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Background: Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which 

the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors 

includes five members that are required for normal T cell development and are implicated in leukemogenesis. The 

goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the 

T-ALL cells.

Methods: We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow 

cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human 

thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA 

levels or splicing or protein levels were similar to the normal patterns seen during human T cell development.

Results: Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient’s cells were unique 

and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression 

varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some 

patients’ cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA 

levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced 

protein levels of Ikaros and Aiolos.

Conclusions: Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent 

of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, 

we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of 

Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms.
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Introduction

Pediatric T cell acute lymphoblastic leukemia (T-ALL) is 
a heterogeneous disease in which the leukemic cells often 
resemble normal thymocyte populations. The phenotypic 
similarities between leukemic cells and normal thymocytes 
have led to the conclusion that patients might be classified 

according to the developmental stage that is most similar 
to the leukemic cells (1,2). For example, cells from some 
T-ALL cases lack TCRβ expression and are thought to be 
derived from early T cell precursors. During normal human 
T cell development, early T cell precursors are CD4−CD8− 
double negative (DN) thymocytes that express CD34. 
DN thymocytes can be divided into DN1, DN2, or DN3 
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cells, depending on their expression of CD38 and CD1a 
(3,4). During the DN stages, the cells commit to either 
the αβ or γδ T cell lineage (5,6). Cells from some T-ALL 
patients resemble uncommitted early T cell progenitors and 
likely emerge from the early DN stages. Cells from other 
patients express TCRγδ and resemble stages of γδ T cell 
development.

In other T-ALL cases, the leukemic cells express 
cytoplasmic TCRβ, but not surface CD3. During normal 
T cell development, cytoplasmic TCRβ+ cells are either 
immature single positive (ISP) CD4+ thymocytes or 
a subpopulation of CD4+CD8+ double positive (DP) 
thymocytes (7,8). ISP CD4+ thymocytes are a transition 
between the DN and DP stages (9). During the DP stage, 
thymocytes express TCRα, undergo positive or negative 
selection, and differentiate into mature single positive cells 
that can egress from the thymus and function as mature 
naive T cells.

There are conflicting data regarding the prognostic value 
of classifying pediatric T-ALL patients according to the 
phenotype of the leukemic cells. For example, some studies 
reported a poor prognosis for patients whose cells express 
either CD34 or surface TCR (10,11), while other studies 
found no differences in survival between groups (12,13). 
In this study, we used multi-parameter flow cytometry to 
demonstrate the degree of heterogeneity among T-ALL 
patients, perhaps explaining the challenges faced when 
attempting to correlate the phenotype of the leukemic cells 
with clinical outcomes.

Another parameter that might be used to categorize 
patients with T-ALL is the expression of Ikaros family 
members. The Ikaros family has been linked to T-ALL 
in mice (14-18) and humans (19-27) and consists of five 
highly homologous transcription factors: Ikaros, Helios, 
Aiolos, Eos, and Pegasus. Each family member has two 
zinc finger domains. The four N-terminal zinc fingers 
mediate DNA binding, and the two C-terminal zinc fingers 
are required for dimerization. Transcriptional activity 
requires dimerization and each family member is capable of 
dimerizing with each other family member (28-32). 

Adding complexity to the study of Ikaros is that some 
family members undergo alternative splicing that results in 
the deletion of one or more DNA binding zinc fingers. Loss 
of one or two zinc fingers can result in more promiscuous 
DNA binding, but deletion of three or more zinc fingers 
can create dominant negative isoforms that block the ability 
of other family members to bind DNA (28,30-34). Some 
reports indicate that alternative splicing is common in 

T-ALL while other reports find it to be rare (19-27,35).
We compared mRNA and protein levels of each Ikaros 

family member in normal human thymocytes and cells from 
pediatric T-ALL patients. We identified patterns of Ikaros 
family mRNA levels that transcend surface phenotypes, 
suggesting that the key elements in investigating 
mechanisms of leukemogenesis lie in the function of Ikaros 
family proteins or the signaling pathways that regulate 
Ikaros family transcription.

Methods

Human tissue samples

Human thymus samples were obtained from children  
(0–18 years) that underwent corrective surgery at Children’s 
Mercy Hospital (Kansas City, MO, USA) for congenital 
cardiac defects after obtaining parent or guardian consent. 
Tissue samples were obtained in compliance with the 
Institutional Review Boards at Children’s Mercy Hospital 
and the University of Kansas Medical Center.

Twenty-four blood or bone marrow samples were 
obtained from newly diagnosed pediatric T-ALL patients 
prior to the initiation of anti-cancer therapy. Samples 
from patients diagnosed at Children’s Mercy Hospital 
were collected after obtaining parent or guardian 
consent. Leukemic cells were enriched by labeling the 
cells with anti-CD7-PE antibody and positively selecting 
with magnetic beads conjugated to anti-PE antibody 
(BD Biosciences, San Jose, CA, USA). Other samples 
were obtained as frozen samples through the Children’s 
Oncology Group (NCI Protocol AALL12B11). Each 
sample was divided into aliquots for flow cytometric, 
mRNA, and protein analysis.

Phenotypic analysis of T-ALL samples

The anti-human antibodies anti-CD1a-PerCP-Cy5.5, 
anti-CD1a-PECy5, anti-CD3-APCCy7, anti-CD3-APC-
Alexa750, anti-CD4-Pacific Blue, anti-CD5-AF647, anti-
CD7-PE, anti-CD8-BV785, anti-CD8-FITC, anti-CD27-
HV500, anti-CD34-BV605, anti-CD34-PE, anti-CD34-
PECy7, and anti-CD38-AF700, anti-CD44-PECy7, anti-
CD45RO-PECy5, anti-CD69-BV650, anti-TCRγδ-FITC 
were purchased from Biolegend (San Diego, CA, USA). 
Samples were labeled with anti-CD1a, anti-CD3, anti-
CD4, anti-CD5, anti-CD7, anti-CD8, anti-CD34, anti-
CD38, and anti-TCRγδ antibodies. Most samples were also 
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labeled with anti-CD27, anti-CD44, anti-CD45RO, and 
anti-CD69. Data were acquired using a BD LSR II (BD 
Biosciences) and analyzed using BD FACSDiva software 
(BD Biosciences).

FACS-purification of human thymocytes

DN2,  DN3,  and  ISP thymocytes  were  obta ined 
by depleting total thymocytes with magnetic beads 
conjugated to anti-CD8 and anti-CD3 (BD Biosciences). 
Remaining cells were divided into the DN2 (CD3−

CD4−CD8−CD34+CD38+CD1a−) ,  DN3 (CD3−CD4−

CD8−CD34+CD38+CD1a+), and ISP (CD3−CD4+CD8−) 
populations using a FACSAria IIIu (BD Biosciences). 
For total DN or DP thymocytes, cells were labeled with 
anti-CD4 and anti-CD8 and CD4−CD8− or CD4+CD8+ 
thymocytes were FACS-purified.

Quantitative RT-PCR (qRT-PCR)

Total mRNA was isolated using the RNeasy Mini Kit or 
RNeasy Micro Kit (Qiagen, Valenica, CA, USA), converted 
to cDNA using the TaqMan® High Capacity RNA-to-
cDNA™ kit (Applied Biosystems, Foster City, CA, USA), 
and amplified using TaqMan® Gene Expression Assays: 
Ikaros, Hs00958473_m1; Helios, Hs00212361_m1; 
Aiolos, Hs00232635_m1; Eos, Hs00223842_m1; Pegasus, 
Hs00223846_m1; and GAPDH, Hs03929097_g1 (Applied 
Biosystems). qRT-PCR was performed using a 7500 Fast 
Real-Time PCR System (Applied Biosystems). Each sample 
was run in triplicate. For normal thymocytes, at least five 
biological replicates were performed for each subset and 
each replicate was performed in triplicate. mRNA levels 
of each Ikaros family member were calculated relative to 
GAPDH and statistical significance was determined using 
the Log2(fold change).

Western blot analysis

Cell lysates prepared from 4×105–5×105 cells were separated 
by SDS-PAGE, transferred to nitrocellulose, and probed 
with antibodies against Ikaros, Aiolos, or p38 MAPK (all 
purchased from Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA). Bands were visualized using horseradish 
peroxidase-conjugated secondary antibodies (Santa Cruz 
Biotechnology, Inc.) and Pierce™ ECL Western Blotting 
Substrate (Life Technologies, Grand Island, NY, USA), and 
detected using an ImageQuant LAS-4000 gel imager (GE 

Healthcare systems, Pittsburgh, PA, USA). 

Nested PCR

Total mRNA was reverse transcribed with AMV RT 
(Promega, Madison, WI, USA) before amplification with 
Taq DNA Polymerase (Fisher Scientific, Pittsburgh, PA, 
USA). Primary PCR reactions were performed using 
primers specific to the 5' UTR and 3' UTR (Table S1). The 
PCR products were re-amplified using primers that spanned 
all possible exon pairs. PCR products were separated on an 
agarose gel, visualized with ethidium bromide and analyzed 
using an ImageQuant LAS-4000 gel imager.

Statistics

For qRT-PCR data, statistics were performed using the one-
way ANOVA with a Tukey posthoc test, and significance 
was defined as P<0.05. For linear regression, whether the 
slope of the line was different than zero was determined and 
significance was defined as P<0.05. Statistical analysis was 
performed using GraphPad Prism (GraphPad Software, 
Inc., La Jolla, CA, USA).

Results

Cells from T-ALL patients with a CD3− DN phenotype

Multi-parameter flow cytometry was used to define the 
phenotypic characteristics of the cells from pediatric 
T-ALL patients (Figures 1,2,S1,S2). Cells from one patient 
(PATLGK) were mostly CD7− and were CD3−CD4−CD8−

CD34+CD1a− (Figure 1A), suggesting that they arose 
from an early developmental stage, possibly early thymic 
progenitors (36). However, these cells also expressed 
CD38, which is not typically observed until the DN2 
developmental stage (3,4).

Cells from five T-ALL patients were CD7+ and CD3−

CD4−CD8− (Figure 1B). In each of these five patients, the 
majority of the cells were CD38+CD1a−, but the expression 
of CD38 and CD1a varied slightly among the patients. 
For example, cells from patient PASIZR were CD38lo 
and resembled a DN1/DN2 transition state. By contrast, 
cells from patients PASIZW and PASKMA were CD1alo, 
consistent with a DN2/DN3 transition. Most CD3−CD4−

CD8− T-ALL cells were CD44hiCD27−CD45RO−, but had 
varying levels of CD5 and CD69 (Figure S1A,B). In normal 
human thymocytes, CD5 is expressed on almost all cells and 
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CD69 is not expressed until after cells express surface CD3 
(37-39). 

Pediatric T-ALL cells that lacked CD3, but expressed either 
CD4 or CD8

Six CD7+CD3− leukemia samples expressed varying levels 
of CD4 or CD8 (Figure 1C). We classified patient PAQAPZ 
as CD3− because the CD3− cells were CD8lo and were likely 
the leukemic cells while the CD3+ cells resembled normal 
peripheral T cells. Cells from three patients (PASTCF, 
PATHXN, and PAQYHW) were predominantly CD4+ and 
the CD8 levels ranged from negative to high, phenotypes 
consistent with the ISP CD4+ and DP developmental stages. 
Three patients (PASZFR, PATBBG, and PAQAPZ) were 
CD3−CD4− and expressed low levels of CD8, a phenotype 
that is rare among normal thymocytes (40).

Among the CD7+CD3− leukemia samples, cells from 

patient PATBBG were unique in that they lacked CD44, 
CD45RO, and CD38 expression on their surface (Figure 
S1C). Cells from the three patients that expressed ISP CD4+ 
and DP markers had varying levels of CD45RO with the DP-
like T-ALL cells expressing the highest levels of CD45RO 
(Figure S1C); during normal T cell development, increased 
CD45RO expression correlates with progression to the DP 
developmental stage (41-43). Cells from patient PASZFR, 
which were CD3−CD4−CD8lo, were also CD45RO+ and 
had low levels of CD69. CD38 and CD1a expression was 
highly variable across the six samples and did not correlate 
with CD4 and CD8 expression. Cells from five of the six 
patients expressed CD27, even though CD27 is not normally 
expressed until the late stages of T cell development (39).

CD3+ pediatric T-ALL cells

Cells from the remaining twelve patients expressed CD3 

Figure 1 Phenotypes of CD3− T-ALL cells. The indicated T-ALL samples were labeled for flow cytometry as described in “Methods”. (A) 
CD7 and CD3 expression were analyzed (top panel) and CD7−CD3− cells were analyzed as shown in the remaining panels; (B,C) cells were 
analyzed as in (A) except CD7+CD3− cells were analyzed as shown. T-ALL, T cell acute lymphoblastic leukemia.
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on their surface (Figures 2,S2). Cells from four patients 
(PATCSS, PARSZP, PASIYP, and PASJNV) were CD4−

CD8−, CD4+CD8−/lo, or CD4+CD8+ (Figure 2A). Cells 
from each of these four samples expressed CD45RO 
and CD38, but variable levels of CD44 and CD1a  
(Figure S2A). Three of these samples expressed low levels 
of CD27. Cells from patients PARSZP and PASJNV also 
expressed CD34. 

Cells from three patients (PARVLA, PATCHB, and 
PASUVH) expressed TCRγδ (Figure 2B). Cells from 
patient PATCHB lacked CD4 and CD8 expression, but 
the other two samples expressed CD4 and cells from 
patient PARVLA also expressed low levels of CD8. 
Cells from each of these three patients were primarily 
CD38+CD1aloCD69− (Figure S2B). Expression of CD44 
and CD27 varied among these patients.

Cells from five patients were CD3+TCRγδ− and primarily 
CD8loCD4− (Figure S2C). Cells from two of these patients 

(PATVMS and PARSJC) could be subdivided into CD34lo 
and CD34hi subsets while cells from patient PAQNDF 
were uniformly CD34lo. Cells from patients PATUET and 
PAQAYI were predominantly CD34−. Most cells from these 
six patients expressed CD44, CD45RO, CD38, and CD1a 
(Figure S2C). Cells from two patients expressed CD27 and 
three patients had low levels of CD69 expression.

In summary, the phenotyping data indicate that 
correlating the surface phenotype of the leukemic cells to 
normal thymocyte populations is rarely possible. In many 
cases, cells expressed combinations of markers that were 
inconsistent with any normal thymocyte populations. 
Further, none of the samples shared identical phenotypes.

mRNA levels of Ikaros family members vary among T-ALL 
cells

For each T-ALL sample, we determined the relative 

Figure 2 Phenotypes of CD3− T-ALL cells. The indicated T-ALL samples were labeled and analyzed as described in the legend to Figure 1, 
except all panels were gated on total CD7+ cells. T-ALL, T cell acute lymphoblastic leukemia.
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mRNA levels of each of the five Ikaros family members 
(Figure 3A). Samples were grouped according to their 
expression of CD4, CD8 and TCRδ and, where possible, 
the mRNA levels were compared to normal thymocytes 
within each phenotype. Of the seven T-ALL samples with 
a DN phenotype, Ikaros mRNA levels were elevated in 
five samples, Helios mRNA levels in four samples, Aiolos 
mRNA levels in five samples, and Pegasus mRNA levels in 
six samples, as compared to normal DN thymocytes. Two 
patients had low Ikaros mRNA levels, one had low Helios 
mRNA levels, one had low Aiolos mRNA levels, and six had 
low Eos mRNA levels.

Among the three T-ALL samples  with an ISP 
phenotype, one patient had elevated Ikaros, Helios, Aiolos, 
and Pegasus mRNA levels. One patient had elevated Ikaros 
and Helios mRNA levels. The third patient had low Ikaros 
mRNA levels. All three patients whose T-ALL cells were 
CD4+CD8+ had low Ikaros mRNA levels, as compared 
to normal DP thymocytes. Two of these patients had low 
Helios mRNA levels; one of these also had low Aiolos and 
Pegasus mRNA levels and the other had low Eos mRNA 
levels.

For patients whose cells were CD8lo or TCRγδ+, we 
compared the expression of each Ikaros family member 
across the samples. Helios and Aiolos mRNA levels 
varied most dramatically in these patients; the samples 
that expressed the highest Helios and Aiolos mRNA 
levels had 47-fold and 38-fold more than samples with 
the lowest mRNA levels, respectively. By contrast, 
cells expressing the highest levels of Ikaros, Eos, and 
Pegasus had 3.5-fold, 12-fold, and 10-fold more mRNA, 
respectively, than cells expressing the lowest levels of 
these family members.

Next, we used linear regression to determine whether the 
mRNA levels of any Ikaros family member correlated with 
that of any other family member (Figure 3B,C). There were 
strong correlations between the mRNA levels of Helios and 
Aiolos, Helios and Eos, and Aiolos and Eos. There were 
weak but statistically significant correlations between Helios 
and Pegasus and between Aiolos and Pegasus. Further, 
there was a very weak, but statistically significant correlation 
between Ikaros and Aiolos.

In conclusion, the mRNA levels of the Ikaros family 
members do not correlate with the surface phenotype of the 
T-ALL cells. However, the mRNA levels of Helios, Aiolos, 
and Eos correlated strongly with each other, suggesting that 
these genes are regulated similarly or these genes regulate 
each other.

The contribution of each Ikaros family member to the total 
Ikaros pool varies

Next, we calculated the percentage of total Ikaros family 
mRNA represented by each family member (Figure 4 and 
Table 1). The majority (14/24) of T-ALL samples had a 
lower percentage of Ikaros family members represented by 
Ikaros than normal thymocytes. By contrast, Helios was 
overrepresented in 16/24 T-ALL samples, as compared to 
normal cells. Aiolos mRNA represented 1% or less of the 
total Ikaros mRNA in four T-ALL samples, but more than 
20% of total Ikaros mRNA in three samples. Eos mRNA 
was underrepresented, as compared to normal thymocytes, 
in ten T-ALL samples. Pegasus represented less than 0.03% 
of total Ikaros mRNA in normal thymocytes, but more than 
0.5% in four T-ALL samples and 2.1% in one case.

Next, we determined whether the T-ALL patients could 
be categorized based on the distribution of Ikaros mRNA 
levels. Because Ikaros and Helios accounted for most of 
the Ikaros family mRNA in nearly all T-ALL samples, we 
first calculated the ratio of Ikaros mRNA to Helios mRNA. 
Three groups of patients emerged, as shown in Table 1. 
Group I included samples in which the ratio of Ikaros to 
Helios mRNA levels was less than 0.5. Group II samples 
included those with an Ikaros to Helios ratio between 0.5 and 
10. Group III included samples in which the Ikaros to Helios 
ratio exceeded 10. Group II could be subdivided into three 
subgroups based on the expression of Aiolos and Eos. Group 
IIA samples had minimal contribution from either Aiolos or 
Eos. Aiolos accounted for more than 10% of the total Ikaros 
mRNA in samples from group IIB and Eos accounted for 
more than 20% of total Ikaros in samples in group IIC.

The categorization of patients based on Ikaros family 
expression was independent of the surface phenotype 
of the cells. For example, most T-ALL groups included 
patients whose cells were CD3− and other patients whose 
cells were CD3+.

Protein levels and alternative splicing of Ikaros, Aiolos, 
and Helios in T-ALL

We used western blot analysis to examine Ikaros and 
Aiolos protein levels and splicing in cells from each T-ALL 
patient and in normal DN thymocytes (Figure 5). Ikaros 
protein levels in one patient were similar to that of normal 
DN thymocytes, but the Ikaros levels were less than half 
of normal in the remaining samples. The patient with the 
highest Ikaros protein levels, PAQNDF, had lower Ikaros 
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Figure 3 Helios, Aiolos, and Eos mRNA levels correlate with each other but not surface phenotype in T-ALL. (A) mRNA was isolated 
from each T-ALL sample and normal thymocytes and subjected to qRT-PCR. Relative mRNA levels for each Ikaros family member were 
calculated by normalizing each family member to the mRNA levels of GAPDH. Then, the relative mRNA levels were normalized to that 
of simultaneously run normal thymocytes. For T-ALL samples resembling normal DN, ISP, or DP thymocytes, the average of five normal 
thymocyte samples is shown by the solid line and the dashed line indicates the 95% confidence interval; (B) for each patient, the relative 
mRNA levels of each Ikaros family member was compared pairwise using linear regression. The correlation coefficient (R) is shown for each 
pair. Statistical significance signifies whether the slope of the line is different than zero (*P<0.05, **P<0.01, ***P<0.001); (C) the fold change 
for the three pairs of Ikaros family members with the strongest correlations are shown. The line of best fit and 95% confidence intervals are 
shown for Helios, Aiolos, and Eos correlation. ND, not detected; T-ALL, T cell acute lymphoblastic leukemia; qRT-PCR, quantitative RT-
PCR; DN, double negative; ISP, immature single positive; DP, double positive.
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mRNA levels than 18 of the other 23 samples. Similarly, 
most T-ALL samples expressed less full-length Aiolos 
protein than normal DN thymocytes.

Low molecular weight bands were detected when 
membranes were probed with anti-Ikaros and anti-Aiolos, 
suggestive of the presence of alternative splice variants. We 
performed nested PCR using the primer pairs illustrated in 
Figure 6A to determine whether Ikaros, Helios, and Aiolos 
might undergo alternative splicing in normal thymocytes 
and T-ALL cells. A complex pattern of Ikaros splice variants 
was detected in normal and leukemic cells, consistent with 
our previous observations (40) and that different isoforms 
can lack exons, lack portions of exons, or include intronic 
sequences (19,20,44). In contrast to Ikaros, few T-ALL 
samples expressed multiple splice variants of Aiolos and 
Helios. 

To verify the identity of the splice variants, nested 
RT-PCR was performed using primers that span each 
combination of exons (a sample of which is shown in  
Figure S3). For Ikaros, the most abundant proteins detected 
by western blot are most likely full-length Ikaros and 
Ikaros lacking exon 3 (Ik-∆3). In addition, numerous other 
splice variants were detected at the mRNA level; the most 
prevalent of which are shown in Figure 6B.

For Aiolos, full-length mRNA was detected in most 
samples (Figure 6C). Other splice variants detected lacked 
exon 2 (Ai-∆2), exon 3 (Ai-∆3), or exon 4 (Ai-∆4) or a 
combination of two or more exon deletions, such as Ai-∆5/6 
and Ai-∆4/5/6. Helios lacking a portion of exon 3 (Hel-∆3b) 

was the most evident splice variant observed (Figure 6D), 
but some samples expressed full-length Helios and Helios 
lacking the entire third exon (Hel-∆3).

Based on these data, we conclude that the mRNA and 
protein levels of Ikaros and Aiolos do not directly correlate, 
which is consistent with our previous observations in normal 
human thymocytes (40). Further, many splice variants are 
not translated at detectable levels. For most splice variants 
detected, the isoforms also exist in normal thymocytes.

Discussion

The multi-parameter phenotypic analysis of cells from 
pediatric T-ALL patients revealed great heterogeneity 
among patients. Even when analyzing a limited number 
of markers, leukemic cells resembled normal human 
thymocyte populations in only nine of the 24 samples 
studied. For the majority of the samples, the phenotype 
deviated significantly from that of known normal human 
thymocyte populations. For example, cells from some 
T-ALL patients were CD8lo with little or no CD4 
expression. The CD3−CD4−CD8lo T-ALL cells are similar 
to the ISP population observed during murine T cell 
development and a population of human thymocytes found 
in a fraction of patients (Mitchell et al., unpublished data). 
The CD3+CD8lo leukemia cells expressed lower levels 
of CD8 than mature SP CD8+ thymocytes and they did 
not express CD69 or CD27, making it unlikely that these 
are mature thymocytes. Among the T-ALL samples were 
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Figure 4 A graphical representation of the proportion of Ikaros family mRNA represented by each family member. The percentage of 
total Ikaros family mRNA was calculated as described in Table 1. Each bar indicates 100% of the Ikaros family mRNA in each normal and 
T-ALL sample. Each segment within each bar indicates the portion of the total represented by each family member. T-ALL, T cell acute 
lymphoblastic leukemia. 
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Table 1 The contribution of each Ikaros family member to the total pool of Ikaros family mRNA*

Sample Phenotype Ikaros Helios Aiolos Eos Pegasus Ik/Hel**

Normal thymocytes

DN2 CD3−CD4−CD8−CD38+CD1a− 80 9.8 3.5 6.5 0.03 8.2

DN3 CD3−CD4−CD8−CD38+CD1a+ 71 18 4.3 6.6 0.02 4

ISP CD3−CD4+CD8− 72 17 7 3.8 0.02 4.2

DP CD3−CD4+CD8+ 67 19 12 1.6 0.01 3.4

Group I

PATCHB TCRγδ+CD4−CD8− 12 65 14 8 N.D. 0.19

PATBBG CD3−CD4−CD8+ 13 69 13 4.4 0.39 0.18

PASIYP CD3+CD4+CD8+ 24 55 17 4.1 0.32 0.43

Group IIA

PATHXN CD3−CD4+CD8+ 51 44 2.2 2.1 0.33 1.2

PASIZW CD3−CD4−CD8− 52 44 2.6 0.95 0.33 1.2

PASKMA CD3−CD4−CD8− 58 40 1 0.81 0.05 1.4

PASZFR CD3−CD4−CD8+ 64 24 4.4 6.1 2.1 2.7

PATIMP CD3−CD4−CD8− 73 21 4.7 0.55 0.34 3.5

PARSZP CD3+CD4+CD8+ 74 20 3.4 2 0.21 3.6

PATVMS CD3+CD4−CD8+ 74 21 3.3 1.3 0.17 3.5

PAQXHO CD3−CD4−CD8− 75 19 0.3 5 0.07 3.9

PATCSS CD3+CD4−CD8− 77 20 1.8 1.4 0.28 3.8

PATUET CD3+CD4−CD8+ 81 16 1 0.87 0.23 4.9

Group IIB

PARVLA TCRγδ+CD4+CD8+ 40 26 23 11 0.23 1.6

PAQYHW CD3−CD4+CD8+ 44 20 34 2.3 N.D. 2.2

PAQAPZ CD3−CD4−CD8+ 56 12 24 6.6 1.2 4.7

PASJNV CD3+CD4+CD8+ 58 28 12 2.4 0.2 2.1

PAQAYI CD3+CD4−CD8+ 63 24 11 1.3 0.33 2.6

PATLGK CD7−CD3−CD4−CD8− 71 13 15 1.1 0.58 5.5

PAQNDF CD3+CD4−/+CD8+ 71 15 12 2.8 0.01 4.8

Group IIC

PASTCF CD3−CD4+CD8+ 39 21 9.6 30 0.35 1.9

PASUVH TCRγδ+CD4+CD8− 54 18 4.4 23 0.86 3.1

Group III

PASIZR CD3−CD4−CD8− 80 6 12 1.1 0.23 12

PARSJC CD3+CD4−CD8+ 91 7.3 0.95 0.58 0.19 13

*, the 2−ΔCT for each family member was calculated based on the difference in the CT values for each Ikaros family member and GAPDH. 
The sum of the 2−ΔCT of the family was normalized to 100% for each sample; **, Ik/Hel is the relative mRNA levels of Ikaros divided by that 
of Helios.
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Figure 5 Most T-ALL samples express low levels of Ikaros and Aiolos protein. Cell lysates were separated by SDS-PAGE, transferred to 
nitrocellulose, and probed with with anti-Ikaros, anti-Aiolos, or p38 MAPK. (A) Bands corresponding to full-length Ikaros and Aiolos along 
with major splice variants are shown; (B) densitometry was performed using the images shown in ‘A’ and the relative protein levels of full-
length Ikaros and Aiolos protein was normalized to that of the p38 MAPK loading control and then to normal DN thymocytes. T-ALL, T 
cell acute lymphoblastic leukemia.
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Figure 6 Ikaros mRNA undergoes extensive alternative splicing in normal thymocytes and in T-ALL. (A) A schematic of the exon structure 
of Ikaros, Aiolos, and Helios with the position of the nested PCR primers shown. Nested PCR was performed using mRNA isolated from 
the indicated normal thymocyte populations and each T-ALL sample for Ikaros (B), Aiolos (C), and Helios (D). T-ALL, T cell acute 
lymphoblastic leukemia.
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those in which the cells expressed markers representing 
conflicting stages of development. For example, some cells 
co-expressed CD3 and CD34; in normal thymocytes, CD34 
expression is terminated prior to CD3 expression.

Collectively, our data indicate that correlating T-ALL 
cells to normal developmental stages is rarely possible. In 
addition, each T-ALL sample had a unique phenotype. 
These two features make classifying T-ALL patients a 
challenging endeavor, as seen by the difficulty in using 
phenotype as a prognostic indicator (11,12,45).

As an alternate method to classify T-ALL patients, we 
focused on the Ikaros family of transcription factors, which 
was previously implicated in leukemogenesis. ChIP-seq 
data showed that the Ikaros family can bind 4,500–5,600 
sites in the genome and regulate several hundred genes 
(46,47), making these transcription factors key regulators 
of cell fate decisions in developing lymphocytes. The 
importance of the Ikaros family in leukemogenesis has been 
most clearly demonstrated in mice, where expression of 
dominant negative isoforms of Ikaros or Helios resulted in 

T cell malignancies (14-16,18). Disease onset in these mice 
was dependent on the reduced functionality of the entire 
Ikaros family, as deletion of individual family members did 
not cause disease (17,48,49). This observation highlights 
the importance of studying the entire family. In humans, 
correlative studies have suggested the presence of dominant 
negative isoforms of Ikaros in T-ALL patients, but the 
percentage of patients harboring these splice variants is 
controversial (19-22,27,44,50,51). Our data indicate that 
alternative mRNA splicing of Ikaros is common in normal 
thymocytes and T-ALL cells, but not all splice variants are 
translated into protein products (Figures 5,6). 

The mRNA levels of each Ikaros family member varied 
widely across T-ALL samples, but the greatest disparity was 
in Aiolos and Helios expression (Figure 3A). The samples 
with the highest Aiolos and Helios mRNA levels were  
780-fold and 120-fold greater, respectively, than the samples 
with the lowest mRNA levels. This level of variability is in 
contrast to the 18-fold and 10-fold changes in Aiolos and 
Helios mRNA levels, respectively, that normally occur as 
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thymocytes progress from the DN to the DP stages. By 
contrast, samples with the highest mRNA levels of Ikaros, 
Eos, and Pegasus only contained 8.6- to 11-fold more than 
the samples with the lowest levels.

Based on these data, we propose the classification of 
T-ALL patients using the strategy shown in Figure 4 and 
Table 1. For most patients, Ikaros and Helios mRNA was 
the primary Ikaros family member transcripts detected, so 
the ratio of Ikaros mRNA levels to Helios mRNA levels was 
used to divide the samples into three groups. The largest 
group of patients had Ikaros to Helios ratios similar to those 
of normal thymocytes. Within this group, the mRNA levels 
of Aiolos and Eos varied in a manner that provided a means 
to subdivide these patients.

The importance of Ikaros family mRNA levels in 
leukemogenesis may arise from the function of the Ikaros 
family proteins. Because of the limited number of cells we 
could obtain from the patients, we were only able to analyze 
Ikaros and Aiolos protein levels. For both proteins, the 
protein levels did not correlate with mRNA levels and the 
protein levels were lower than in normal thymocytes for 
most patients (Figures 3,5). The reduction of Ikaros family 
proteins may be linked to leukemogenesis, as it is in mice 
(14-18,48,49). 

In addition to a general reduction of Ikaros family 
expression, the ratio of Ikaros to Aiolos protein varied across 
the T-ALL samples, suggesting the dimer composition 
may vary among patients. For example, patient PATCHB 
had high Aiolos levels and low Ikaros levels whereas patient 
PAQNDF had the opposite pattern. Even small changes in 
the ratio among Ikaros family members can have profound 
biological effects, as seen by the development of lymphoma 
when Helios was expressed at low levels in murine B cells (17).

While Ikaros family protein levels  have direct 
implications in leukemogenesis, the mechanisms that 
control Ikaros family transcription might control other 
genes that regulate the development of T-ALL. For 
example, c-myc, IRF4, Runx1, and TAL-1 can regulate 
Ikaros expression and are activated in some T-ALL patients 
(52-61). In addition, there are Ikaros binding sites within 
the promoters of Ikaros, Aiolos, Eos, and Pegasus (54,62) 
and the correlations in the expression of some Ikaros family 
members we observed (Figure 3) supports a model in which 
Ikaros family members may regulate the transcription of 
themselves and other family members. Further, the Ikaros 
binding site is shared by all family members and by the 
Notch-dependent transcription factor RBP-Jκ (63-66). 
Because half of pediatric T-ALL patients have an activating 

mutation in Notch (67), it would be expected that Ikaros 
family mRNA levels would be altered in these patients.

In summary, we used multi-parameter flow cytometry 
to demonstrate the tremendous variability among 
pediatric T-ALL samples. Further, we performed the first 
comprehensive analysis of the expression of the entire Ikaros 
family of transcription factors reported in pediatric T-ALL. 
More research is needed to extend these observations and 
determine whether the patterns of Ikaros mRNA or protein 
levels correlate to clinical outcomes.
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Supplementary 

Table S1 A list of primers used in the nested PCR reactions*

Variable Ikaros Aiolos Helios

5' UTR CGACGCACAAATC GGCAGCGACAT TGCACTTTGACTAT

CACATAACCTGAG GGAAGATATAC GGAAACAGAGGC

Exon 1 for CATGGATGCT CACTCAGGAG

GATGAGGGTC CAGTCTGTG

Exon 2 for TAAGCGATACT AATGTGGACAG TTGACCTCACC

CCAGATGAGGG TGGAGAAGGC TCAAGCACACC

Exon 3 for TCGGGAGTTGG GTCTCATTCGA ATTGAGAGCA

AGGCATTCG TAGTAGCAGGC GCGAGGTGGC

Exon 4 for GGCACATCAAG AGAAGAGAT CTTCCACTGTAA

CTGCATTCC GCGCTCACGG CCAGTGTGGAGC

Exon 5 for TGGATATTGTG GAGAAGTTCC ACTGGAGGAAC

GCCGAAGC CTTGAGGAGC ACAAGGAACGC

Exon 3 rev CCATTCATTTC TCATCTTTCC GGCCCAATGC

ACAGGCACGC ACTGGTTGGC AAACCATGCC

Exon 4 rev AGGCGTAGTT GTGAGCGCAT GCGTCCCTTC

GCAGAGGTGG CTCTTCTTTGG TTCTACAGGC

Exon 5 rev CCAAGTAGTT CCTCAAGGGA CTGCGCTGCT

GTGGCAGCG ACTTCTCTGC TGTAGCTTCG

Exon 6 rev GACGTTACTTG GCTAATCTGTCC GAGCTTCTCTATG

CTAGTCTGTCC AGTACGAGAGC ACAGCAGGTCTC

Exon 7 rev TTGTGCAGCT ACCGTTTGAC CCACTTCAGCG

GGTACATCG ATCTCAGCC ATTGTGCTTGG

3' UTR TTGTCTGGTCCAG GAGACCAGATATT GAGGAAAGGTGG

TCCAGTCTATGC CACTTCAGCAGG GATTGTAAGTGC

*, outer primers consisted of those located within the untranslated regions (UTRs) and the inner primers were located in each exon.
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Suppl. Figure 1.  Phenotypes of CD3– T-ALL cells. A) CD7–CD3– cells from Fig. 1 were 
analyzed as shown in the remaining panels.  B and C) CD7+CD3– cells from Fig. 1 were 
analyzed as shown in the remaining panels.  
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Figure S1 Phenotypes of CD3− T-ALL cell. (A) CD7−CD3− cells from Figure 1 were analyzed as shown in the remaining panels; (B,C) 
CD7+CD3− cells from Figure 1 were analyzed as shown in the remaining panels. T-ALL, T cell acute lymphoblastic leukemia.
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Figure S2 Phenotypes of CD3− T-ALL cell. T-ALL cells from Figure 2 were analyzed using the marker shown, as described in the legend to 
Figure 1. T-ALL, T cell acute lymphoblastic leukemia.
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Suppl. Figure 3. An example of a complete nested PCR analysis.  A) A list of primers used in 
the nested PCR reactions.  Outer primers consisted of those located within the untranslated
regions (UTRs) and the inner primers were located in each exon.  B) mRNA obtained from cells 
from one sample shown in Fig. 5B were amplified with the outer primers.  The amplicon was re-
amplified using each possible pair of primers.

List of primers for nested PCR

Ikaros Aiolos Helios

5’ UTR CGACGCACAAATC
CACATAACCTGAG

GGCAGCGACAT
GGAAGATATAC

TGCACTTTGACTAT
GGAAACAGAGGC

Exon 1 For CATGGATGCT
GATGAGGGTC

CACTCAGGAG
CAGTCTGTG

Exon 2 For TAAGCGATACT
CCAGATGAGGG

AATGTGGACAG
TGGAGAAGGC

TTGACCTCACC
TCAAGCACACC

Exon 3 For TCGGGAGTTGG
AGGCATTCG

GTCTCATTCGA
TAGTAGCAGGC

ATTGAGAGCA
GCGAGGTGGC

Exon 4 For GGCACATCAAG
CTGCATTCC

AGAAGAGAT
GCGCTCACGG

CTTCCACTGTAA
CCAGTGTGGAGC

Exon 5 For TGGATATTGTG
GCCGAAGC

GAGAAGTTCC
CTTGAGGAGC

ACTGGAGGAAC
ACAAGGAACGC

Exon 3 Rev CCATTCATTTC
ACAGGCACGC

TCATCTTTCC
ACTGGTTGGC

GGCCCAATGC
AAACCATGCC

Exon 4 Rev AGGCGTAGTT
GCAGAGGTGG

GTGAGCGCAT
CTCTTCTTTGG

GCGTCCCTTC
TTCTACAGGC

Exon 5 Rev CCAAGTAGTT
GTGGCAGCG

CCTCAAGGGA
ACTTCTCTGC

CTGCGCTGCT
TGTAGCTTCG

Exon 6 Rev GACGTTACTTG
CTAGTCTGTCC

GCTAATCTGTCC
AGTACGAGAGC

GAGCTTCTCTATG
ACAGCAGGTCTC

Exon 7 Rev TTGTGCAGCT
GGTACATCG

ACCGTTTGAC
ATCTCAGCC

CCACTTCAGCG
ATTGTGCTTGG

3’ UTR TTGTCTGGTCCAG
TCCAGTCTATGC

GAGACCAGATAT
T

CACTTCAGCAGG

GAGGAAAGGTGG
GATTGTAAGTGC

Figure S3 An example of a complete nested PCR analysis. mRNA obtained from cells from one sample shown in Figure 5B was amplified 
with the outer primers. The amplicon was re-amplified using each possible pair of primers.


