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Introduction 

Besides the clinical experience and guidelines, decision of a 
treatment option, particularly surgery and adjuvant therapy, 
is usually supported by the statistical analyses, including 

Kaplan-Meier (KM) estimators, Cox regression model 
and logistic regression model, and, in recent years, by the 
emerging artificial intelligent tools (1,2). Those supporting 
approaches examine the causal effect of the treatment on 
the clinical outcome or benefit. To predict the outcome 
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in terms of risk score or dichotomy, such as hazard rate or 
recurrence, the model is built with a fixed panel of selected 
covariates (3). The candidate covariates include but not 
limited to treatment option, patient demographics, clinical 
information, and tumor characteristics. In the training stage 
of model, the candidate covariates are prioritized according 
to their effects on the outcome and the top covariates are 
selected for building the model.

The above-mentioned models, whose covariates 
include treatment option, could be easily trained and the 
implementation is straightforward, based on the assumption 
that the treatment assignment is  randomized and 
independent of the other covariates. In practice, particularly 
for observational studies, the treatment is not randomized 
but assigned by the clinical deliberation with reference to 
the other covariates. The treatment selection is usually 
affected by many factors including age, sex, comorbidities, 
and genomic profile (4,5). For example, younger patients 
(18–54 years) were more likely to receive adjuvant 
chemotherapy (31%) than post-operative observation 
(21%) (6). Such dependence is illustrated by the fact that 
the covariate distributions depart substantially between the 
treatment and control groups. Therefore, the trained model 
is biased to the other covariates rather than learning the 
genuine effect of treatment on the outcome.

To suppress the bias of covariate, researchers developed 
methods for estimating the propensity score for each 
subject using discriminant analysis or logistic regression 
of treatment option on covariates. The propensity score 
could help make a valid causal inference by implementing 
matched-pairs study design, weighting the cases in training 
the model or acting as an additional covariate in the 
model (7). However, the estimation of propensity score 
is susceptible to generalization problems of parametric 
model based on small or imbalanced samples. The 
interactions between covariates, which could have been 
considered in treatment decision, are also ignored by the 
above-mentioned remedial methods. Therefore, it is of 
critical importance to develop an algorithmic method 
for integrating a set of covariates to generate so-called 
synergistic markers in this paper that can truly identify the 
difference between treatment and control groups, to get rid 
of the propensity to individual covariates. In this work, the 
anti-propensity estimate of treatment option is defined as 
the output generated by a supervised learning model, such 
as support vector machine (SVM), where the synergistic 
markers constitute the inputs. The output possesses a score 
and its dichotomized estimate so that the dependence 
on covariates is highly reduced when compared with the 
original treatment option. 

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). For developing 
outcome prediction model, data including the clinical 
information, markers, features, facts, treatment option and 
outcome are collected and used to train and test the model. 
The clinical information, markers, features, and facts are 
model covariates where the ith covariate of the kth subject 
or case is denoted by xi(k). The distributions of covariates 
may largely deviate from normal distribution so that the 
model may be predisposed to biased prediction results if left 
uncorrected. Methods, such as rank-based inverse normal 
transformation (INT), can be applied to symmetrize and 
concentrate the distribution to standard normal, N(0,1). 
The values of the ith covariate across N subjects form the 
following vector.

( ) ( ) ( )1 , 2 , ,
T

i i i iu z z z n=     [1]

where the covariate,  z i(k) ,  fol lows a near-normal 
distribution, ~N(0,1), across subjects. The dot product, ui·ui 
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and ui·uj, tend to, respectively, 1 and the Pearson correlation 
coefficient between the ith and jth covariates when n is large 
enough, approaching the population size. 

The association level between any two covariates for the 
treatment group is denoted by CT(i, j), and that for the non-
treatment group, CN(i, j), given by the following.

( ) ( ) ( )
1

1,
T

T

n

T Ti Tj i T j T
kT

C i j u u z k z k
n

=

= ⋅ = ∑  [2]

( ) ( ) ( )
1

1,
N

N

n

N Ni Nj i N j N
kN

C i j u u z k z k
n

=

= ⋅ = ∑  [3]

where uTi and uTj represent the vectors containing the ith 
and jth covariates across the treatment group; uNi and uNj 
represent the vector containing the ith and jth covariates 
across the non-treatment group. The number of candidate 
covariates is denoted by m. Two groups are further defined 
as group H with higher overall association level and 
group L with lower overall association level, subject to the 
direction of the difference in overall association level given 
by the following formula.

( ) ( )
, ,

, 1, 1 , 1, 1
, ,

i m j m i m j m

T N
i j i j i j i j

C i j C i j
= = = =

≠ = = ≠ = =

∆ = −∑ ∑  [4]

If ∆≥0, the treatment group is defined as group H and 
the non-treatment group, L. Otherwise, the treatment 
group is defined as group L and the non-treatment group, 
H. The difference in association level between the ith and jth 
covariates is formulated by the (i,j)th element of a matrix, D, 
defined by the following formula.

( ) ( ) ( ), ,
,

0
H L for i jC i j C i j

D i j
for i j

≠ −
=  =

 [5]

An example of D, a 5×5 matrix generated from the 
hypothetical data of five covariates, is given as Figure 1A. 
The scatter plots of (A, B), (B, C) and (C, A) of groups 
L and H are shown in Figure 1B. When the association 
between covariates in group L is substantially weaker than 
that in group H, the corresponding value in matrix D is 
relatively high.

In the covariate sorting process, half of the off-diagonal 
elements, either upper or lower triangular, are extracted to 

A B C D E

A 0 0.875513 0.761413 0.704578 0.635384

B 0.875513 0 0.623233 0.620385 0.50633

C 0.761413 0.623233 0 0.637049 0.787873

D 0.704578 0.620385 0.637049 0 0.477486

E 0.635384 0.50633 0.787873 0.477486 0
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Figure 1 Hypothetical example of five covariates. (I) Matrix D; (II) scatter plots of covariate pairs (A, B), (B, C), and (C, A) of groups L and H.
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form a list. The maximum of the list and the corresponding 
covariate pair are identified. The selected covariate list with 
m' covariates is denoted by Lm'. For the above example of D, 
the maximum is 0.8755, the covariates A and B are selected 
and L2 is {A,B}.

The third covariate is added to L2 in condition that the 
sum of its D(i,j) values with A and B is the highest amongst 
the other covariates. To find the highest sum, columns A 
and B of matrix D are added element by element. The result 
of column addition is shown in Figure 2A.

From the first column of the result, the covariate C 
yields the highest sum of D(i,j) values with A and B so that 
C is added to the list, giving L3, {A,B,C}. To determine the 
fourth covariate, columns {A,B} and C are added element-
by-element to give the result as shown in Figure 2B.

From the first column again, the covariate D yields the 
highest sum of D(i,j) values with A, B and C so that D is 
added to the list, giving L4, {A,B,C,D}.

For adding the subsequent covariates to the list, the 
above steps of column addition and optimal value search 
are repeated. For m' ranging from 2 to m, an ordered list 
of covariates can be formed in the descending order of the 
corresponding difference in cumulative association level, 
∆m', given as below.

( ) ( )
', ' ', '

'
, 1, 1 , 1, 1

, ,
i m j m i m j m

m H L
i j i j i j i j

C i j C i j
= = = =

≠ = = ≠ = =

∆ = −∑ ∑  [6]

The synergistic markers are derived as follows. For m' 
ranging from 2 to m, the cumulative association level of 
group H or group L must fall within an interval whose 
lower and upper bounds are given by the sample means of 
two synergistic markers, s1 and s2. For m' covariates, twice 
of the cumulative association level is elaborated to give the 
lower bound by the following inequality.
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 [7]

where s1(k) is the first synergistic marker given by the 
following formula.
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The upper bound is elaborated by the following 
inequality.
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where s2(k) is the second synergistic marker given by the 
following formula.

( ) ( ) ( )( )
2' ' 2

2
1 1

m m

i i
i i

s k z k z k
= =

 = − 
 
∑ ∑  [10]

The number of covariates in the ordered list to be 
included for generating the markers can be estimated 
by machine learning. If SVM is used, the support vector 
classifier (SVC) is trained with the inputs Sm'(k) = [s1(k), 

{A,B} C D E

0.875513 0.761413 0.704578 0.635384

0.875513 0.623233 0.620385 0.50633

C 1.384646 0 0.637049 0.787873

D 1.324963 0.637049 0 0.477486

E 1.141714 0.787873 0.477486 0

{A,B,C} D E

1.636926 0.704578 0.635384

1.498746 0.620385 0.50633

1.384646 0.637049 0.787873

D 1.962012 0 0.477486

E 1.929587 0.477486 0

I II

Figure 2 Covariate sorting process. (I) Covariates A and B are selected with a maximum difference, 0.8755, and merged to form list L and 
the first column is re-calculated; (II) covariate C joins list L with a maximum difference, 0.7614, and the first column is re-calculated.
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s2(k)]T generated by m' covariates and the output given by a 
score, ym'(k), and its estimate of the binary treatment option. 
The trained classifier is represented by,

( ) ( ) ( )( )' ' ',m i SV i m my k S i S k bα∈= Φ +∑  [11]

where SV is a set of indices of support vectors, αi is the 
coefficient corresponding to the ith support vector, Sm'(i), 
and b is a constant. The kernel, Φ, can be represented by 
a nonlinear function, such as radial basis function (RBF), 
polynomial, and sigmoid function. The output score, ym'(k), 
is evaluated against the original treatment option through 
the receiver operating characteristics (ROC) analysis. 

For each m' increasing from 2 to m, the area under the 
ROC curve (AUROC) is recorded as the performance of the 
SVC, denoted by A(m'). The optimal number of covariates, 
M, and thus the corresponding synergistic markers, s1(k) 
and s2(k), are identified by the highest A(m'), i.e., A(M). The 
implementation of the iterative procedure is illustrated in 
Figure 3.

Statistical analysis

ROC analysis was performed to estimate the AUROC 
as the probability that the model ranks a random 
treatment case more highly than a random control case. 
The propensity score is defined as the probability of an 
individual being treated (or not being treated) in condition 
to covariate values. Logistic regression was used to estimate 
the conditional probability.

Results

The public dataset ‘non-small cell lung cancer (NSCLC) 
Radiogenomics’ was derived from Stanford University 
School of Medicine and Palo Alto Veterans Affairs 
Healthcare System (8), with 186 NSCLC subjects’ RNA 
sequencing data and thus gene expression data, obtained 
from surgically excised tumor samples. Subjects were 
recruited between April 7th, 2008, and September 15th, 
2012, and all were in the early stage of NSCLC. Treatment 
option, i.e., adjuvant therapy or not, was included for 
analysis. Platinum-doublet chemotherapy represents 
standard adjuvant treatment for early-stage resected 
NSCLC. In clinical trials, adjuvant epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitors demonstrated 
prolonged disease-free survival (DFS) and comparable 
clinical effectiveness in EGFR-mutated NSCLC patients 
(9). After data pre-processing, 195 genes’ expression levels 
representing the covariates for each case were extracted 
from the dataset. The synergistic markers were generated 
from the training set of 166 cases and evaluated by the test 
set of 20 cases.

The association levels of 18,915 unique covariate 
pairs were computed for each of the treatment and non-
treatment groups. The distributions of association levels are 
shown and compared in Figure 4A. The sum of association 
levels of the treatment group is higher than that of the non-
treatment group. The treatment group is thus defined as 
group H and non-treatment group, group L. The covariate 
pair, (‘ZNF217’, ‘ERCC3’), gave the highest difference 

ROC curve

AUROC

Number of covariates

z1, ..., zM, ..., zm

z1, ..., zM

z1, z2

z1

Synergistic 
markers,  
s1 and s2

Support 
vector 
machine

Figure 3 Implementation of iterative procedure for obtaining the optimal number of covariates, M, constituting the synergistic markers. 
ROC, receiver operating characteristics; AUROC, area under ROC curve.
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Figure 4 Association levels of covariates. (A) Distributions across all possible covariate pairs; (B) trends of cumulative association level of 
groups H and L and their difference; (C) trends of sample means of synergistic markers s1 and s2, and cumulative association level of group H; 
(D) trends of sample means of synergistic markers s1 and s2, and cumulative association level of group L; (E) sample means of s1; (F) sample 
means of s2.

in association level between groups H and L, CH-CL. The 
ordered list was initialized by this pair. The subsequent 
covariates were added to the list one by one according to 
their cumulative association levels. Figure 4B shows the 
increasing trends of cumulative association level of groups 
H and L and their difference when the number of covariates 
in the ordered list increases.

As shown in Figure 4C and Figure 4D, the sample means 
of the synergistic markers z1 and z2 serve as the lower and 
upper bounds of the cumulative association level of their 

corresponding groups for any number of covariates in 
the ordered list. It is shown in Figure 4E that the sample 
mean of z1 in group H is higher than in group L and the 
difference increases with the number of covariates in the 
ordered list. The same observation is shown in Figure 4F.

SVC was trained with the synergistic markers, s1 and s2, 
as input and the treatment option as target output. RBF was 
used as kernel. For each covariate number, AUROC was 
computed to evaluate the performance of SVC on training 
data. In Figure 5A, the AUROC is plotted against the 
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number of covariates, which were used for generating the 
synergistic markers. It was shown that the AUROC attained 
the maximum, 0.80, when six covariates in the ordered list 
was used to generate the synergistic markers. The genes, 
ZNF217, ERCC3, PMS1, PIK3CB, BARD1, and MAPK1, 
were selected where their expression levels represent the six 
covariates. 

Using training and test sets, the ROC curves of the 

trained SVC with synergistic markers based on 6 covariates 
were plotted in Figure 5B and Figure 5C respectively. The 
test performance attained 0.78, which was close to the 
training performance.

The python module, “pymatch” (https://github.com/
benmiroglio/pymatch), was used to assess the propensity of 
covariates on the actual treatment option and compare with 
that on the SVC prediction. The propensity scores were 
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Figure 5 (A) The plot of AUROC against the number of covariates; (B,C) ROC curves of SVC using synergistic markers on training and 
test data; (D,E) propensity score distributions of the original treatment option and its SVC estimate. ROC, receiver operating characteristics; 
AUROC, area under ROC curve; SVC, support vector classifier.

https://github.com/benmiroglio/pymatch
https://github.com/benmiroglio/pymatch
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computed based on these six covariates in the ordered list 
to avoid overfitting of regression model. The distributions 
of propensity scores were compared between treatment and 
non-treatment groups based on the actual treatment option 
and the predicted treatment in Figure 5D and Figure 5E  
respectively. A significant difference in median propensity 
score between treatment and non-treatment groups was 
found on the actual treatment option (P<0.05), but not on 
that predicted by the synergistic markers (P>0.05).

Discussion

In developing outcome prediction model, the clinical 
information, markers, features, patient demographics and 
treatment option constitute the model covariates and the 
clinical outcome represents the target for training, test and 
implementing the model. The distributions of covariates 
would largely deviate between the treatment and control 
groups and therefore the model will generate biased 
prediction results if such propensity is left uncorrected.

This work proposes the synergistic markers that 
predict the treatment option based on the inter-covariate 
association level, instead of the magnitudes of individual 
covariates. Such prediction can get rid of the propensity to 
certain covariates influencing the clinical decision. Non-
parametric method is used to generate the synergistic 
markers based on a relatively high-dimensional but small 
dataset (e.g., covariates >50, N<200). It avoids the curse 
of dimensionality and overfitting problem caused by 
parametric model. In the training process, the original 
treatment option is replaced by the synergistic markers’ 
estimate that can impose the genuine treatment effect in the 
outcome prediction model (10). 

One of the key features of the algorithm is the 
generation of an order list of covariates, through which the 
difference in inter-covariate association levels between two 
groups could be prioritized and becomes monotonically 
increasing. As demonstrated by fitting the public data, the 
two synergistic markers form the lower and upper bounds 
of the inter-covariate association level in both treatment 
and control groups. For each synergistic marker, its value 
of treatment group is always higher than that of control 
group. With such discriminating ability, machine learning 
was applied to train a classifier based on the synergistic 
markers as input and the treatment option as the target. 
The distributions of propensity score of the predicted 
treatment option to the selected covariates demonstrated 
no significant difference between two groups. In contrast, 

the distributions for the original treatment option showed 
significant deviation. The results demonstrated that the 
treatment option predicted by the synergistic markers can 
reduce or eliminate the propensity of the actual treatment 
option to covariates.

In survival analysis, KM curves for two or more 
treatment levels are plotted and compared by the log-rank 
test. Two treatment levels may be represented by adjuvant 
therapy and POB (i.e., no adjuvant therapy). The outcome 
may be survival or disease relapse time. The significant 
difference in the clinical outcome between the treatment 
levels can be examined by the survival analysis. For example, 
it was found by Salazar et al. that NSCLC patients who 
received adjuvant chemotherapy later had a significantly 
better survival when compared with patients treated with 
surgery alone (6). Such analysis cannot quantify the change 
in survival or relapse time subject to the treatment option, 
and therefore cannot indicate the individual’s benefit. In 
contrast, the proposed synergistic markers can be presented 
as continuous covariates in an outcome prediction model. 
As such, the model could quantify the patient benefit subject 
to the treatment option, instead of indicating the significant 
difference only.

Test of the algorithm on different clinical datasets is 
continuing. Future work is to look for large dataset with 
relatively balanced ratio between treatment and non-
treatment group sizes. Oversampling could be further 
enhanced so that the prediction of treatment option is robust 
on the data with highly imbalanced group sizes.

Conclusions

Synergistic markers are proposed to generate an anti-
propensity estimate of treatment option using the 
supervised learning. The outcome prediction model 
incorporating such anti-propensity estimate can personalize 
the patient benefit subject to the treatment option.
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