2 vs. 13.5, HR 
0.88 (0.73 to 1.05)

(137)

ORIENT-11 Sintilimab-platinum-
pemetrexed

Platinum plus 
pemetrexed

Non squamous, any 
PD-L1 TPS

8.9 vs. 5.0, HR 0.482 
(0.362 to 0.643)

NR vs. NR, HR 
0.609 (0.400 to 
0.926)

(138)

ORIENT-12 Sintilimab-platinum-
gemcitabine

Platinum plus 
gemcitabine

Squamous, any PD-
L1 TPS

5.1 vs. 4.9, HR 0.621 
(0.473 to 0.815)

Not reached (139)

RATIONALE 304 Tislezumab-platinum-
pemetrexed

Platinum plus 
pemetrexed

Non squamous, any 
PD-L1 TPS

9.7 vs. 7.6, HR 0.645 
(0.462 to 0.902)

Not reached (140)

RATIONALE 307 Tislezumab-carboplatin-
paclitaxel (Arm A)

Carboplatin-
paclitaxel (Arm C)

Squamous, 
any PD-L1 TPS

7.6 vs. 5.5, HR 0.524 
(0.370 to 0.742)

Not reached (141)

Tislezumab-carboplatin- 
nab-paclitaxel (Arm B)

7.6 vs. 5.5, HR 0.478 
(0.336 to 0.679)

Not reached

CameL Camrelizumab-carboplatin-
pemetrexed

Carboplatin-
pemetrexed

Non-squamous, any 
PD-L1 TPS

11.3 vs. 8.3, HR 0.60 
(0.45 to 0/79)

NR vs. 20.9, HR 
0.73 (0.53 to 1.02)

(142)

CameL-Sq Camrelizumab-carboplatin-
paclitaxel

Carboplatin-
paclitaxel

Squamous, any PD-
L1 TPS

8.5 vs. 4.9, HR 0.37 
(0.29 to 0.47)

NR vs. 14.5, HR 
0.55 (0.40 to 0.75)

(143)

GEMSTONE-302 Sugemalimab-platinum 
based chemotherapy

Platinum based 
chemotherapy

NSCLC, any PD-L1 
TPS

9.0 vs. 4.9, HR 0.48 
(0.39 to 0.60)

22.8 vs. 17.7, HR 
0.67 (0.50 to 0.90)

(144)

Table 4 (contiued)
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Table 4 (contiued)

Study name Intervention Comparator Key inclusion criteria
Median PFS, months, 
HR (95% CI)

Median OS, 
months, HR  
(95% CI)

Ref

Anti-PD-(L)1 plus anti-CTLA4 +/- chemotherapy combination

CheckMate 227 Nivolumab plus Ipilimumab Platinum based 
chemotherapy

NSCLC, PD-L1  
TPS ≥1%

5.1 vs. 5.6, HR 0.82 
(0.69 to 0.97)

17.1 vs. 14.9, HR 
0.79 (0.65 to 0.96)

(145)

PD-L1 TPS <1% 5.1 vs. 4.7, HR 0.75 
(o.59 to 0.96)

17.2 vs. 12.2, HR 
0.62 (0.48 to 0.78)

CheckMate 9LA Nivolumab, ipilimumab, 
platinum based 
chemotherapy

Platinum based 
chemotherapy

NSCLC, any  
PD-L1 TPS

6.7 vs. 5.0, HR 0.68 
(0.57 to 0.82)

15.6 vs. 10.9, HR 
0.66 (0.55 to 0.80)

(146)

MYSTIC Durvalumab plus 
tremelimumab

Platinum based 
chemotherapy

NSCLC, PD-L1  
TPS ≥25%

3.9 vs. 5.4, HR 1.05 
(0.72 to 1.53)

11.9 vs. 12.9, HR 
0.85 (0.61 to 1.17)

(147)

NEPTUNE Durvalumab plus 
tremelimumab

Platinum based 
chemotherapy

NSCLC with bTMB 
≥20 mut/Mb

4.2 vs. 5.1, HR 0.77 
(0.51 to 1.15)

11.7 vs. 9.1, HR 
0.71 (0.49 to 1.05)

(148)

NSCLC, non-small cell lung cancer; HR, hazard ratio; NR, not reached; OS, overall survival; PD-L1, programme death-ligand 1; PFS, 
progression-free survival; Ref, reference; TPS, tumor proportion score; bTMB, blood tumour mutational burden.

ALK alterations. CheckMate 722 (NCT02864251) and 
KEYNOTE789 (NCT03515837) are phase III studies 
investigating the combination of anti-PD-(L)1 plus 
chemotherapy versus chemotherapy in advanced EGFR-mutated 
NSCLC NSCLC failing TKI. Results are eagerly awaited. 

Despite the promise of anti-PD-(L)1 blockade, only a 
minority of patients experience durable benefit. Complex 
interplay between the immune system, tumour cells and 
tumour microenvironment (TME) are implied in the setting 
of immunotherapy resistance. ICI resistance can be broadly 
classified into tumour intrinsic and tumour extrinsic. Tumour 
intrinsic mechanisms include low tumour antigen production, 
defective antigen presentation or expression of co-inhibitory 
signals. Tumour extrinsic mechanisms include failure in T 
cell activation or infiltration into tumour, or intratumoral T 
cell dysfunction, either due to defects in host immune system 
or an immunosuppressive TME. To date, the landscape of 
ICI resistance is still poorly understood. Combinational 
strategies designed to overcome these resistance mechanisms 
are now investigated in clinical trials.

Immune checkpoints: CTLA4, TIGIT, and others

Cytotoxic T lymphocyte antigen 4 (CTLA4) is an 
immune checkpoint mechanistically distinct from PD-L1.  
It interferes with B7-CD28 binding and prevents T cell 
priming inside lymph nodes. It is also highly expressed 

by regulatory T (Treg) cells, thus blocking CTLA4 may 
both enhance T cell activation and downregulate Treg 
cells. CheckMate-227, MYSTIC and NEPTUNE study 
evaluated the anti-PD-L1/anti-CTLA4 combination 
without chemotherapy versus chemotherapy alone for 
treatment-naïve, EGFR/ALK negative, advanced NSCLC 
(Table 4). In the CheckMate-227 study, superior OS was 
achieved with nivolumab plus ipilimumab compared to 
chemotherapy, regardless of PD-L1 expression (146). 
Contrarily, both MYSTIC and NEPTUNE studies failed to 
achieve their primary endpoints—OS was not superior with 
dual immunotherapy in a biomarker-specified population 
(147,149). Both CheckMate-9LA and POSEIDON study 
showed that the four-drug combination of anti-PD-
(L)1, anti-CTLA4 and chemotherapy was superior to 
chemotherapy alone in terms of PFS and OS, establishing 
the combination of dual immunotherapy plus chemotherapy 
as a valid first-line treatment option (146,150). Incidence of 
immune-related adverse events and rate of immunotherapy 
discontinuation was higher with dual immunotherapy 
compared to anti-PD-(L)1 monotherapy (145,149).

Prospective evidence is lacking in identifying patients 
who may benefit  more from dual immunotherapy 
over anti-PD-(L)1 monotherapy. KEYNOTE-598 
randomized patients with PD-L1 ≥50%, treatment-
naïve advanced NSCLC to pembrolizumab single agent 
versus pembrolizumab plus ipilimumab. No PFS or OS 
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improvement but only increased toxicities were observed 
in the dual immunotherapy arm (151). Based on this study, 
dual PD-(L)1 and CTLA blockade is not recommended for 
PD-L1 ≥50% NSCLCs.

Aside PD-L1 and CTLA4, multiple immune checkpoints 
are being evaluated as anticancer therapeutic targets. T 
cell immunoreceptor with Ig and ITIM domains (TIGIT) 
is a co-inhibitory immune receptor expressed on T cells. 
Preclinical data showed that dual TIGIT/PD-1 blockade 
enhanced antitumour immune response (152). The phase 
II CITYSCAPE trial randomly assigned 135 patients 
with treatment naïve, PD-L1 ≥1% to atezolizumab 
plus tiragolumab and atezolizumab alone. Patients in 
the atezolizumab plus tiragolumab arm achieved higher 
ORR (ORR 37% versus 21%), although the benefit was 
mainly driven by the PD-L1 ≥50% subgroup (ORR in 
PD-L1 ≥50% 69% versus 24%) (153). However, Roche 
recently reported that the phase III SKYSCRAPER-01 
study, assessing tiragulomab plus atezolizumab versus 
atezolizumab alone for patients with PD-L1 high, EGFR/
ALK negative, treatment naïve, advanced NSCLC, did 
not meet the co-primary end point of PFS (154). Apart 
from TIGIT, antibodies blocking other co-inhibitory 
immune checkpoints such as LAG3, TIM3 and VISTA and 
activating co-stimulatory receptors such as OX-40, ICOS, 
CD137 and GITR, are now studied in early-phase trials, 
either in monotherapy or in combination with anti-PD-(L)1 
antibody (Table 5).

Combination with anti-VEGF

Abnormal vasculature is a hallmark of cancer. Anti-
angiogenesis  agents  can potentia l ly  modulate an 
immunosuppressive TME and enhance trafficking as well as 
tumour infiltration of immune cells (155).

Despite the proven synergism between anti-PD-(L)1 
and anti-vascular endothelial growth factor (VEGF) in 
multiple cancer types, such evidence is more controversial in 
NSCLC (156-158). The IMpower150 study was a positive 
trial showing improved PFS and OS in patients who received 
atezolizumab-bevacizumab-chemotherapy compared to 
bevacizumab-chemotherapy, but this study did not directly 
answer the question whether bevacizumab had added value 
on top of PD-L1 blockade (134). LEAP-007 randomized 
patients with untreated, EGFR/ALK negative, PD-L1 
TPS ≥1% advanced NSCLC to pembrolizumab versus 
pembrolizumab plus lenvatinib. This was a negative study 
(OS 14.1 versus 16.4 months, HR 1.10, OS numerically 

lower in pembrolizumab/lenvatinib arm) (159). However, 
Reckamp et al. recently reported in a phase II study in 
which patients who were previously treated with ICI 
and platinum-based chemotherapy, OS was significantly 
improved with pembrolizumab plus ramucirumab compared 
to chemotherapy of physician’s choice [OS 14.5 versus  
11.6 months, HR 0.69 (80% CI: 0.51–0.92)] (160). This 
suggested that antiangiogenic agents did resensitize tumours 
to ICI in a certain subset of patients. Ongoing clinical studies 
with biomarker analyses will further define patients who may 
potentially benefit from antiangiogenic agents (Table 5).

Cancer vaccines

Low tumour neoantigen expression and defective antigen 
presentation are two fundamental reasons of impaired T 
cell activation and ICI failure. Cancer vaccine primarily 
works by enhancing antigen-specific T cell antitumour 
responses. Most cancer vaccines tested in lung cancer clinical 
trials utilized tumour-associated antigens (TAAs), such as 
melanoma-associated antigen-A3 (MAGE-A3) and mucin 1  
(MUC-1), self-antigens that are commonly overexpressed 
but not uniquely expressed on tumour cells. Two phase III 
studies, MAGRIT and START, evaluated MAGE-A3 vaccine 
and MUG1 antigen vaccine versus placebo respectively in the 
adjuvant setting. Both studies failed to report survival benefit 
with the study treatment (161,162). 

Following the disappointing results of single-antigen 
vaccination, clinical research now focuses on multiple-
antigen vaccination and personalized antigen vaccination. 
In the first part of the phase III ATALANTE-1 randomised 
trial, OSE-2101, a HLA-A2 restricted neoepitope vaccine 
targeting five TAAs (CEA, HER2, MAGE2, MAGE3, 
and P53) expressed on lung cancer cells, achieved superior 
OS over standard-of-care second-line chemotherapy in 
patients failing platinum-based chemotherapy and anti-
PD-(L)1 treatment (163). Part 2 is now ongoing and will 
enroll 363 participants with OS as the primary endpoint 
(NCT02654587). Personalized antigen vaccination is 
constructed by whole exome and RNA sequencing of the 
tumour and identification of personalized immunogenic 
neoepitopes based on bioinformatic algorithms (164). In a 
phase Ib study, response rate was 39% with no extra safety 
signals reported in 18 patients in the NSCLC cohort who 
received NEO-PV-01 (a personalized neoantigen vaccine) 
concurrently with nivolumab (165). Multiple studies on 
personalized cancer vaccine are now ongoing either as 
monotherapy or given in combination with ICIs (Table 5).
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Table 5 Clinical Trials on novel targets to overcome ICI resistance in advanced NSCLC†

Target Treatment strategy Setting Phase
Study name (NCT 

identified)

Inhibitory immune checkpoints

TIGIT Atezolizumab with or without tiragolumab Treatment naïve, high PD-L1 
expression

III SKYSCRAPER-01 
(NCT04294810)

Pembrolizumab with or without vibostolimab Treatment naïve, PD-L1 TPS ≥1% III KEYVIBE-003 
(NCT04738487)

Pembrolizumab plus chemotherapy with or without vibostolimab Treatment naive III KEYVIBE-007 
(NCT05226598)

MK-7684A (pembrolizumab/vibostolimab coformulation) with or without 
docetaxel (vs. docetaxel)

Prior ICI II KEYVIBE-002 
(NCT04725188)

Pembrolizumab plus vibostolimab plus platinum based chemotherapy ICI naive I KEYVIBE-001 
(NCT02964013)

Tislelizumab plus ociperilimab versus pembrolizumab or tislelizumab Treatment naïve, PD-L1 TPS 
≥50%

III (NCT04746924)

Tislelizumab plus chemotherapy with or without ociperlimab Treatment naive II (NCT05014815)

Zimberelimab (anti-PD-1) plus domvanalimab (anti-TIGIT) plus 
etrumadenant (A2R antagonist)

Prior ICI, PD-L1 TPS ≥1% II (NCT04791839)

Zimberelimab or zimberelimab plus domvanalimab or zimberelimab plus 
domvanalimab plus etrumadenant

Treatment naïve, PD-L1 TPS 
≥50%

II (NCT04262856)

Zimberelimab with or without domvanalimab, versus chemotherapy Treatment naïve, PD-L1 TPS ≥1% III (NCT04736173)

AZD2936 (anti-TIGIT/anti-PD-1 bispecific antibody) Prior ICI I/II (NCT04995523)

HLX301 (anti-TIGIT/anti-PD-1 bispecific antibody) Pretreated I/II (NCT05102214)

LAG-3 XmAb22841 with or without pembrolizumab Pretreated I (NCT03849469)

RO7247669 monotherapy Pretreated I (NCT04140500)

Eftilagimoid alpha plus pembrolizumab Treatment naïve/prior ICI II (NCT03625323)

LAG525 with or without spartalizumab Pretreated I/II (NCT02460224)

TIM-3 TSR-022 alone, or plus nivolumab or TSR-042 or TSR-033 or 
chemotherapy, or a combination of three drugs 

Pretreated I (NCT02817633)

RO7121661 monotherapy Pretreated I (NCT03708328)

INCAGNO2390 Pretreated I (NCT03652077)

BGB-A425 plus tislelizumab Pretreated I/II (NCT03744468)

AZD7789 (anti-PD-1/anti-TIM-3 bispecific antibody) Prior ICI I/II (NCT04931654)

MBG453 with or without spartalizumab Pretreated I/II (NCT02608268)

S-15 NC318 monotherapy Pretreated I/II (NCT03665285)

NC318 plus pembrolizumab Prior ICI II (NCT04699123)

VISTA HMBD-002 with or without pembrolizumab Pretreated I NCT05082610

Table 5 (contiued)
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Table 5 (contiued)

Target Treatment strategy Setting Phase
Study name (NCT 

identified)

Stimulatory signals

OX-40 PF-04518600 with or without utomilumab Prior ICI I (NCT02315066)

INCAGN01949 plus nivolumab or ipilimumab or nivolumab-ipilimumab Pretreated I/II (NCT03241173)

SL-279252 (PD1-Fc-OX40L) Pretreated I (NCT03894618)

INBRX-106 with or without pembrolizumab Pretreated I (NCT04198766)

CD40 APX005M plus nivolumab ICI naïve and pretreated I/II (NCT03123783)

CDX-1140, monotherapy, with CDX-301 (FLT3L), pembrolizumab or 
chemotherapy

Pretreated I (NCT03329950)

SEA-CD40 with or without pembrolizumab Pretreated I (NCT02376699)

SEA-CD40 with pembrolizumab and platinum based chemotherapy ICI naive II (NCT04993677)

ICOS Vopratelimab plus ipilimumab Prior ICI II (NCT03989362)

Vopratelimab plus JTX-4014 Pretreated II (NCT04549025)

GSK3359606 plus tremelimumab Pretreated I/II (NCT03693612)

GSK3359609 plus docetaxel Pretreated II (NCT03739710)

KY1044 with or without atezolizumab Pretreated I/II (NCT03829501)

CD137 INBRX-105 with or without pembrolizumab Prior ICI I (NCT03809624)

GITR INCAGN01876 plus nivolumab or ipilimumab or nivolumab-ipilimumab Pretreated I/II (NCT03126110)

VEGF

Pembrolizumab plus Lenvatinib or placebo Untreated, PD-L1 TPS ≥1% III LEAP-007 
(NCT03829332)

Pembrolizumab plus platinum-pemetrexed plus lenvatinib or placebo Untreated, non squamous III LEAP-006 
(NCT03829319)

Pembrolizumab plus Lenvatinib (versus docetaxel) Prior ICI and chemo III LEAP-008 
(NCT03976375)

Nivolumab plus sitravatinib (versus docetaxel) Prior ICI and chemo III SAPPHIRE 
(NCT03906071)

Atezolizumab plus bevacizumab Untreated, TMB ≥10 II (NCT03836066)

Atezolizumab plus bevacizumab (versus atezolizumab) Untreated, PD-L1 TPS ≥1% II (NCT03896074)

Atezolizumab plus platinum-based chemotherapy plus bevacizumab Untreated II (NCT03713944)

Atezolizumab plus platinum-based chemotherapy with or without 
bevacizumab

Untreated II (NCT03786692)

Atezolizumab plus ramucirumab Prior ICI II (NCT03689855)

Pembrolizumab plus ramucirumab (versus SOC) Prior ICI II (NCT03971474)

Pembrolizumab plus ramucirumab plus docetaxel Prior ICI and chemo II (NCT04340882)

Nivolumab plus ramucirumab Prior ICI II (NCT03527108)

Nivolumab plus ipilimumab plus nintedanib Treatment naïve and ICI pretreated I/II (NCT03377023)

Pembrolizumab plus lenvatinib Prior ICI I/II (NCT02501096)

Avelumab plus axitinib ICI naive II (NCT03472560)

Table 5 (contiued)
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Table 5 (contiued)

Target Treatment strategy Setting Phase
Study name (NCT 

identified)

Cancer vaccine

OSE2101 (vs. standard treatment) Prior ICI and chemo III ATALANTE 1 
(NCT02654587)

RO7198457 with or without atezolizumab ICI naïve and pretreated I (NCT03289962)

Viagenpumatucel-L plus nivolumab or pembrolizumab plus pemetrexed Prior ICI I/II (NCT02439450)

NEO-PV-01 plus pembrolizumab plus platinum based chemotherapy Untreated I (NCT03380871)

GAd-PEV and MVA-PEV (personalized vaccine) with pembrolizumab ICI naïve, PD-L1 TPS ≥50% I (NCT04990479)

TG4010 (modified-human mucin 1-interleukin-2) vaccine with nivolumab ICI naive II (NCT02823990)

Adoptive cellular therapy

TIL Autologous TILs plus nivolumab ICI naive I (NCT03215810)

LN-145 Prior ICI II (NCT04614103)

ATL001 with or without pembrolizumab Prior ICI I/II (NCT04032847)

ITIL306 Prior ICI and chemo I (NCT05397093)

TCR T 
cells

Anti-NY-ESO-1 TCR T cells Pretreated I/II (NCT05296564)

NY-ESO-1/LAGE-1a TCR T cells with or without pembrolizumab Pretreated II (NCT03709706)

Gene-edited autologous neoTCR-T cells monotherapy, or in 
combination with nivolumab or interleukin-2

Pretreated I (NCT03970382)

CAR-T LYL797 (ROR1-targeted CAR T-cell therapy) Pretreated I (NCT05274451)

CAR-TnMUC1 Prior ICI and chemo I (NCT94925216)

NK-cells GAIA-102 (activated NK-like cells) Pretreated I/II (NCT05207371)

Cytokine

TGF-B Bintrafusp alfa (versus pembrolizumab) Untreated, PD-L1 TPS ≥50% III INTR@PID 
Lung 037 

(NCT03631706)

Docetaxel with or without bintrafusp alfa Prior ICI and chemo II (NCT04396535)

TEW-7197 with durvalumab ICI naive I/II (NCT03732274)

IL-1B Pembrolizumab plus platinum based chemotherapy plus canakinumab 
or placebo

Untreated III CANOPY-1 
(NCT03631199)

Docetaxel plus canakinumab or placebo Prior ICI and chemo III CANOPY-2 
(NCT03626545)

Spartalizumab plus platinum based chemotherapy with or without 
canakinumab

Prior ICI I (NCT03064854)

IL-2 NKTR-214 plus nivolumab ICI naïve and pretreated I/II (NCT02983045)

THOR-707 with or without immune checkpoint inhibitor ICI naïve and pretreated I/II (NCT04009681)

Nemvaleukin alfa with or without pembrolizumab ICI naïve and pretreated I/II (NCT02799095)

STK-012 (pegylated engineered interleukin-2) Pretreated I (NCT05098132)

IL-15 ALT-803 plus nivolumab Prior ICI I/II (NCT02523469)

ALT-803 plus immune checkpoint inhibitor Prior ICI II (NCT03228667)

Table 5 (contiued)
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Table 5 (contiued)

Target Treatment strategy Setting Phase
Study name (NCT 

identified)

IL-12 Adenoviral-mediated interleukin (ADV/IL-12) gene therapy (intratumoral 
ADV/IL-12 injection) with atezolizumab

Prior ICI I (NCT04911166)

Other TME targets

IDO Pembrolizumab with or without epacadostat Untreated, PD-L1 TPS ≥50% II KEYNOTE-654-05 
(NCT03322540)

Pembrolizumab plus platinum based chemotherapy with or without 
epacadostat

Untreated II KEYNOTE-715-06 
(NCT03322566)

Nivolumab plus ipilimumab plus epacadostat Pretreated I/II ECHO-208 
(NCT03347123)

HDAC Pembrolizumab plus mocetinostat plus guadecitabine Prior ICI I (NCT03220477)

Nivolumab plus glesatinib, sitravatinib, or mocetinostat Prior ICI II (NCT02954991)

Nivolumab plus entinostat plus azacytidine Prior chemo, ICI naïve or 
pretreated

II (NCT01928576)

Pembrolizumab plus vorinostat ICI naïve and pretreated, PD-L1 
TPS ≥1%

I/II (NCT02638090)

Abexinostat plus pembrolizumab Pretreated I (NCT03590054)

Adeno-
sine

Spartalizumab plus NIR178 Pretreated II (NCT03207867)

Durvalumab plus AZD4635 Prior ICI I (NCT02740985)

Etrumadenant plus zimberelimab Pretreated I (NCT03629756)

CDK4/6 Pembrolizumab plus abemaciclib ICI naïve and pretreated Ib (NCT02779751)

PARP Maintenance pembrolizumab plus olaparib vs. pembrolizumab plus 
pemetrexed

Untreated, non-squamous 
maintenance

III KEYLYNK-006 
(NCT03976323)

Maintenance pembrolizumab plus olaparib or placebo Untreated, squamous, 
maintenance

III KEYLYNK-008 
(NCT03976362)

Avelumab plus talazoparib Prior ICI, STK11 mutation II (NCT04173507)

MEK Pembrolizumab plus trametinib Pretreated, KRAS mutant I (NCT03299088)

Pembrolizumab plus trametinib pretreated I/II (NCT03225664)

Durvalumab plus tremelimumab plus selumetinib pretreated I/II (NCT03581487)

Pembrolizumab plus binimetinib Untreated, PD-L1 TPS ≥50% I (NCT03991819)

Atezolizumab plus cobimetinib Prior ICI II (NCT03600701)

AXL Pembrolizumab plus bemcentinib ICI naïve and pretreated II (NCT03184571)
†, not intended to be exhaustive. NSCLC, non-small cell lung cancer; NCT, National Clinical Trial; ICI, immune checkpoint inhibitor; PD-L1, 
programme death-ligand 1; TPS, tumour progression score.

Adoptive cellular therapy

Given the vital role of T cell in antitumour immunity, 
adoptive cellular therapy (ACT) developed to date 
has mainly focused on T cell therapy, although other 
cellular therapies (e.g., NK cell, B cell, macrophage) have 
demonstrated therapeutic potentials as well. Similar to 

cancer vaccine, the objective of ACT is to generate tumour-
specific, activated immune cells (166). Adoptive T cell 
therapy includes tumour-infiltrating lymphocyte (TIL) 
therapy, T-cell receptor (TCR)-engineered T cell therapy 
and chimeric antigen receptor T-cell (CAR-T) therapy. 
TILs are polyclonal T cells isolated from patient’s tumour 
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tissue, expanded ex-vivo and reinfused into the patient after 
lymphodepletion. In a recent phase I trial, TIL therapy was 
administered with nivolumab in 20 patients with advanced 
NSCLC upon progression on anti-PD-(L)1 treatment. The 
study met the end point of safety. Objective response was 
noted in three out of thirteen evaluable patients including 
two with durable complete responses (167). In TCR-
engineered T cell and CAR-T cell therapy, autologous T 
cells are isolated from peripheral circulation followed by 
ex-vivo transduction of a tumour-antigen specific TCR 
or CAR (166). Despite its tremendous success in treating 
haematological malignancies, CAR-T for solid tumour 
treatment proves to be challenging due to factors like poor 
tumour infiltration, immunosuppressive TME, and off-
target toxicities (168). Innovative approaches have been 
evaluated to overcome these resistance mechanisms. For 
instance, gene-edited T cells may enhance both safety as 
well as antitumour efficacy. In a phase I first-in-human 
study, CRISPR-Cas9 PD-1-edited T cells were safely 
given to 12 patients with advanced NSCLC without severe 
toxicities (169). Combination of cellular therapy with other 
modalities of immunotherapy, such as PD-L1 blockade or 
cytokine therapy, may further potentiate the therapeutic 
efficacy of tumour-specific immune cells (170,171). 

Targeting tumour microenvironment, cytokine, and gut 
microbiota 

Cytokines are pivotal in modulating immune cell function 
and thus have been actively investigated in enhancing 
antitumour efficacy of immunotherapy. This concept 
is supported by the fact that a minority of patients with 
melanoma and renal cell carcinoma achieved durable 
responses with high dose interleukin-2 (IL-2) therapy 
(172,173). A phase I study showed that the combination 
of NKTR-214 (a prodrug of polyethylene glycol (PEG)-
conjugated IL-2) and nivolumab was safe and efficacious 
(three out of five patients with NSCLC achieved RECIST 
response) in immunotherapy-naïve patients with various 
cancer types including NSCLC (174,175). A global dose 
escalation study for treatment-naïve lung cancer patients is 
ongoing (NCT03138889). Another phase I study evaluated 
the combination of nivolumab and ALT-803, a modified IL-
15/IL-15Rα/IgG1 Fc complex in patients with anti-PD-L1 
antibody refractory NSCLC (NCT02523469). Twenty-one 
patients received study treatment and ORR was 29% (176). 

Canakinumab, an anti-IL-1B monoclonal antibody, has 
been studied in multiple phase II and III studies after a 

significant reduction in lung cancer incidence and mortality 
was observed in the large scale CANTOS study which 
investigated the role of IL-1B in atherosclerosis (177). 
However, both the phase III CANOPY-1 (pembrolizumab 
plus chemotherapy with or without canakinumab in 
untreated metastatic NSCLC, NCT03631199) and 
CANOPY-2 (docetaxel with or without canakinumab 
in pretreated NSCLC) studies failed to improve PFS 
and OS (178,179). CANOPY-A and CANOPY-N are 
ongoing studies evaluating the drug in the neoadjuvant and 
adjuvant setting in early staged disease (NCT03447769, 
NCT03968419). 

A multitude of enzymatic pathways and cellular components 
are associated with an immunosuppressive TME. These 
molecules have been explored as therapeutic targets in hope 
to modulate the TME and enhance immune activity. Histone 
deacetylase (HDAC) alters gene expression via epigenetic 
regulation and HDAC inhibitors are found to promote pro-
immune activity within the TME. Two phase II studies 
reported antitumour activity and acceptable safety profile of 
HDAC inhibitor and anti-PD-(L)1 combination in patients 
with PD-(L)1 resistant/refractory NSCLC (180,181). Further 
clinical studies are warranted to select patients who may 
benefit from this drug combination. Other targets of interest, 
including indoleamine 2,3-dioxygenase (IDO), RORγ, AXL, 
MEK, PARP and CD73, are now being studied in early phase 
clinical trials enrolling NSCLC patients (Table 5).

Lastly, gut microbiota has emerged as a potential 
immune mediator that may affect clinical response to ICI 
treatment. Preclinical studies showed that a favourable 
gut flora composition is predictive of ICI response and 
modulation of gut flora may reverse ICI resistance (182). 
This strategy is now tested in prospective trials for patients 
with ICI failure, mainly by introducing favourable gut flora 
via faecal microbial transplantation and ICI rechallenge.

Immunotherapy in advanced NSCLC: future direction

Although the adoption of PD-L1 blockade has marked a 
new milestone of NSCLC management, ICI resistance and 
lack of predictive biomarker remain two major challenges. 
While various resistance models have been proposed, ICI 
resistance in reality is likely multifactorial and methods 
for ascertaining ICI resistance mechanisms are currently 
lacking. Combinational immunotherapy approaches 
targeting different phases of antitumour immunity have 
shown encouraging signals. However, most of these 
approaches were not tested in a biomarker-based fashion, 
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which might explain the failure of some phase II/III trials 
despite favourable results seen in early phase studies. More 
translational research is required to identify predictive 
biomarkers of ICI response or resistance. Advances in 
diagnostic and analytic tools like multiomic analysis, single 
cell sequencing, and deep learning approaches, may offer 
further insight into the dynamic interaction between the 
host immune system, cancer cells and TME. 

Strengths and limitations of this review

This review offers a succinct overview in the latest update 
in targeted therapy and immunotherapy for NSCLC 
management, identified resistance mechanisms, and current 
research direction to overcome treatment resistance and 
further improve treatment outcome. Owing to the breadth 
of the topic, some sections cannot be discussed in depth. 
While the authors agree that the advances in molecular 
diagnostics and biomarker research is also crucial for the 
successful development of novel therapeutics, this topic is 
beyond the scope of this review. 

Conclusions

Deeper understanding of the molecular and immune biology 
of NSCLC has led to rapid development of targeted therapy 
and immunotherapy in this field. The indications of targeted 
therapy and immunotherapy have now extended to early 
staged NSCLC as randomized studies have confirmed that 
these agents reduce disease recurrence. Comprehensive 
genomic profiling at diagnosis of advanced disease maximizes 
the chance for patient to benefit from highly efficacious 
molecular therapies. At the time of treatment resistance, next 
generation molecular therapies and novel drug combinations 
tailored to specific resistance mechanisms may now be 
considered. Currently, only a minority of patients experience 
durable clinical benefit with immunotherapy and innovative 
strategies targeting various immune resistance mechanisms 
have yielded early promise. As the therapeutic landscape of 
NSCLC is becoming increasingly complex, identification 
of predictive and resistance biomarkers is key to success in 
future drug development. The importance of multiomic 
profiling and translational studies alongside clinical trials 
cannot be overemphasized. 
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