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Background: The association between cigarette smoking and the increased risk of many cancers is well 
established. Conversely, epidemiological studies of smokeless tobacco demonstrate decreased risk, or no 
elevated risk, of certain cancers versus smoking. However, it is unclear what role, if any, nicotine plays in 
these associations. The objective of this systematic review was to synthesize the available evidence from 
preclinical studies that examined the potential association between nicotine and the initiation and/or 
progression of cancer. 
Methods: MEDLINE, Embase, PsychInfo, and Cochrane Database of Systematic Reviews were searched 
for articles published from inception until February 13, 2022. Studies were eligible for inclusion if they 
evaluated animal cancer or tumor models, compared nicotine and non-nicotine groups, and evaluated 
measures of cancer initiation or progression. 
Results: Among 1,137 identified articles, 61 were included in qualitative synthesis. Twelve studies 
reported data on tumor initiation, and 54 studies reported data on tumor progression. The majority of the 
tumor initiation studies did not identify an association between nicotine exposure and an increased risk 
of spontaneous tumor initiation. Results of tumor progression studies were inconsistent and varied across 
the reported measures, cancer type being evaluated, and animal cancer model used. Overall, the quality of 
reporting was poor, with many studies not demonstrating a high level of internal and/or external validity. 
Conclusions: In conclusion, although animal models have provided invaluable data for human health risk 
assessments of chemical exposures, the heterogeneity across the studies included in this systematic review 
make the interpretation and generalizability of the results difficult.
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Introduction 

Background

Cancer is among the leading causes of death and disability 
globally (1,2). According to GLOBOCAN estimates, 
there were 19.3 million new cases of cancer in 2020 (3). 
Risk factors for cancer vary by cancer type and include 
modifiable and non-modifiable risk factors (4,5). Specifically, 
non-modifiable risk factors include age, sex, family 
history, and genetics, while modifiable risk factors include 
environmental, dietary, and lifestyle factors (4,5). Among 
modifiable risk factors, cigarette smoking accounted for the 
highest proportion (19%) of preventable cases of cancer (5). 

Rationale and knowledge gap

The association between cigarette smoking and an increased 
risk of cancer is supported by a large body of evidence. 
Systematic reviews and meta-analyses that evaluated the 
evidence on the association between cigarette smoking 
and cancer have concluded that current cigarette smokers, 
compared to never-smokers, have a significantly higher 
risk of developing some cancer types, including lung (6-8), 
breast (8), pancreatic (8,9), colorectal (8,10), gastric (8,11), 

and head and neck (8), and a significantly higher mortality 
from breast (8,12), colorectal (8,10), lung (8), head and  
neck (8), gastric (8), and pancreatic (8) cancer. Evidence also 
shows that the increased risk of some cancers is related to 
the number of cigarettes smoked, with those who smoke 
the highest number of cigarettes per day having a greater 
risk of lung (7,13), colorectal (10), and gastric (11) cancer 
compared with those who smoke fewer cigarettes per day.

Carcinogenesis is a multi-stage process that includes 
tumor initiation, promotion, malignant conversion, and 
progression (14). Tumor initiation involves irreversible 
genetic damage or epigenetic changes (14,15). While 
tumor initiation is an irreversible process, exposure to a 
tumor initiator is not in itself sufficient to result in tumor 
formation (16). Tumor promotion involves a multi-stage, 
reversible process that results in proliferation of initiated 
cells (14-16). Tumor promoters are not mutagenic, and are 
not carcinogenic alone, but can accelerate tumor formation 
after exposure to a tumor initiator, increase the number of 
tumors formed in that tissue, or induce tumor formation 
in conjunction with a dose of an initiator that is too low 
to be carcinogenic alone (14). A compound that is capable 
of acting as both an initiator and a promoter in the same 
tissue is defined as a complete carcinogen (16). Malignant 
conversion involves the transformation of a pre-neoplastic 
cell into a malignant phenotype and requires further genetic 
changes (14-16). Repeated administration of a tumor 
promoter is more consequential than the total dose, and if 
administration is discontinued before the conversion into 
a malignant phenotype, premalignant lesions may regress. 
Tumor progression requires further genetic changes and 
involves the expression of the malignant phenotype and the 
acquisition of more aggressive characteristics by malignant 
cells over time, including metastasis (14-16). 

Carcinogenicity testing involves a comprehensive 
and integrated approach that aims to evaluate a role 
of a substance in tumor initiation and promotion, or  
progression (17). Although data from human studies are 
considered as the highest level of evidence for carcinogenic 
potential of a substance, experimental animal studies can 
provide sufficient evidence on carcinogenic risks to humans 
in cases when human data are not available (18). 

Cigarette smoke contains more than 60 carcinogens 
that have been evaluated by the International Agency 
for Research on Cancer (IARC) as having sufficient 
evidence of carcinogenicity in either laboratory animals or  
humans (19). All of these compounds are carcinogenic in 
laboratory animals, and 15 are rated as carcinogenic in 
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Highlight box

Key findings
• The majority of the tumor initiation studies did not identify 

an association between nicotine exposure and increased risk of 
spontaneous tumor initiation. Results of tumor progression studies 
were inconsistent and varied across the reported measures, cancer 
type being evaluated, and animal cancer model used.

What is known and what is new? 
• The objective of this systematic review was to synthesize the 

evidence from preclinical studies that examined the potential 
association between nicotine and the initiation/progression of 
cancer. The association between cigarette smoking and increased 
risk of many cancers is well established. 

• Conversely, epidemiological studies of smokeless tobacco 
demonstrate decreased risk/no elevated risk, of certain cancers 
versus smoking. However, it is unclear what role, if any, nicotine 
plays in these associations.

What is the implication, and what should change now?
• Although animal models have provided invaluable data for human 

health risk assessments of chemical exposures, the heterogeneity 
across the studies included in this systematic review limit the 
interpretation and generalizability of the results in this evidence 
base.
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humans by the IARC. Notably, nicotine—the addictive 
component of tobacco smoke—is not included in the IARC 
list of carcinogens. Indeed, it is unclear what role nicotine 
plays, if any, in the carcinogenicity of tobacco smoke. 
Although some in vitro studies have shown that nicotine 
may lead to cellular changes associated with cancer initiation 
and progression (20-25), it is unclear whether these cellular 
changes are associated with cancer development in vivo in 
animals, or in humans. 

Objective

The primary objective of this systematic review was to 
synthesize the available evidence from preclinical studies 
examining the potential association between nicotine and 
the initiation and/or progression of cancer. We conducted 
this review in accordance with the A MeaSurement Tool 
to Assess systematic Reviews-2 (AMSTAR-2) guidelines. 
We present this article in accordance with the PRISMA 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-23-1710/rc) (26).

Methods

The protocol for this review was registered with the 
PROSPERO international prospective register of 
systematic reviews on February 4, 2022 (PROSPERO 2022 
CRD42022308897; available at: https://www.crd.york.ac.uk/
PROSPERO/display_record.php?RecordID=308897). The 
key question for this review was predefined as: Does evidence 
from preclinical studies support an association between nicotine 
and the initiation and progression of cancer?

Literature search

The literature search was conducted by an information 
specialist who has credentials as a health sciences librarian 
and is qualified in conducting systematic literature searches. 
Search terms were developed using medical subject 
headings (MeSH) and text words related to the associations 
between nicotine and the initiation and progression of 
cancer. The search strategy included the use of synonyms of 
search terms, truncation, wild card symbols, Boolean logic, 
proximity operators, and limits, in order to focus the search 
towards the most relevant preclinical literature.

The following online databases were searched for 
relevant articles published from inception to February 
13, 2022: MEDLINE, Embase, PsychINFO, and Cochrane 

Database of Systematic Reviews (included as part of the 
Embase search). The literature search strategy can be found 
at https://cdn.amegroups.cn/static/public/atm-23-1710-1.
docx (section A).

Other  methods  used  for  ident i f y ing  re l evant 
research included: a grey literature search; searching of 
bibliographies of included studies and of relevant published 
systematic reviews and meta-analyses; searching of trial 
registries; and contacting experts in the field.

Inclusion criteria

The PICOS (Population or participants and conditions 
of interest, Interventions or exposures, Comparisons or 
control groups, Outcomes of interest, and Study designs) 
review method was used, as it is an objective, non-biased, 
systematic review method (27,28). The following inclusion 
criteria were applied: 
	Population or participants and conditions of interest: 
	In vivo animal cancer or tumor models.

 Interventions or exposures: 
	Nicotine exposure.

	Comparisons or control groups:
	No nicotine exposure.

	Outcomes of interest: 
	Measures of cancer initiation and progression, 

including but not limited to:
	Tumor initiation;
	Tumor promotion;
	Tumor growth;
	Tumor invasion;
	Tumor angiogenesis;
	Metastasis;
	Extravasation;
	Intravasation.

	Study designs: 
	Controlled or uncontrolled preclinical animal 

studies.
The intervention criterion allowed for nicotine administered 

by various means, such as intraperitoneally or in drinking 
water. However, the intervention did not allow for nicotine to 
be administered using a tobacco product or byproduct, such as 
cigarette smoke, in order to isolate the effects of nicotine. 

Control groups were required to have a regimen that 
did not administer nicotine in any form. As the criteria 
for the control was strictly “no nicotine exposure”, this 
allowed for any vehicle that was administered in the same 
manner as the intervention group.

https://atm.amegroups.com/article/view/10.21037/atm-23-1710/rc
https://atm.amegroups.com/article/view/10.21037/atm-23-1710/rc
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=308897
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=308897
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
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Records identified through database searching

N=1,134

Records identified through other sources

N=3

Records screened

N=1,137

Records excluded

N=989

Full-text articles assessed for eligibility

N=148

Full-text articles excluded, with reasons N=87

• Does not compare nicotine versus no nicotine: N=31

• Duplicate studies: N=16

• No data on outcomes of interest: N=17

• Non-peer reviewed (no original data): N=14

• In vitro or ex vivo studies: N=3

• Non-English studies: N=2

• Clinical or human studies: N=2

• Review articles: N=2Studies included in qualitative synthesis

N=61

Studies included in quantitative synthesis  

(meta-analysis)

Total: N=0

Figure 1 PRISMA flow diagram. 

Exclusion criteria

The following studies were excluded from the systematic 
review:

(I) Clinical or human studies, including post-mortem 
studies.

(II) Review articles, systematic reviews, and meta-
analyses (unless these articles contained original 
data not previously identified).

(III) Letters to the editor, opinions, editorials, press 
releases, manufacturers’ advertisements, and other 
non-peer reviewed publications, unless the publication 
contains original data from preclinical studies.

(IV) In vitro or ex vivo studies.
(V) Articles in which the abstract and full text is non-

English.
(VI) Duplicate articles or articles with the exact same 

study outcome data as another published article.

Data management

This review was conducted in the systematic review 

software platform DistillerSR® (Evidence Partners, Ottawa, 
Canada). The PRISMA flowchart (Figure 1) specifies the 
numbers of studies identified and examined, per PRISMA 
reporting guidelines (29), and the flowchart was generated 
in DistillerSR®. 

Review methods

Study selection process
Title/abstract review was completed for level 1 review. 
Subsequently, full text articles were obtained, including 
those for any articles that could not be excluded based on 
the title/abstract alone. Each article was independently 
screened by two reviewers, according to the inclusion 
criteria and any inclusion/exclusion disagreements between 
reviewers were resolved in a meeting between reviewers 
based on mutual agreement. Any disagreements that could 
not be resolved between the reviewers were decided by 
a third reviewer at Thera-Business Inc. with reasons for 
exclusion documented.
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Data extraction
Data were independently extracted by one reviewer and 
checked by a second reviewer with any disagreements 
resolved through discussion between the two reviewers. 
Any unresolved disagreements were resolved by a third 
team member, when necessary. Data extraction forms 
were hosted on DistillerSR® and information regarding 
the study characteristics and outcomes—as defined in the 
PICOS—were extracted for each study. The extracted 
information included: year of publication; location; 
funding; study design; acclimation period; wash-out/pre-
treatment period; sample size; animal model (species, 
sex, weight, age, comorbidities, cancer/tumor model, 
and cancer cell line injected); study methodology; 
intervention(s) and control(s); study duration; and study 
outcomes. Any supplementary materials provided by 
publications were reviewed for relevant data and extracted 
accordingly, when applicable. Study authors were 
contacted for any needed clarification on reported data 
when necessary.

Risk of bias assessment
This review used the SYstematic Review Centre for 
Laboratory animal Experimentation (SYRCLE) Risk of 
Bias tool to assess risks of bias from the following sources: 
sequence generation (selection bias); baseline characteristics 
(selection bias); allocation concealment (selection bias); 
random housing (performance bias); blinding (performance 
bias); random outcome assessment (detection bias); blinding 
(detection bias); incomplete outcome data (attrition bias); 
selective outcome reporting (reporting bias); and other 
sources of bias (30). These potential sources of bias were 
each graded as either “low”, “high”, or “unclear” risk; 
subsequently, an overall risk of bias grade was given for each 
study. 

Two reviewers independently performed the risk 
of bias assessments by two researchers. In instances of 
disagreement, the scoring was discussed and resolved in a 
meeting between the two reviewers, and a joint decision was 
made. Any further unresolved disagreements between the 
reviewers were decided by a third reviewer. The overall risk 
of bias was determined for each study as: “low”—the study 
was judged to be at “low” risk across all evaluation domains; 
“high”—the study was rated as “high” risk in at least one 
domain; and “unclear”—the study was assessed as “unclear” 
risk in at least one bias domain, and no bias domains were 
assessed as “high” risk.

Strength of evidence (SOE)

In the context of preclinical studies, assessment of the certainty 
in the evidence may also facilitate the translation of findings 
to clinical studies and, ultimately, clinical practice. To grade 
the confidence in the overall conclusions for each outcome, 
a systematic, objective, and transparent assessment of the 
overall SOE was planned. The Grading of Recommendations, 
Assessment, Development, and Evaluation (GRADE) 
approach—the most widely used approach to evaluate 
certainty of evidence—provides a systematic, transparent and 
explicit framework for assessing strength of clinical evidence; 
a modified version of the GRADE tool to rate the certainty 
and SOE of preclinical (animal) studies was considered for use 
in this systematic review (31). 

Adequacy evaluation

Adequacy of the included studies, evaluated using the 
criteria based on the current international guidelines for 
carcinogenicity testing (32) and as described by Haussmann 
and Fariss (33) was done as a secondary analysis. The 
evaluation was based on the following criteria: route of 
administration, group size, dose-response, average daily 
dose, duration of exposure (studies of tumor initiation 
only), and study quality. If the minimum criteria were met, 
the study was assigned a plus score. If the criteria were not 
met, or information was lacking, the study was assigned a 
minus score. An overall adequacy score was determined by 
totaling the number of plus values for individual studies. 
Studies with an overall score ≥3 were considered to be 
high adequacy, and those with an overall score of ≤2 were 
considered to be low adequacy.

Meta-analysis

This review was designed to pool data from included 
studies in meta-analyses, where appropriate. Studies were 
considered for meta-analyses when head-to-head data for 
outcomes measured were similar, and when studies used the 
same species, tumor model, and type of intervention and 
comparator.

Protocol deviations

An update to the protocol was registered with PROSPERO 
on August 4th, 2022, reflecting the addition of the adequacy 
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evaluation of the included studies based on current 
international guidelines for carcinogenicity testing (32) as a 
secondary analysis.

Results

Search results

A total of 1,134 articles were retrieved from the databases, 
and three additional articles were identified through other 
sources (34-36), bringing the total number of potentially 
relevant articles to 1,137. Of these potentially relevant 
articles, 989 were excluded at the title/abstract screening 
level, resulting in 148 articles being screened at the full-text 
level [available at https://cdn.amegroups.cn/static/public/
atm-23-1710-1.docx (section B) for titles and abstracts of 
articles screened at the full-text level]. Of these 148 articles, 
87 were excluded at the full text level [available at https://
cdn.amegroups.cn/static/public/atm-23-1710-1.docx 
(section C) for table of studies excluded at the full text level 
and reasons for exclusion], resulting in 61 relevant studies 
eligible for inclusion in the review [available at https://cdn.
amegroups.cn/static/public/atm-23-1710-1.docx (section D) 
for listing of included studies]. The weighted overall kappa 
for inter-rater reliability at level 2 screening was 0.82.

All selection steps are presented as a PRISMA flow 
diagram (Figure 1). All 61 studies were included in the 
qualitative synthesis of evidence: 12 studies for tumor 

initiation, 54 studies for tumor progression; five studies 
reported data for both tumor initiation and tumor 
progression. Quantitative synthesis was not performed due 
to a lack of studies that used the same animal models, tumor 
models, and method and dose of nicotine administration. 

Characteristics of the included studies

The supplementary material (section E) is available at 
https://cdn.amegroups.cn/static/public/atm-23-1710-1.
docx contains summary tables with the complete study 
and sample characteristics for each of the included studies. 
The supplementary material (sections F and K) available 
at https://cdn.amegroups.cn/static/public/atm-23-1710-1.
docx contains further details on the characteristics of the 
included studies.

Publication dates ranged from 1973 to 2022, with 18 
studies published between 2018 and 2022, 15 studies 
published between 2013 and 2017, 13 studies published 
between 2008 and 2012, four published between 2003 and 
2007, and 11 studies published in 2001 or earlier (Figure 2). 
The highest proportion of studies were conducted in North 
America, with the rest of the studies coming from Asia, 
Europe, South America, or multiple regions (Figure 3). 

The majority of included studies used mice, eight studies 
used rats (35,37-43), and three studies used hamsters  
(44-46). Across the 50 of the 61 included studies that 
reported sample size for the nicotine and control groups, 
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total sample size ranged from six to 858 animals, for a total 
of 3,987 animals included across all studies that reported 
sample size. Of these, a total of 1,414 animals were allocated 
to a nicotine group, and 1,043 animals were allocated to 
a control group. Study duration ranged from 7 days to  
24 months. 

Among the 61 included studies, 45 studies were 
randomized controlled trials (RCTs), and the remaining 16 
studies were controlled, parallel group studies. The most 
common method of administration was oral administration 
of nicotine in drinking water (36,42,45,47-66), followed by 
intraperitoneal injections (34,40,41,55,67-83), subcutaneous 
in ject ions  or  subcutaneous continuous infus ions  
(37-39,43,84-90), and buccal administration (46,91,92). 
Other methods of nicotine administration, used in one 
study each, included application of a dermal patch (70), 
intravenous injections (36), gavage (93), and inhalation (35). 
Across the 53 studies that reported treatment duration, 
treatment duration ranged from 7 days (88,93) to 24 months 
(35,46,85). Thirteen studies evaluated biomarkers of nicotine 
exposure (34,35,42,50,51,54,55,57,60,66,70,72,86). 

A c r o s s  t h e  6 1  i n c l u d e d  s t u d i e s ,  1 9  s t u d i e s 
evaluated digestive cancers (44,45,48,51,56,61,64-68, 
71,72,76,79,80,84,87,93), 19 studies evaluated lung cancers 
(36,47,49,50,52,54,55,57,58,62,70,73,77,81,83,86,88-90), 
six studies evaluated breast cancers (34,38,53,60,74,75), six 
studies evaluated head and neck cancers (46,69,78,91,92,94), 
and two studies evaluated urinary tract cancers (42,82). 

Nine studies evaluated other cancer types, or evaluated 
cancers at multiple sites (35,37,39-41,43,59,63,85). Most 
studies used a xenograft or an allograft tumor model, 14 
studies used a carcinogen-induced tumor model (37,38,42,
45,46,55,57,58,65,70,73,84,87,91), and four studies used a 
genetic tumor model (51,55,59,62). Four studies used more 
than one tumor model within the same study: three studies 
used a xenograft and a carcinogen-induced tumor model 
(58,70,91), and one study used a carcinogen-induced tumor 
model, a genetic tumor model, and an allograft tumor 
model (55). Thirteen studies evaluated the spontaneous 
occurrence of tumors after the administration of nicotine 
(35,37-39,41,43,44,46,55,57,63,85,91).

Although all studies included relevant outcome measures 
of cancer initiation and/or progression, these outcomes 
were the primary evaluations in only approximately 
a third of the studies (35,37,38,41,42,44,46,50,52, 
55-57,63,70,74,84,85,87,89,93). In most studies, the effects 
of nicotine on tumor signaling pathways were the primary 
evaluation of interest. In the remaining studies, the primary 
evaluations of interest were: the effects of nicotine on cancer 
therapy (78,79,88,90); the effects of perinatal nicotine 
administration on age at death and disease onset (39); the 
effects of nicotine on anti-inflammatory pathways, food intake, 
and body composition in a model of anorexia-cachexia (40); 
and, the chronic effects of nicotine administration on body 
weight, organ weights, and pathology (43). 

Overall risk of bias grades for the 61 included studies 
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were as follows: no studies were graded as having a 
“low” risk of bias, 18 studies (30%) were graded as 
having a “high” risk of bias and 43 studies (70%) were 
graded as having an “unclear” risk of bias. The risk of 
bias assessment with full scoring for individual studies is 
provided at https://cdn.amegroups.cn/static/public/atm-
23-1710-1.docx (section G).

Of the 12 studies of tumor initiation, five studies had 
high adequacy scores, while seven studies had low adequacy 
scores. Of the 54 tumor progression studies, 16 studies 
had high adequacy scores, while the remaining 38 studies 
had low adequacy scores. The study adequacy scores for 
individual studies are provided at https://cdn.amegroups.cn/
static/public/atm-23-1710-1.docx (section H). 

Tumor initiation and progression

Qualitative synthesis of the included studies that evaluated 
cancer initiation and/or progression is presented below. 
The complete data extractions, with study characteristics 
and outcome data are provided in the summary tables in 
https://cdn.amegroups.cn/static/public/atm-23-1710-1.
docx (section F). The supplementary materials (section I) at 
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx 
contains full details on the characteristics of the included 
tumor initiation studies, and (section J) at https://cdn.
amegroups.cn/static/public/atm-23-1710-1.docx contains 
full details on the characteristics of the included tumor 
progression studies.

Tumor initiation
Overall, tumor initiation studies failed to show a difference 
in tumor initiation between the nicotine and control groups, 
although there were some inconsistencies in the results 

across studies (Table 1). Of the 12 studies that evaluated 
tumor initiation, nine showed that the incidence of tumors 
was not different between the nicotine and control groups 
(35,37-39,41,44,55,57,91), with no tumors being observed 
in either group in four of those studies (38,39,44,91). None 
of the remaining three studies conducted statistical analysis, 
and therefore it is unclear whether tumor incidence was 
significantly different between the nicotine group and the 
control group (43,63,85). However, in one of these three 
studies, skeletal muscle and uterine muscle sarcomas were 
observed in 11 of 14 animals in the nicotine group and 0 of 
5 animals in the control group following administration of 
an LD50 dose of nicotine (3 mg/kg) to mice subcutaneously 
5 days per week for 24 months (85). One of the two 
remaining studies showed numerically lower tumor 
incidence (63), while the other showed numerically higher 
tumor incidence (43) in the nicotine group compared with 
the control group. 

Findings of tumor multiplicity were inconsistent: one 
of the two studies that evaluated it showed no differences 
between the nicotine and control groups (55), while the 
other study did not perform statistical analysis (57). One of 
these studies also evaluated tumor volume and observed no 
differences between the nicotine and control group (55). 
In the only study that evaluated tumor induction period, 
the time to tumor induction was numerically shorter in the 
nicotine group compared with the control group, although 
statistical comparison was not provided (41).

Tumor progression
Overall, results of tumor progression studies varied across 
the outcome measures reported, and at least some degree of 
inconsistency in results was observed among the majority of 
outcomes assessed (Table 2). Additionally, given that some 

Table 1 Summary of results of tumor initiation studies by direction of outcome

Outcomes (n studies) No tumors in either group Nicotine higher Control higher No difference Result unclear†

Tumor incidence (n=12) 4 1‡ 0 5§ 2¶

Tumor multiplicity (n=2) – 0 0 1 1

Tumor volume (n=1) – 0 0 1 0

Tumor induction period (n=1) – 0 0 0 1
†, includes studies that did not perform statistical analysis. ‡, statistical analysis was not done, however, tumors were observed in 11 of 14 
animals in the nicotine group and 0 of 5 animals in the control group. §, in two studies (55,57), statistical analysis was not done; however, the 
number of animals with tumors was similar between groups and therefore it is assumed that there were no differences. ¶, statistical analysis 
was not performed, however, tumor incidence was numerically higher in the nicotine group than in the control group in one study (43),  
and numerically lower in the nicotine compared with the control group in one study (63). 

https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
https://cdn.amegroups.cn/static/public/atm-23-1710-1.docx
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Table 2 Summary of results of tumor progression studies by direction of outcome 

Outcomes (n studies) Nicotine higher Effect dose-related† Control higher No difference Result unclear‡

Tumor volume (n=32) 24 0/2 0 4 4

Tumor weight (n=14) 10 0/1 0 3 1

Metastasis (n=13) 8 0/1 0 3 2

Proliferation (n=10) 8 0/3 0 1 1

Tumor incidence (n=11)§ 4 1/1 0 5 1

Angiogenesis (n=6) 3 1/1 0 1 1

Tumor multiplicity (n=8) 1 1/1 1 4 1

Tumor growth (n=5) 3 0/1 0 2 0

Tumor area (n=3) 2 0/1 0 1 0

Metastasis-free survival (n=2) 2 NA 0 0 0

Micrometastasis (n=1) 0 NA 0 1 0

Time to appearance (n=1) 0 NA 0 1 0

All studies (n=54). †, the denominator represents the number of studies that used more than one dose of nicotine. NA indicates that 
no studies evaluated the outcome with more than one dose of nicotine. ‡, includes studies that did not statistically compare groups. §, 
incidence of nervous system tumors was lower in the nicotine than in the control group in one study, however, there were no differences 
between groups in overall incidence of tumors. NA, not applicable. 

studies did not perform statistical comparison, it was unclear 
whether there were any significant differences between 
groups. However, generalizations about some outcomes 
can be made, given that the majority of studies evaluating 
those outcomes showed the same direction of effect. Tumor 
volume, evaluated by the largest number of studies, was 
significantly higher in the nicotine group compared with 
the control group in the majority (24 of 32) of studies 
(47-50,54,56,58,64-71,73,74,78,79,82,83,86,93,94), 
although four studies reported no differences between 
groups (52,55,88,90), and results were unclear in the 
remaining four studies (36,53,54,75). Similarly, the 
majority of studies showed that nicotine-treated animals 
had significantly higher tumor weight (10 of 13 studies) 
(34,36,53,64,65,67-69,74,80), metastasis (8 of 13 studies) 
(34,60,65,70,72,78,79,81), and tumor proliferation (8 of  
10 studies) (42,52,54,56,61,67,68,75) compared with control 
animals. Metastasis-free survival was significantly shorter 
in the nicotine group than in the control group, however, it 
was only evaluated by two studies (34,81). 

Findings for other outcomes were inconsistent. Tumor 
incidence, evaluated by 11 tumor progression studies 
that used carcinogen-induced or genetic tumor models, 
was not different between study groups in five studies 
(37,45,55,57,58), significantly higher in the nicotine group 

than in the control group in four studies (46,65,84,91), and 
was unclear in one study (87). In the remaining study, there 
were no differences in tumor incidence between the lower 
nicotine dose group and the control group, however, tumor 
incidence was significantly higher in the higher nicotine 
dose group compared with the control group (42). Notably, 
one study showed no differences between the overall 
tumor incidence between the nicotine and the control 
group, however, incidence of nervous system tumors was 
significantly lower in the nicotine group (37). 

Tumor multiplicity was not different between the nicotine 
and the control group in four (45,55,57,62) of eight studies that 
evaluated it; for the remaining four studies, one study showed 
a dose-related effect (42), one study showed significantly 
lower tumor multiplicity in the nicotine group compared 
with the control group (87), one study showed significantly 
higher tumor multiplicity in the nicotine group compared 
with the control group (73), and the result was unclear in one 
study (58). Inconsistent findings were also reported for tumor 
angiogenesis, tumor growth, and tumor area. 

Other outcomes were evaluated by only one [i.e., 
micrometastasis (51), time to tumor appearance (38)] or 
two [i.e., metastasis-free survival (34,81)] studies, and 
therefore results could not be interpreted with any degree 
of confidence. 
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Progression results by cancer model
The studies included in this systematic review included 
xenograft/allograft models that included allografts, human 
tumor cell line-derived xenografts, and patient-derived 
xenografts; carcinogen-induced models; and genetic models 
of cancer. 

Inoculat ion of  xenograf t s  or  a l lograf t s  e i ther 
subcutaneously or orthotopically into the tissue of interest 
are the most commonly used animal models of cancer, 
however, these methods are associated with some notable 
limitations and therefore, results of these studies should 
be interpreted with caution (95). A key drawback of 
xenograft/allograft models is that they do not recapitulate 
the histology of tumors, which exist as mixtures of 
tumor cells, neighboring healthy tissue, stromal cells, 
supporting vasculature, and infiltrating immune cells  
(95-98). Carcinogen-induced tumor models are generally 
thought to better mimic progression of human disease 
compared with xenograft or allograft models (99). Rodent 
models of chemically induced cancer have been shown to 
reliably mimic the mechanisms of carcinogenesis, and to 
resemble the clinical course of human cancers in terms 
of morphology, histopathology, and molecular changes. 
However, studies have shown that inbred strains of mice 
vary substantially in their susceptibility to chemically-
induced neoplasia in various tissues, including lung, 
liver, skin, and colon (100). Additionally, given that the 
development of cancer often results from interactions 
between genetic and environmental factors, recent 
reviews have indicated that the combined use of chemical 
carcinogens and genetic models of cancer is the optimal 
approach to unravelling human disease (100). Genetic 
models of cancer mimic the characteristics observed 
in human tumors including progression from benign 
hyperplastic lesions into aggressive tumors and are generally 
preferable over xenograft or allograft models of cancer  
(100-102). These models provide a means of investigating 
the genetic basis of cancer in immunocompetent hosts, 
and the interaction between genetic and environmental 
factors in the development and progression of cancer. 
However, these models show variability in tumor latency 
and penetrance. Furthermore, availability of genetically 
engineered mice is low and their use may be costly, and thus 
their use is not always feasible (102).
(I) Xenograft/allograft cancer models
Results of studies that used xenograft or allograft cancer 
models generally showed similar trends to the summary 
results discussed above for all tumor progression studies 

(Table 3). Thirty-one studies that evaluated tumor volume 
used xenograft models, with 23 of these studies showing 
significantly higher tumor volume in the nicotine group 
compared with the control group (47-50,54,56,58,64-
71,74,78,79,82,83,86,93,94), four studies showing no 
differences (52,55,88,90), and four studies reporting unclear 
results (36,53,54,75). The majority of studies evaluating 
each outcome also reported that, compared with the control 
group, the nicotine group had significantly higher tumor 
weight (10 of 13 studies) (34,36,53,64,65,67-69,74,80), 
tumor proliferation (7 of 9 studies) (52,54,56,61,67,68,75), 
and metastasis (8 of 12 studies) (34,60,70,72,78,79,81,91). 
Metastasis-free survival (34,81) and tumor area (61,70), 
evaluated by two studies each, were also significantly higher 
in the nicotine group than in the control group. 

Results for angiogenesis, evaluated by six studies 
(49,50,52,61,66,93), and tumor growth, evaluated by 
five studies (34,55,77,79,89), were inconsistent, with 
some studies showing significant differences between the 
nicotine and control groups and other studies showing 
no differences. Lastly, micrometastasis was evaluated by 
only one study, which showed no differences between the 
nicotine and control groups (51). 
(II) Carcinogen-induced tumor models
Results of studies that used carcinogen-induced models were 
inconsistent across all outcome measures that were assessed 
by more than one study (Table 3). Tumor incidence, the most 
frequently evaluated outcome (n=11 studies), did not differ 
between study groups in five studies (37,45,55,57,58), was 
significantly higher in the nicotine group compared with the 
control group in four studies (46,65,84,91), showed a dose-
dependent result in one study (42), and the results were 
unclear in one study (87). Notably, in one study, the overall 
incidence of tumors was not significantly different between 
treatment groups, however, the incidence of nervous 
system tumors was significantly lower in the nicotine 
group compared with the control group (37). Results of 
the seven studies that evaluated tumor multiplicity were 
also inconsistent, with three studies showing no differences 
between the nicotine and control groups (45,55,57), one 
study showing a significantly lower tumor multiplicity in 
the nicotine group compared with the control group (87), 
one study showed significantly higher tumor multiplicity in 
the nicotine group compared with the control group (73),  
and one study showing unclear results (58). In the 
remaining study, tumor multiplicity was significantly higher 
in the nicotine group compared with the control group 
only when a high dose of nicotine was administered (i.e.,  
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Table 3 Summary of results of tumor progression studies by direction of outcome according to cancer model 

Outcomes (n studies) Nicotine higher Effect dose-related† Control higher No difference Result unclear‡

Xenograft/allograft cancer models 
(n=42)

Tumor volume (n=31) 23 0/2 0 4 4

Tumor weight (n=13) 10 NA 0 2 1

Proliferation (n=9) 7 0/2 0 1 1

Angiogenesis (n=6) 3 2/2 0 1 1

Metastasis (n=12) 8 NA 0 2 2

Micrometastasis (n=1) 0 NA 0 1 0

Metastasis-free survival (n=2) 2 NA 0 0 0

Tumor area (n=2) 2 0/1 0 0 0

Tumor growth (n=5) 3 0/1 0 2 0

Carcinogen-induced tumor 
studies (n=13)

Tumor incidence (n=11)§ 4 1/1 0 5 1

Tumor volume (n=4) 3 NA 0 1 0

Tumor weight (n=1) 1 NA 0 0 0

Proliferation (n=2) 1 NA 0 1 0

Metastasis (n=2) 1 NA 0 1 0

Tumor multiplicity (n=7) 1 1/1 1 3 1

Tumor area (n=1) 1 NA 0 0 0

Tumor growth (n=1) 0 NA 0 1 0

Genetic model studies (n=4)

Tumor incidence (n=1) 0 NA 0 1 0

Tumor volume (n=1) 0 NA 0 1 0

Tumor weight (n=1) 0 0/1 0 1 0

Proliferation (n=1) 0 NA 0 1 0

Metastasis (n=2) 0 0/1 0 2 0

Micrometastasis (n=1) 0 NA 0 1 0

Tumor multiplicity (n=2) 0 NA 0 2 0

Tumor area (n=1) 0 NA 0 1 0

Tumor growth (n=1) 0 NA 0 1 0
†, the denominator represents the number of studies that used more than one dose of nicotine. NA indicates that no studies evaluated the 
outcome with more than one dose of nicotine. ‡, includes studies that did not statistically compare groups. §, incidence of nervous system 
tumors was lower in the nicotine than in the control group in one study, however, there were no differences between groups in overall 
incidence of tumors. NA, not applicable. 
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Table 4 Lung tumor progression studies by direction of outcome

Outcomes (n studies) Nicotine higher Effect dose-related† Control higher No difference Result unclear‡

Tumor volume (n=13) 8 NA 0 4 1

Metastasis (n=4) 2 NA 0 2 0

Tumor multiplicity (n=5) 1 NA 0 3 1

Tumor growth (n=3) 2 0/1 0 1 0

Proliferation (n=3) 1 NA 0 1 1

Angiogenesis (n=3) 1 NA 0 1 1

Tumor incidence (n=3) 0 NA 0 3 0

Tumor area (n=2) 1 NA 0 1 0

Tumor weight (n=2) 2 NA 0 0 0

Metastasis-free survival (n=1) 1 NA 0 0 0
†, the denominator represents the number of studies that used more than one dose of nicotine. NA indicates that no studies evaluated the 
outcome with more than one dose of nicotine. ‡, includes studies that did not statistically compare groups. NA, not applicable. 

40 ppm), but not when lower doses (i.e., 10 or 20 ppm) were 
used (42). Tumor volume was significantly higher in the 
nicotine group compared with the control group in three 
studies (58,70,73), and not different between the two groups 
in one study (55). Across the three outcomes that were each 
assessed by a single study that used carcinogen-induced 
tumor models, tumor area (70) and tumor weight (65)  
were significantly higher in the nicotine group than in the 
control group, while tumor growth was not significantly 
different between groups (55).
(III) Genetic tumor models
Only four studies used genetic models of cancer. Across 
these studies, two outcomes [i.e., tumor multiplicity (55,62) 
and metastasis (55,59)] were assessed by two studies each, 
and the remaining outcomes [i.e., tumor incidence (55), 
volume (55), weight (55), proliferation (55), area (62), 
growth (55), and micrometastasis (51)] were assessed by 
only one study. Given the small number of studies assessing 
each outcome, conclusions from the results cannot be drawn 
with any degree of certainty. However, it is notable that 
there were no differences between the nicotine and control 
groups in any of the outcomes assessed. 
Progression results by cancer class
(I) Lung cancer
Summary of results from progression studies of lung 
cancer is provided in Table 4. Generally, findings from 
progression studies of lung cancer were not consistent 
across studies for the majority of assessed outcomes. Tumor 
volume, the outcome evaluated by the largest number 

of studies, was significantly higher in the nicotine group 
than in the control group in eight of the 13 studies that 
evaluated it (36,47,50,54,58,70,73,83), four studies reported 
no statistically significant differences between groups 
(52,55,88,90), and the result was unclear in the remaining 
study (36). Studies of metastasis (n=4 studies) (55,70,77,81), 
tumor growth (n=3 studies) (55,77,89), tumor proliferation 
(n=3 studies) (49,52,55), angiogenesis (n=3 studies) 
(49,50,52), and tumor area (n=2 studies) (62,70) similarly 
reported inconsistent results, with some studies reporting 
significantly higher outcomes in the nicotine group 
compared with the control group, some studies reporting 
no differences, and some studies having unclear results. 

Of the five studies that evaluated lung tumor multiplicity, 
three studies reported no differences between the nicotine 
and control groups (55,57,62), one study reported 
significantly higher multiplicity in the nicotine group 
compared with the control group (73), and in one study 
the results were unclear (58). Three studies that evaluated 
tumor incidence (55,57,58) reported no differences between 
the nicotine and control groups. 
(II) Digestive cancer
Overall, findings from progression studies that evaluated 
digestive cancers showed that nicotine administration 
was associated with tumor progression for the majority of 
outcomes assessed (Table 5). Compared with control animals, 
nicotine-treated animals had significantly higher tumor 
volume (10 of 11 studies) (48,56,64-68,71,79,93), tumor 
weight (5 of 5 studies) (64,65,67,68,80), tumor proliferation 
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Table 5 Digestive tumor progression studies by direction of outcome

Outcomes (n studies) Nicotine higher Effect dose-related† Control Higher No difference Result unclear‡

Tumor volume (n=11) 10 0/2 0 0 1

Tumor weight (n=5) 5 NA 0 0 0

Proliferation (n=5) 4 0/2 0 0 0

Tumor incidence (n=4) 2 NA 0 1 1

Angiogenesis (n=3) 2 2/2 0 0 0

Metastasis (n=3) 2 NA 0 0 1

Tumor multiplicity (n=2) 0 NA 1 1 0

Micrometastasis (n=1) 0 NA 0 1 0

Tumor area (n=1) 1 0/1 0 0 0

Tumor growth (n=1) 1 NA 0 0 0
†, the denominator represents the number of studies that used more than one dose of nicotine. NA indicates that no studies evaluated the 
outcome with more than one dose of nicotine. ‡, includes studies that did not statistically compare groups. NA, not applicable.

(5 of 5 studies) (56,61,67,68,76), and angiogenesis (3 of 
3 studies) (61,66,93). Notably, one study showed a dose-
related effect of nicotine on tumor angiogenesis (66), 
and one study showed a dose-related effect on tumor 
proliferation (61). Inconsistent results were observed for 
tumor incidence (45,65,84,87), metastasis (71,72,79), 
and tumor multiplicity (45,87). Micrometastasis (51),  
tumor area (61), and tumor growth (79) were evaluated by 
one study each. 
(III) Head and neck cancer
Overall, the results of the six studies that evaluated head and 
neck cancer showed that nicotine treatment was associated 
with increased cancer progression, although results were 
not consistent for all outcomes (46,69,78,91,92,94). 
Specifically, nicotine-treated mice had significantly higher 
tumor volume (69,78,94) and weight (69) compared to 
control mice. Two studies also showed that the incidence of 
carcinogen-induced tumors was significantly higher in the 
nicotine-treated group compared with the control group 
(46,91). Two studies that assessed metastasis outcomes 
reported conflicting results, with one study showing no 
statistically significant differences between the nicotine 
group and the control group in the incidence of lymph node 
metastasis (78), whereas, another study showed that the rate 
of metastasis was significantly higher in the nicotine group 
compared with the control group (92).
(IV) Breast cancer
Overall, the six studies that evaluated breast cancer reported 
inconsistent results (34,38,53,60,74,75). The only consistent 

result was tumor metastasis, which was significantly higher 
in the nicotine group compared with the control group in 
the two studies that evaluated it (34,60). Tumor weight, 
evaluated by five studies was significantly higher in the 
nicotine group compared with the control group in three 
studies (34,53,74), was not different between the study 
groups in one study (60), and was not statistically compared 
between the study groups in the remaining study (75). 
Tumor volume was not statistically compared between study 
groups in two studies (53,75), and was significantly higher 
in the nicotine group compared with the control group 
in one study (74). The remaining outcomes were each 
evaluated by a single study: tumor proliferation (75) and 
tumor growth (34) were significantly higher, and metastasis-
free survival (34) was significantly shorter in the nicotine 
group compared with the control group, while there were 
no differences between study groups in the time to tumor 
appearance (38).
(V) Urinary tract cancer
Urinary tract cancers were evaluated by only two studies 
and therefore the results cannot be interpreted with any 
degree of confidence (42,82). One study reported dose-
related effects for tumor incidence and multiplicity, with 
no differences being observed between the lower dose of 
nicotine and the control groups, and significantly higher 
tumor incidence and multiplicity between the higher dose 
of nicotine and the control groups (42). Conversely, tumor 
proliferation was higher in the nicotine group compared 
with the control group regardless of the nicotine dose. The 
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other study reported significantly higher tumor volume in 
the nicotine group compared with the control group (82). 
(VI) Metastatic melanoma
Metastatic melanoma was evaluated by only one study, 
which reported that tumor volume was significantly higher 
in the nicotine group compared with the control group (86). 
The study also evaluated metastasis; however, study groups 
were not compared statistically.
(VII) Undefined or multiple cancer sites
Overall, the three studies that did not define the cancer 
type evaluated, or that evaluated cancers at multiple sites 
reported no differences between study groups in tumor 
incidence (37), tumor weight (40,59), or metastasis (59). 
However, in one of these studies, although there was no 
difference in the overall incidence of tumors between 
study groups, the incidence of nervous system tumors was 
significantly lower in the nicotine group compared with the 
control group (37). The authors noted that there was no 
obvious explanation for the result.

Strength of evidence 

Although the current systematic review intended to evaluate 
the quality of evidence with the GRADE tool, inherent 
limitations in the evidence base hindered the application of 
GRADE. Briefly, limitations in the evidence base discussed 
above including poor reporting by included studies, and 
heterogeneity between study methods and assessments, 
collectively hindered a comprehensive and appropriate 
assessment of the GRADE domains across the studies. 
Therefore, GRADE was not feasible for this review.

Discussion

The current systematic review identified 61 preclinical 
animal studies that evaluated the potential association 
between nicotine and the initiation (n=12 studies) and/or 
progression (n=54 studies) of cancer. Consistent with the 
findings of a previous review (33), the majority of the tumor 
initiation studies did not identify an association between 
nicotine exposure and an increased risk of spontaneous 
tumor initiation, while results of tumor progression studies 
were inconsistent and inadequate to support or dismiss 
an association. Specifically, results of tumor progression 
studies concluded mixed results across the outcome 
measures reported, the cancer type being evaluated, and 
the animal cancer model utilized, although some trends 
were observed. For example, in xenograft/allograft cancer 

models, outcomes related to cancer progression were 
generally higher in nicotine-treated animals compared with 
untreated animals, while studies using carcinogen-induced 
cancer models showed inconsistent results, and studies 
using genetic cancer models showed no differences with 
nicotine treatment. Notably, the latter two cancer models 
are better at recapitulating the tumor microenvironment, 
including the surrounding anatomy and immune system, 
and mimicking progression of the disease compared with 
xenograft/allograft models (96,99,100,103). However, the 
bulk of the evidence came from the xenograft/allograft 
models, which are less representative of human cancers. 

Although elucidation of physiological pathways that 
may mediate the association between nicotine exposure 
and cancer initiation and progression was outside of the 
scope of this review, several studies included in this review 
proposed hypotheses that may explain this association. The 
proposed mechanisms vary according to the tumor model 
used, and include a variety of processes that are activated 
through activation of nicotinic acetylcholine receptors and 
its downstream signaling pathways, such as promotion 
of cell proliferation, migration, invasion, and epithelial-
to-mesenchymal transition (67,68,79,92), increased 
endoplasmic reticulum stress (69,70), inducing cell de-
differentiation (71), modulation of immune cell functions 
(34,86), growth factor secretion and receptor activation 
(36,50,52,61,78), increased cytokine release (40), and 
suppression of apoptosis (58).

Given the limitations in trying to mimic human cancer 
in mouse models, several improvements have been made in 
the past years and new animal models have emerged in an 
effort to bridge the gap between animals and humans (95).  
For example, humanized mouse models are an important 
development because species differences can be circumvented 
through reconstituting a human immune system in 
immunodeficient mice; for example, through engraftment of 
human peripheral blood mononuclear cells or human CD34+ 
hematopoietic stem cells (104). The humanized mouse 
models can be combined with patient-derived xenografts to 
further improve the translation between mice and human 
cancer models. While some issues with external validity can 
be minimized with appropriate animal models, the issue of 
species differences can never be fully overcome; these issues 
will always impact external validity and the reliability of 
translating preclinical findings to humans (105). 

Regarding different cancer types, there was limited 
evidence that the effects of nicotine may vary according to 
the cancer type being evaluated. For lung cancers, findings 
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were mixed across the two study groups, whereas, for 
digestive cancers, the majority of outcomes were higher in 
nicotine-treated animals compared with untreated animals. 
For the remaining cancer types, there was an insufficient 
number of studies to observe any possible trends. Future 
reviews should consider stratifying the data according to 
cancer type so that trends associated with specific cancer 
types can be uncovered.

Although animal models have been and continue to be 
extensively used in preclinical cancer research, general issues 
associated with their use remain. While mice and humans 
are at least 95% identical at the genomic level, this similarity 
obviously does not prevent their respective phenotypes 
from being very different (106). These distinct disparities 
limit the ability to clearly predict the performance of a 
compound in humans. Differences in size and physiology, 
as well as variations in the homology of targets between 
mice and humans, may lead to translational limitations 
(106,107). This poses the ‘mouse to man’ problem; that is, 
the problem of extrapolation of risk, particularly related to 
chemical exposures, from one species to another for many 
reasons, including but not limited to, size, metabolic rate, 
life history, diet, microbiomes, and pathogens (106,108,109). 
For example, the differences in metabolic rate between 
mice and humans correspond to anatomic, physiologic, 
and biochemical differences. Therefore, in the case of this 
review, it is important to recognize the inherent differences 
that may limit the translation of animal model findings 
when examining the potential role of nicotine in human 
carcinogenesis (109).

Adding to this, the dose and the delivery system of 
nicotine used in the included animal studies may not 
translate to what is observed in humans. Only 13 of 
the 61 included studies reported biomarker of nicotine 
exposure data (34,35,42,50,51,54,55,57,60,66,70,72,86), 
and six additional studies did not provide data but related 
the dose of nicotine administered to levels observed in 
human smokers (47,48,61,68,73,78). The remaining 
studies did not evaluate biomarker data and therefore it is 
unclear whether the administered dose was applicable to 
that used by humans. In addition, only two studies used 
nicotine products that are similar to human use: the study 
by Davis et al. (70) used nicotine patches, and Waldum  
et al. (35) exposed rats to a stream of air containing nicotine 
vapor. The study by Davis et al. (70) delivered nicotine 
by cutting 14 mg nicotine patches into 30 equal sized 
squares representing 0.45 mg of patch to mice with an 
average weight of 18 grams, resulting in a dose of 25 mg/kg  

daily. In the study by Waldum et al. (35), rats inhaled 
nicotine through a chamber for 20 hours a day, 5 days 
per week for 2 years, with nicotine concentrations in the 
air of 501±151 μg/m3. The air concentration delivered 
provided the rats with twice the plasma concentration as 
that found in heavy smokers. The other included studies 
delivered nicotine across different modes of administration, 
frequency, and duration, which consequently is expected to 
result in variations in outcomes recorded. For example, the 
study by Lee et al. (53) provided nicotine through drinking 
water for 6 weeks at a dose of 10 mg/mL, far greater than 
many studies utilizing 100 μg/mL. A primary concern for 
the different nicotine levels provided is the possibility of 
toxic levels for some studies. Toxic levels of nicotine could 
lead to extensive organ damage that not only systemically 
influences the outcomes reported, but ultimately does not 
inform on any possible associations between nicotine and 
cancer (110,111).

Establishing a relationship between preclinical and 
clinical outcomes requires diligence in preclinical modeling, 
with an appropriate study design that optimizes internal 
and external validity. Despite innate differences between 
rodents and humans for investigations on nicotine, certain 
considerations can be taken to improve the applicability 
of future studies. One important process to achieve an 
improved representation is to apply known techniques 
in allometric scaling to adequately account for both the 
weight and metabolic difference in humans and rodents 
(112,113). Techniques, such as allometric scaling may 
have also prevented heterogeneity between studies as 
doses and their corresponding outcomes could have been 
better administered, recorded, and transformed for human 
applicability.

Another limitation of the evidence base is the lack of 
multiple doses being used in individual studies to determine 
a dose-response relationship. It has been proposed that 
the individual steps of carcinogenesis are both time- and 
dose-dependent (114). Indeed, biologically based models 
of cancer risk assessment require that the dose-response 
relationship be determined (114). To do so effectively, dose-
response relationships should be generated with low doses 
selected, multiple doses, and long study times (115). Of the 
61 included studies, only six studies evaluated more than 
a single dose of nicotine, with five studies evaluating two 
nicotine doses (59,61,63,66,89), and one study evaluating 
three doses of nicotine (64). Establishing dose-response 
curves of potential tumor promoters allows for findings 
of particular interest and utility to be examined, such as 
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non-linear relationships and the existence of a threshold 
for biological response. However, establishing complete 
dose-response curves may not always be feasible as a large 
number of animals may be required, especially to maintain 
adequate statistical power at lower doses. Thus, the issue of 
extrapolation of risk to low doses often persists.

As with the clinical heterogeneity discussed above, 
methodological diversity between the studies must also be 
accounted for when interpreting the evidence base. First, 
28% of included studies (n=17) did not report whether 
animals were randomized to study groups. Moreover, nearly 
70% of the included studies (n=42) had unclear risk of bias 
suggesting an increased possibility of differences in, or a 
failure to, account for vital methodological processes such 
blinding, and concealment of allocation. The exaggeration 
of intervention effect when a study does not address possible 
biases has been observed for a long time in humans, and 
more recently in mouse models (116-118). For example, 
an umbrella review and meta-analyses of 31 systematic 
reviews on animal study testing found that randomization 
significantly reduces effect sizes [standardized mean 
difference (SMD) =  −0.07, 95% confidence interval (CI): 
−0.12 to −0.02, I2 = 89.1%, P= 0.008] (119). 

In addition to possible differences in randomization, 
allocation concealment, and blinding, studies assessing the 
same outcome used different methods of measurement. 
One of the most prominent differences was observed in 
the measurement of tumor volumes where some studies 
measured the tumors with the aid of classic techniques 
and tools like calipers, while a few used bioluminescent 
and magnetic resonance imaging (MRI) imaging. The 
differences between these techniques are stark, given that 
manual calipers are inaccurate and inconsistent compared 
with bioluminescence-based measurements (120). Factors 
such as sensitivity to underlying adipose tissue, epidermis, 
and irregular borders, are all potential inaccuracies 
associated with use of calipers in tumor measurement in 
rodent models (121-123).

Overall, the quality of reporting was poor, with many 
studies not displaying high levels of internal and/or 
external validity and were scored as having either a high or 
unclear risk of bias. Thus, at this time the evidence for an 
association between nicotine exposure and outcomes related 
to cancer initiation or progression appears inadequate to 
draw any firm conclusions. 

Despite numerous limitations and the complexity of the 
evidence base, the current systematic review exhibited four 
major strengths. First, a detailed protocol was developed a 

priori and registered. Strict compliance with this protocol 
protects against bias due to hindsight. The second strength 
is the comprehensive search methodology that yielded many 
available studies, allowing for the investigation of multiple 
cancer types. Additionally, the clearly defined PICOS of the 
current review assured the identification of the strongest 
evidence relevant to the research question. Lastly, this study 
is considered to be robust based on its strict adherence to 
AMSTAR-2 and PRISMA guidelines. A critical appraisal 
tool for systematic reviews, AMSTAR-2 provides “a broad 
assessment of quality, including flaws that may have arisen 
through poor conduct of the review (with uncertain impact on 
findings)”, whereas PRISMA is tailored towards proper 
reporting—as opposed to conduct—in systematic review 
(29,124). Thus, adhering to these guidelines ensured that 
the current systematic review was conducted according to 
the highest standards with regards to methodological rigor, 
comprehensive reporting, and transparency. Overall, the 
highest standards were placed on the methodology of the 
current systematic review, strengthening the validity of the 
synthesis reported and the conclusions derived.

Only one previous review by Haussmann and Fariss 
[2016] assessed the potential association between nicotine 
and cancer initiation and progression (33). The review 
noted that there is “suggestive but still limited evidence” 
that suggests no association between long-term nicotine 
exposure and a complete carcinogenic effect—the ability 
of nicotine to initiate tumors (33). Regarding tumor 
progression, the review authors concluded that there was 
inadequate evidence to support an association between 
nicotine exposure and the presence of or lack of a 
modulating effect on carcinogenesis. Overall, the results 
of this systematic review are in agreement with those of 
Haussmann and Fariss. 

However, several differences between the Haussmann 
and Fariss review and the current systematic review are 
worth noting. Specifically, the Haussmann and Fariss review 
also included in vitro related outcomes and included studies 
where xenografts were pretreated with nicotine. However, 
the animals themselves were not exposed to nicotine; results 
were not stratified by the specific cancer type; study design 
details were not reported; detailed outcome data according 
to specific outcome measures (e.g., tumor volume, tumor 
multiplicity) were not reported; and benign or malignant 
tumor status was not specified. In addition, and importantly, 
although Haussmann and Fariss did evaluate the adequacy 
and quality of the studies based on international guidelines 
for carcinogenicity testing (125), a formal risk of bias 
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assessment was not performed.
Notably, the results of this systematic review are also 

in agreement with the 2014 Surgeon General’s report on 
the health consequences of smoking, which stated that the 
evidence is sufficient to infer that nicotine activates multiple 
biological pathways through which smoking increases risk 
for disease, however, the evidence is inadequate to infer 
the presence or absence of a causal relationship between 
exposure to nicotine and risk for cancer (126).

Conclusions

In conclusion, the heterogeneity across the studies in terms 
of sample characteristics, cancer models, and evaluated 
outcomes make the interpretation and generalizability of 
the results difficult. Further, although animal models have 
provided invaluable data for human health risk assessments 
of chemical exposures, the distinct disparities between 
animals and humans limit our ability to clearly predict the 
performance of a compound in humans.
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