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Background and Objective: Mastectomy is a primary treatment for breast cancer patients, and both 
autologous and implant-based reconstructive techniques have shown excellent results. In recent years, 
advancements in bioengineering have led to a proliferation of innovative approaches to breast reconstruction. 
This article comprehensively explores the promising perspectives offered by bioengineering and tissue 
engineering in the field of breast reconstruction.
Methods: A literature review was conducted between April and June 2023 on PubMed and Google 
Scholar Databases. All English and French articles related to bioengineering applied to the field of breast 
reconstruction were included. We used the Evidence-Based Veterinary Medicine Association (EBVM) 
Toolkit 14 checklist for narrative reviews as a quality assurance measure and the Scale for the Assessment of 
Narrative Review Articles (SANRA) tool to self-assess our methodology.
Key Content and Findings: Over 130 references related to breast bioengineering were included. The 
analysis revealed four key applications: enhancing the quality of the skin envelope, improving the viability 
of fat grafting, creating breast shape and volume via bio-printing, and optimizing nipple reconstruction 
through engineering techniques. The primary identified approaches revolved around establishing structural 
support and enhancing cellular viability. Structural techniques predominantly involved the implementation 
of 3D printed, decellularized, or biocompatible material scaffolds. Meanwhile, promoting cellular content 
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Introduction

Background

Breast cancer is a significant health concern among women in 
the US, with over 280,000 new diagnoses in 2022 (1). Surgery 
is the most common treatment approach (2). Mastectomy, 
which involves removing the entire breast tissue, is a standard 
component of treatment for many patients with breast 
cancer. In contrast, nipple-sparing mastectomy (NSM) is a 
surgical technique that involves removing the breast tissue 
while sparing the nipple and areola complex (3). NSM is not 
considered a safe option for all breast cancer subtypes and 
cases, particularly those with multifocal tumors or hormone 
receptor-negative/ERBB2-positive subtypes (4,5). In such 
cases, total mastectomy remains the gold standard therapy. 
For both these approaches, reconstruction is an option 
proposed by the plastic surgeon and is chosen by up to 40% 
of the patients (2). Adjuvant radiotherapy and chemotherapy 
can obstruct reconstructive surgery by damaging the 
remaining soft tissues. Different techniques are clinically 
used to achieve total breast reconstruction while facing its 
challenges. 

Implant-based techniques consist in reproducing the 
breast volume by using a silicon implant. In contrast, 
autologous techniques recreate the breast shape using 
various flaps (free or pedicled, fascio-cutaneous or 
musculocutaneous flaps) or exclusive fat grafting. Implant-
based and autologous techniques can also be combined. 
Each of these techniques has advantages and downsides: 
Implant-based reconstruction following mastectomy is easy 
to perform, with moderate technicity (no fine dissection or 
microsurgery) and short operative time but is limited by 
the poor skin laxity and the long-term cosmetic outcomes 
due to capsule contracture (6). Moreover, multiple surgeries 
are needed due to the limited lifetime of current silicon 
implants (7). In contrast, autologous flaps provide a natural 

result that can be stable in time and avoid any foreign 
materials with all linked disadvantages (8). However, it 
requires a high degree of technical skills for the flap and 
pedicle dissection, longer surgeries, and may still need 
improvement despite recent microsurgery advances. Nipple-
areolar complex (NAC) reconstruction has improved with 
the advent of 3D tattooing, but local flap techniques still 
need to provide a long-term projection of the nipple (9,10). 
Overall, all of these techniques still fail in recreating an 
identical breast and fully restoring the femininity of affected 
patients. 

Rationale and knowledge gap

The importance of this article for the readership lies in 
its role in highlighting the evolution and potential of 
tissue engineering in the field of breast reconstruction. 
Tissue engineering, a concept introduced by Joseph 
Vacanti and Robert Langer in the late 1980s (11), offers 
a multidisciplinary approach that combines engineering, 
biology, and medicine to develop biological substitutes for 
damaged tissues and organs. While the initial applications 
of tissue engineering focused on cartilage regeneration 
(12,13), the rapid interest of breast surgeons in the unique 
properties of acellular dermal matrices (ADMs) and 
fat tissue processing opened up new avenues in breast 
reconstruction. Over the past two decades, numerous 
innovative concepts and applications of tissue and 
bioengineering have emerged in this field. By exploring 
these advancements, this article aims to provide valuable 
insights to readers, including researchers, clinicians, and 
medical professionals involved in breast reconstruction. It 
serves as a knowledge resource, showcasing the progress 
made in tissue engineering techniques and their potential 
impact on improving outcomes in breast reconstruction 
procedures.

15

trophicity primarily focused on harnessing the regenerative potential of adipose-derived stem cells (ADSCs) 
and increasing the tissue’s survivability and cell trophicity. 
Conclusions: Tissue and bioengineering hold immense promise in the field of breast reconstruction, 
offering a diverse array of approaches. By combining existing techniques with novel advancements, they have 
the potential to significantly enhance the therapeutic options available to plastic and reconstructive surgeons.
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Table 1 Search strategy summary

Items Specification

Date of last search June 6th, 2023

Databases and other sources searched PubMed, Google Scholar

Search terms used (I) Breast reconstruction AND Skin AND (Tissue Engineering OR Dermal Matri*)

(II) Engineering AND (Fat graft* OR Lipo*) AND Breast reconstruction

(III) Engineering AND Breast reconstruction AND (Printing OR Scaffold)

(IV) Engineering AND Nipple reconstruction

Timeframe Published after 2000

Inclusion and exclusion criteria Inclusion criteria: articles reporting on tissue engineering or bioengineering-based techniques for 
breast reconstruction

Exclusion criteria: language other than English or French

Selection process Selection was independently conducted by the two first authors (Berkane Y and Oubari H), and 
consensus was obtained by the senior author (Lellouch AG) if needed

Objective

This work aims to review all the different applications of 
tissue and bioengineering in breast reconstruction and 
describe how surgeons can use it to improve the outcomes 
of these complex surgeries. We will explain the various 
techniques for each purpose: improving the skin envelope, 
increasing fat grafting trophicity, enhancing the breast 
shape and volume using 3D printing, and upgrading 
refinements through NAC reconstruction. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-23-1724/rc).

Methods

We performed a literature search on PubMed and Google 
Scholar Databases between April and June 2023. The search 
strategy (Table 1) excluded no species to include future 
directions. Articles published before 2000 and articles in 
languages other than English and French were excluded. To 
allow for a better focus on each sub-objective, we performed 
different searches for each purpose, using the following 
combination of keywords and Boolean operators: 

(I) Breast reconstruction AND Skin AND (Tissue 
Engineering OR Dermal Matri*); 

(II) Engineering AND (Fat graft* OR Lipo*) AND 
Breast reconstruction;

(III) Engineering AND Breast reconstruction AND 

(Printing OR Scaffold);
(IV) Engineering AND Nipple reconstruction.
This article used the Evidence-Based Veterinary 

Medicine Association (EBVM) Toolkit 14 checklist 
for narrative reviews as a quality assurance measure. 
Additionally, we used the Scale for the Assessment of 
Narrative Review Articles (SANRA) tool [2019] to self-
assess our methodology (14). It is noted that these guidelines 
were not used to assess the quality of the included articles 
but rather to ensure the robustness and credibility of our 
research process.

Literature review of tissue- and bio-engineering 
approaches in breast reconstruction 

Breast reconstruction aims to restore volume, texture, 
shape, and symmetry. Plastic surgeons use various techniques 
to achieve this, and engineering-based approaches have 
allowed significant advances (Figure 1).

Improving the quality (thickness and elasticity) of the skin 
envelope

ADMs have been extensively used in breast reconstruction 
for several decades. ADMs are skin matrices processed to 
remove all cells and antigenic elements, with a threshold 
of less than 50 ng/mg of tissue of double-stranded  
DNA (15). These matrices can be sourced from humans 
or animals (16-18) (Figure 2). They consist of collagen, 

https://atm.amegroups.com/article/view/10.21037/atm-23-1724/rc
https://atm.amegroups.com/article/view/10.21037/atm-23-1724/rc
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Figure 1 Tissue- and bio-engineering approaches applied to breast reconstruction. The objectives are to improve the skin envelope, shape, 
and volume retention through enhanced fat grafting and recipient scaffold and achieve long-term nipple-areolar complex reconstruction. 
AD-MSC, adipose-derived mesenchymal stem cells; PRP, platelet-rich plasma; SVF, stromal vascular fraction.
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Figure 2 Acellular dermal matrices can be obtained from porcine, bovine, or human skin by de-epithelialization, defatting, and 
decellularization of the dermis. 
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elastic fibers, and other components of the extracellular 
matrix, such as fibronectin, laminin, and hyaluronic acid, 
which provide support for the recipient patient’s cells. It 
has been demonstrated that acellular matrices undergo 
neo-vascularization and recellularization by host cells 
(19-21). In breast reconstruction, ADMs are used to 
enhance skin coverage, particularly after the placement of 
a silicone implant or tissue expander (4,22). Another goal 
is to reduce the risk of capsule contracture, a significant 
complication of implant-based surgeries, leading to a 
substantial decrease in the long-term cosmetic result (23). 
Some authors have described the risks associated with 
using ADMs, including infection rates, skin blisters, and 
overall complications (22,24). Some concerns were initially 
raised related to red breast syndromes found to be linked 
to ADMs by reconstructive surgeons (25,26). However, 
the probable bacterial origin of this syndrome has led to 
solutions improving the outcomes (27-29). As an interesting 
alternative, Gentile et al. described the use of titanium-
coated polypropylene mesh in conservative mastectomies 
and pre-pectoral breast reconstruction (29). Their results 
showed better cosmetic outcomes when compared with 
tissue-expander-based techniques using the Breast-Q form. 

A retrospective review conducted over ten years at the 
Massachusetts General Hospital included more than 3,000 
patients undergoing breast reconstruction (4). One aspect 
of their analysis compared the outcomes of pre-pectoral 
implant reconstruction with ADM-enhanced coverage 
versus subpectoral techniques, where the implant is placed 
partially under the muscle. The study found a lower rate 
of nipple necrosis in the ADM group, with similar rates of 
infection, explantation, seroma, and overall reconstruction 
failure compared to the subpectoral group. Additionally, 
when comparing ADMs with synthetic mesh products, 
the study found higher complication rates with synthetic 
mesh. This highlights the advantages of using tissue-
engineered biocompatible solutions instead of synthetic 
products. A study by Graziano et al. (30), based on the 
American Cancer Society database, focused on national 
outcomes of prepectoral breast reconstruction. They found 
that most (55%) of direct-to-implant reconstructions 
utilized ADM. Despite a slightly higher reoperation rate, 
the study reported a lower infection rate in the ADM 
cohort. However, regression analysis showed that caution 
should be exercised when using these scaffolds in patients 
with insulin diabetes, obesity, or active smokers. The 
significant limitations of this study were its retrospective 
design and short follow-up period of 30 days. The CARE 

trial (31), supported by Allergan (AbbVie, Chicago, IL, 
USA), is one of the first prospective studies with long-
term follow-up. It revealed a twofold decrease in capsular 
contracture rates with ADM at the five-year mark and 
lower rates of implant malposition. These results were 
consistent in revision surgeries, highlighting the ability of 
ADMs to improve tissue health and provide stable, long-
term outcomes. Forsberg et al. (32), followed by Ibrahim 
et al. (33) performed two interesting studies assessing the 
aesthetic outcome following tissue expander/implant-
based breast reconstruction with and without ADMs. 
They found improvement in the overall aesthetic result, 
as well as in breast contour, implant placement, lower pole 
projection, and inframammary fold definition, as evaluated 
by five blinded plastic surgeons. The recent BROWSE 
multicenter study (34) carried out over a decade brought 
more evidence supporting improved aesthetic outcomes 
and reduced capsular contracture with prepectoral implant 
with ADM reconstruction compared to submuscular. The 
meticulous methodology, using the strongly validated 
BREAST-Q questionnaire (35), provides solid evidence 
supporting ADMs. Other authors have also supported these 
findings, emphasizing the advantages of ADMs in terms of 
safety (31,36), objective aesthetic outcomes (33), prevention 
of capsule contracture (31,33), and postoperative pain 
reduction.

Furthermore, the development of ADMs has facilitated 
the rise of prepectoral reconstructions, reducing the 
morbidity associated with subpectoral implant surgeries 
while maintaining safety and potentially improving 
aesthetic outcomes (32). Finally, while ADMs do add 
certain costs, de Blacam et al. (37) showed that single-stage 
implant procedures with ADMs are less expensive than 
tissue-expander-based approaches. On the other hand, as 
demonstrated by Bank et al. (38) in 2013, the use of ADM 
reduces the number of visits required for reconstructions 
with high-volume implants. A cost-effectiveness analysis 
by Jensen et al. demonstrated a positive impact of its use in 
breast reconstruction, which was confirmed by Krishnan  
et al. (39) found an increase in quality-adjusted life years. 

Overall, ADMs have shown solid evidence as an optimal 
support for implant-based reconstructions, with excellent 
safety. 

Improving fat grafting trophicity 

Autologous fat grafting has several beneficial characteristics, 
including lack of immunogenicity, safe and simple procedure 
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Figure 3 SVF-enriched fat transfer process. AD-MSC, adipose-derived mesenchymal stem cells; SVF, stromal vascular fraction.

with low complication rate and positive results, low cost, 
and easy usability (40-43). For this reason, fat grafting 
has become a standard of care in breast reconstruction for 
patients who do not wish to go through a complex surgery 
such as flap reconstruction or are reluctant to the idea of a 
foreign material such as a breast implant. Fat grafting has 
shown excellent natural cosmetic results when compared 
with implant-based breast lifting (41,42). If implant-based 
solutions provide immediate results with long-term volume 
preservation, some authors emphasized more natural 
aesthetic results with fat transfer (43). However, the volume 
loss after fat grafting is a significant issue, with a 30% to 
40% loss of the initially grafted volume, according to the 
authors (44,45). Different solutions to improve fat survival 
have emerged thanks to recent bioengineering advances.

The first approach consists of platelet-rich plasma (PRP) 
enrichment. Some studies have suggested the addition of 
autologous PRP to the lipoaspirate. PRP is obtained from 
peripheral vein blood placed in sodium citrate anticoagulant 
and centrifugated (46,47). This process separates the red 
blood cells from the plasma, containing most (>90%) 
platelets. The obtained PRP is a natural reservoir of 
growth factors stimulating tissue repair and regeneration. 
It can be directly added to the lipoaspirate without any 
preconditioning, offering the advantage of a simple and cost-
effective method. Animal models (48-51) first showed that 
the fat graft survival rate was significantly increased by adding 

PRP. Clinical studies start confirming these results: Gentile 
et al. (52) showed 69% graft retention when combining fat 
with PRP, which was significantly higher than fat grafting 
alone (39%) in their series of 50 patients. Several studies have 
been conducted on face treatment using fat transfer, showing 
similarly positive results (53-55). Finally, using endothelial 
cells has shown excellent results in preclinical models for 
enhancing fat grafting survivability (56).

A second approach uses the stromal vascular fraction 
(SVF) and adipose-derived mesenchymal stromal (or stem) 
cells (Figure 3). The initial isolated fat tissue is composed 
of adipocytes and stromal vascular fraction cells, which act 
as a cellular matrix and are composed of adipose stromal 
cells, preadipocytes, fibroblasts, vascular endothelial 
cells, muscle cells, pericytes, and a variety of immune  
cells (57). Most fat grafts’ regenerative capacity is attributed 
to adipose-derived mesenchymal stem cells (AD-MSCs) 
in SVF (58). Several studies in the past decade have shown 
that stromal vascular fraction cells and adipose stem 
cells improve fat graft survival through both angiogenic 
properties and growth factor production (59-63). Recent 
biotechnological developments offer the possibility to 
engineer the fat and enrich it with SVF (61). Several 
protocols exist aiming to isolate this fraction (62,63). 
The standard enzymatic method consists of digesting the 
lipoaspirate by a collagenase, followed by centrifugation 
to obtain a pellet at the bottom of the tube, containing the 
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high-density adipose tissue (59). Other methods include 
spectroscopy or mechanical nano-fat techniques (oily 
liquid obtained after several steps of emulsification and 
filtration) (63-66). In vitro analyses emphasized filtration 
as a highly efficient mechanical technique for preserving 
the cell structures, while in vivo evidence seems to provide 
more promising results with enzymatic digestion (63,65). 
A prospective study compared the outcomes between 
several commercialized systems and found significant 
improvement with both enzymatic and mechanical-based 
systems (66). Enrichment with SVF, therefore, improves 
fat grafting by providing a bioengineered scaffold through 
cellular suspensions. Some studies have also suggested that 
SVF can lead to endothelial cell growth both in vitro and 
in vivo, enhancing the revascularization of fat grafts (67). 
However, to date, no formal proof of the differentiation 
of AD-MSCs into endothelial cells has been described, 
and endothelial progenitors contained in the SVF could 
be a likely explanation. One group more specifically 
tested human mononuclear cells containing endothelial 
progenitor cells and demonstrated increased fat graft 
survival in a rodent model (68). Overall, a safer approach is 
to consider the angiogenic potential of SVF cells as a whole 
through endothelial progenitors, AD-MSCs paracrine 
angiogenic activity, and potential AD-MSCs differentiation 
into endothelial cells. Further studies could focus more 
specifically on using human endothelial cells to enhance fat 
grafting survivability. 

Clinical results with these techniques have already shown 
improved soft tissue volume maintenance and skin quality 
for scar repair and wound healing (64). In breast cancer 
reconstruction, SVF-enhanced autologous fat grafts present 
significantly better postoperative outcomes and contour 
maintenance at 1-year follow-up (58). However, the potential 
for an increased risk of breast cancer after injecting stem cells 
lacked adequate evidence for a long time. Mazur et al. (69)  
compared patients undergoing breast augmentation using 
SVF-enhanced lipofilling following a mastectomy or 
lumpectomy with patients not undergoing reconstruction. 
They matched both groups and showed no statistically 
significant difference in cancer recurrence after three years. 
The recurrence rate of the SVF group was even slightly 
lower (3.7% versus 4.13%) than the control group. Similarly, 
Calabrese et al. (70) prospectively compared conventional 
fat transfer and SVF-enhanced fat transfer in breast cancer 
patients. They had 40 to 60 patients in each of the fat 
grafting, SVF-enhanced fat grafting, and no reconstruction 
(control) groups, and the follow-up was 5 years. Again, they 

showed no difference between groups and a slightly lower 
recurrence in the SVF-enhanced group than in conventional 
fat grafting. Bielli et al. greatly reviewed the literature on 
this topic (71), highlighting the safety of adipose-derived 
stromal cell (ASC) and SVF enrichment of fat grafting with 
no significant change in the prognosis. They also performed 
a systematic review confirming these findings by emphasizing 
autologous fat grafting safety with no increased local-regional 
recurrences and no decreased disease-free survival (72). They 
also brought to light the poor amount of Level 1 evidence 
studies, such as international multicenter randomized studies, 
which should be promoted. In addition, it has been shown 
that magnetic resonance imaging allows for post-lipofilling 
breast monitoring, with experienced radiologists being able 
to distinguish malignant alterations from fat-related changes 
if patients are checked regularly (73). 

An innovative study conducted in Italy in 2012 (74) 
compared 3D volume and contour maintenance following 
SVF- and PRP-enhanced fat grafting, with classic fat 
transfer as a control. Interestingly, they showed a similar 
enhancement of fat survival with 63% and 69% of volume 
maintenance after 1 year with SVF and PRP, respectively. 

Another angle to approach fat grafting survivability 
enhancement is towards using bio-protectant molecules. 
William Austen Jr. and his team published in 2011 
impressive results in a preclinical study while testing several 
poloxamer molecules on fat grafting (75). Poloxamers 
are triblock copolymers composed of polyoxyethylene 
(PEO) and polyoxypropylene (PPO) segments in different 
proportions. One of the poloxamers, specifically poloxamer 
188 (P188), is considered highly promising for plastic 
surgery due to its ability to repair cell membranes and other 
beneficial biological characteristics (76-78). The initial 
hypothesis was that it is possible to improve cell survival by 
repairing membrane damage created during fat harvesting, 
reducing apoptosis in the days following grafting. It has 
been previously demonstrated that volume maintenance 
was improved by gentle manipulation of the fat (79). This 
team from the Massachusetts General Hospital showed 
that grafts treated with P188 exhibited a 50 percent 
decrease in apoptosis compared to the saline-treated 
controls and achieved a remarkable 72 percent weight-
based survival after 6 weeks. These results are confirmed 
by another study (80), assessing DNA contents using 
PicoGreen analyses, which showed higher fat survivability 
with P188. These findings led to the development of fat-
processing systems (Vitality, SIENTRA, Irvine, CA, USA), 
with ongoing multicenter studies to clinically confirm 



Berkane et al. Breast reconstruction bioengineeringPage 8 of 18

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2024;12(1):15 | https://dx.doi.org/10.21037/atm-23-1724

these excellent results. Their preliminary results in the  
13 enrolled centers show more than 86% retention after  
6 months (81) needs to be confirmed at further time points. 
Another team (82,83) used this P188-based system to assess 
fat concentration and showed higher adipose volume (89%) 
when compared with other systems using a conventional 
Ringer rinsing solution. This approach could lead to 
better results in volume retention following fat grafting, 
eventually avoiding implant-based reconstructions and their 
complications. 

It is worth noting that the legislative regulations 
need to evolve accordingly to some of these advances. 
Raposio and Ciliberti (83) highlighted that, according to 
the European Medicines Agency (EMA), ASCs are not 
classified as advanced therapy medicinal products if they 
have not undergone substantial manipulation, and their 
mode of action is considered homologous to the donor fat 
tissue, contributing to tissue renewal and turnover in the 
subcutaneous tissue. In contrast, substantial manipulations, 
such as collagenase digestion and cell culturing, are 
not allowed for ASCs to maintain their non-advanced 
therapy status. To date, only non-manipulated ASCs can 
be transplanted into the same anatomical or histological 
environment to be considered homologous. It is clear 
that ongoing studies need to show strong evidence before 
leading to changes in these regulations. 

Building breast volume and shape through bio-printing

Breast volume and shape restoration is a critical stage in 
the breast reconstruction process. Traditionally, this is 
accomplished using silicone implants or autologous tissue 
transfers, either free or pedicled flaps, or fat grafting. 
Implant-based reconstructions offer several advantages, 
including immediate results, relatively simpler procedures, 
and shorter recovery times for patients; autologous flaps 
provide the opportunity to reconstruct both the soft 
tissue envelope and the breast volume, often resulting 
in superior long-term outcomes compared to silicone 
implants (84,85). However, both techniques have inherent 
drawbacks, which create a need to develop new perspectives 
in breast reconstruction. Fat grafting can recreate breast 
mechanical properties that closely resemble those of a 
natural breast. Nevertheless, there are instances where fat 
grafting alone may be insufficient, leading to inadequate 
volume or inadequate projection of the reconstructed breast 
mound due to the absence of three-dimensional structural 
support and resorption (86). Tissue engineering teams have 

tried to address this issue. This led to the development of 
3D-printed scaffolds that could potentially provide the 
needed structural support and avoid resorption. 

Tissue printing is an old concept. The first 3D patent was 
granted in 1986, and the first description of bioprinting was 
in 2003 (87). Later, in 2011, Melchels et al. introduced 3D 
printing in breast reconstruction (88). These groundbreaking 
works paved the way for developing 3D bio-printed implants 
in breast surgery. This innovative approach holds promise in 
combining the benefits of both implant-based reconstruction 
and autologous reconstruction. An advantage of 3D printing is 
the potential to tailor-print a resorbable implant to match the 
size of a defect, in the particular case of breast-conservative 
tumor removal. Magnetic resonance imaging can indeed 
precisely match the implant to the expected defect before 
surgery, enabling genuinely personalized manufacturing (89). 
Additionally, the versatility of materials available, including 
commonly used ones such as polycaprolactone (PCL), 
polylactic acid (PLA), and poly(lactic-co-glycolic acid) 
(PLGA), along with the potential to incorporate cell-loaded 
bio-inks, opens up limitless possibilities for implant creation.

The scaffold-guided approach aims to implant a 
scaffold that can effectively guide patient tissue ingrowth  
(Figure 4). While this approach shows promise, first-
generation implants have primarily shown the formation 
of fibrous tissue with an unnatural hard texture (90,91). 
However, creating a flexible structure and adding adipose-
derived stem cells (ADSCs) to the construct allowed for 
enhancing this process and improving the outcomes (92). 
Moreover, optimizing the placement of cells within the 
scaffold can further improve engraftment and leverage the 
structural possibilities offered by 3D printing, combined 
with the tissue regeneration properties of fat grafting. 
Chhaya et al. demonstrated that delayed fat grafting  
two weeks post-implantation promotes angiogenesis and 
adipose tissue regeneration, allowing for the generation of 
large volumes of adipose tissue in a preclinical model (93). 

Mohseni et al. refined this technique. They developed 
a modular construct comprising an external layer for 
structural support and internal content that enhances fat 
grafting (94). However, two main challenges are associated 
with this approach. The first is achieving proper scaffold 
vascularization to ensure successful fat engraftment. The 
second challenge involves effectively managing the scaffold’s 
resorption phase and addressing the construct’s transient 
properties, which should mimic native breast tissue (95,96). 
Alternative methods involving bio-regenerative fillers 
composed of collagen have been proposed as potential 
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Bio-printed 
scaffold

Neo-vascularization 
of the scaffold

Fat grafting on the 
vascularized scaffold

Enhanced fat survival 
leading to optimal 
shape and volume

Figure 4 Concept of 3D and 4D bio-printed scaffolds as a recipient structure for fat grafting, improving overall survival and volume and 
shape retention.

solutions (97). Bio regenerative filling may serve as an 
alternative to a complete scaffold, particularly in oncologic 
breast conservative surgery cases.

The concept of a resorbable 3D printed structure has 
also let to the development of tissue engineering chambers 
(TECs). Morrison et al. first clinically tested this concept 
in Australia in 2016 (98). Their TEC involved an acrylic, 
perforated dome-shaped chamber that creates a dead space 
in which a pedicled fat flap is placed. The rest of the cavity is 
progressively filled with a seroma, ultimately leading to flap 
hypertrophy, providing volume. One major drawback of this 
method is the unnatural appearance of the breast due to the 
non-resorbable implant that requires a follow-up procedure 
for removal. More recently, Lattice Medical (Loos, France) 
improved this aspect by developing a bio-absorbable implant 
[Mat(T)isse] that fully degrades within 12 months, allowing 
for a one-stage surgical protocol (99-101). This implant is 
currently undergoing a clinical trial in Europe and has so far 
shown promising results. Another brand (Bellaseno GmbH, 
Leipzig, Germany) is working on a similar project and has 
manufactured a resorbable scaffold (Senella PCL Breast 
Scaffold) made of PCL that degrades in 24 to 36 months. 
This scaffolding is intended for both breast augmentation 
and reconstruction (102).

The concept of 4D printing introduces a new level of 
complexity and opens exciting possibilities in manufacturing 
implants. With 4D printing, implants can have characteristics 
that evolve over time, adapting to the patient’s body’s 

mechanical, physical, or enzymatic constraints (103). This 
advancement allows for better control over the resorption 
of biomaterials, transforming it into an opportunity to shape 
and modify the implant’s properties as needed. While still 
in its early stages, 4D printing holds immense potential for 
expanding the range of possibilities in implant technology. 
Furthermore, 4D printing enables the inclusion of drugs 
on the scaffold, facilitating local delivery for long-lasting 
and controlled diffusion (104). This feature can be used to 
achieve antitumoral effects (105-108) and even prevent post-
operative complications such as thrombosis or infection (109).

Several authors have conducted research on animal models 
to explore the possibility of incorporating cells directly into 
3D-printed breast structures. For example, human umbilical 
vein endothelial cells (HUVECs) (110) and human adipose-
derived stromal cells (hADSCs) (111) have been investigated. 
Using bio-inks composed of hydrogels loaded with cells 
appears to be a promising approach, as it has demonstrated 
high cell survival rates (112). In a study by Sokol et al., 
primary human breast cells were successfully isolated and 
incorporated into a hydrogel, resulting in the regeneration 
of functional breast tissue (113). This tissue exhibited 
hormone responsiveness and was able to generate lipid 
droplets. Integrating cells directly into the bionic structure 
offers several advantages, such as accelerating adipose 
tissue regeneration and enhancing the adipose and vascular 
content of the reconstructed breast. However, current 
approaches have been restricted to animal testing. This 



Berkane et al. Breast reconstruction bioengineeringPage 10 of 18

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2024;12(1):15 | https://dx.doi.org/10.21037/atm-23-1724

limitation is partly due to potential concerns regarding the 
inclusion of cells in the bionic structure, as it may increase 
the risk of cancer recurrence. Before clinical applications 
can be implemented, it is crucial to assess the oncological 
safety of this approach, particularly for oncologic 
reconstruction (114).

NAC engineered reconstructions 

Nipple reconstruction is a crucial component of breast 
reconstruction, as it significantly influences patient 
satisfaction with the overall outcome (115). The natural 
appearance of the NAC is of utmost importance (116), 
with factors such as position, color, projection, and texture 
playing a significant role. While autologous techniques 
are commonly used for nipple reconstruction, they may 
not always meet patients’ specific needs in the long term 
(117-124). Surgeons have attempted various approaches to 
restore the NAC’s natural appearance, including 3D tattoos, 
autologous skin or mucosal grafts, and local flaps. However, 
the absence of a consensus on a gold standard technique 
among the multitude of autologous approaches underscores 
the necessity for further advancements in the field. Thus, 
a growing body of literature has focused on innovative 
strategies for reconstructing the NAC, offering promising 
advancements in achieving a natural and aesthetically 
pleasing outcome. This summary outlines the key trends in 
this field. 

Local flap nipple reconstruction is usually associated 
with a cartilage graft, including autologous (125), or 
banked costal cartilage (126), in order to improve the 
structural support of the nipple. However, these grafts 
often come with drawbacks such as donor site morbidity (if 
autologous) and resorption, which can lead to long-term 
nipple projection loss. To address these issues, biomaterials 
have been explored as potential solutions. Acellular dermal 
matrix (127-129), calcium hydroxyapatite (130,131), 
lyophilized allogenic costal cartilage (132), and biological 
collagen implants (133,134) have garnered significant 
interest as potential options in this regard. However, their 
cost and lack of long-term support are often perceived as 
limitations to their utilization. Injectables, increasingly 
favored by surgeons for their convenience in outpatient 
settings, have also been gaining popularity. Among them, 
hyaluronic acid (135,136), and biomaterials derived from 
bovine collagen (137) present exciting alternatives to retro-
areolar fat grafting.

Synthetic materials with adequate biocompatibility, such 

as silicone and polytetrafluoroethylene (PTFE) (138), have 
been explored for ready-to-use and long-lasting internal 
NAC prosthetics. Jankau et al. reported high complication 
rates with frequent (if not systematic) local necrosis and 
implant extrusion after experimenting with implantable 
silicone rods (139). This may be attributed to the 
heightened pressure exerted by the silicone rod on the flap 
used for breast reconstruction. FixNip NRI (FixNip LTD, 
Caesarea, Israel) is a silicone flexible Nipple reconstruction 
implant (NRI) approved for sale in Europe and currently 
under FDA review. Its internal Nitinol frame allows for a 
flexible yet reliable and long-lasting reconstruction of the 
NAC in a surgical-friendly manner (140). Although this 
implant also carries the risk of infection and extrusion, it 
has not proven to be problematic.

Another notable trend is the use of 3D printing 
technology. Several techniques already discussed in the 
previous section (3.3) can be applied to NAC engineering 
and imply either printing a resorbable scaffold or directly 
bio-printing cell-containing inks. The synergistic blend of 
scalability and production efficiency, combined with the 
inherent capacity to retain flexibility for customization, 
confers significant advantages when considering industrial 
production. Vernice et al.  described a 3D-printed 
PLA scaffold with an ovine decellularised infill (141), 
while Samadi et al. opted for a costal cartilage fill (142). 
Similarly, Dong et al. report using a 3D printed poly-4-
hydroxybutyrate (P4HB) that is a fully resorbable FDA-
cleared biomaterial to construct scaffolds filled with 
processed costal cartilage (143). With these techniques, 
nipple projection was maintained over time with natural 
biomechanics properties. In cell-containing bio-inks 
techniques, ADSCs offer the hypothetical possibility 
of combining the structural benefits of the 3D printed 
scaffold with the regenerative properties of the ADSCs. 
This theoretical advantage needs to be weighed against 
the inherent limitation of these constructs, as they lack 
cellular differentiations necessary for optimal structural 
function (144). An alternative approach could be using bio 
incubators to facilitate cell maturation and the subsequent 
implantation of differentiated tissue. However, regardless 
of the technique employed, autologous cell seeding into 
the scaffold proves to be a costly solution, and the resulting 
implant is not readily deployable, thereby limiting the 
practicality of this approach, according to certain authors.

With the advent of decellularization bioengineering 
techniques (143,144), exciting advancements have been 
made in developing NAC scaffolds for tissue regeneration. 
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Decellularization

C D

BA

Figure 5 Decellularization of porcine nipples. The native nipples were freshly harvested from Yucatan minipigs (A,C), and decellularization 
(B,D) was performed using our published protocol (145). (C,D) Light microscopy, hematoxylin and eosin staining, ×10.

These innovative technologies, such as ADMs, have 
been proven safe and are commercially available, finding 
widespread clinical applications. Numerous studies have 
demonstrated that acellular nipple scaffolds (ANS) are free 
from cellular antigens and effectively cleared of DNA (145), 
using the same threshold of 50 ng/mg of tissue, thereby 
minimizing the risk of rejection by the recipient’s immune 
system. Moreover, these scaffolds maintain the integrity and 
bioactivity of the extracellular matrix, enabling successful 
reseeding with cells (146,147). They have also shown the 
capacity to support host-mediated re-cellularization with 
the growth of epithelial cells, neo-vasculature, and even 
nerve ingrowth (148). While proof of concept has been 
achieved using non-human-primate-derived ANS (149), 
concerns regarding ethics, cost, and limited availability 
have prompted our team to explore porcine-originated 
scaffolds with promising results (Figure 5), either as a 
preclinical model or as a genuine source of ANS (145). Re-
cellularization with autologous cells can further enhance 
the outcomes of bioengineered nipple grafts. This approach 

allows for better control over scaffold contracture and 
facilitates quicker integration in the recipient, thereby 
achieving a fully tolerated and successful bioengineered 
nipple graft. Our team is actively investigating this exciting 
avenue to eventually achieve a perfect match between the 
scaffold and the recipient. 

Strengths and limitations 

Our article demonstrates strength in providing a broad 
and accessible insight into the current landscape and 
future prospects of tissue engineering applied to breast 
reconstruction. It discusses a range of techniques, 
from stem cells and scaffolds to 3D bioprinting, using 
a comprehensive, yet understandable style. However, 
the inherent limitations of the narrative review format 
are apparent, including potential bias due to its non-
systematic nature, and the absence of in-depth discussion 
of the different topics. Additionally, the speculations on 
future advancements, although intriguing, remain mostly 
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hypothetical due to the rapidly evolving nature of this field.

Conclusions 

Tissue and Bio- engineering represent a promising approach 
for breast reconstruction. These innovative approaches can 
eventually address multiple steps of the complex process of 
breast reconstruction. An asymmetrical evolution is certain, 
with some processes already in use while others are in the 
early stages of development. Combination with autologous 
techniques can help reach the expected results, which are a 
complete, precise and stable restoration of the reconstructed 
breast’s appearance, as well as its functional impact as a part 
of women’s femininity. 
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