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Background: In cancer patients with bone tumors, pathological fractures are a major concern. Making 
treatment decision for these patients requires an evaluation of fracture risk, which is currently based on semi-
qualitative criteria that lack patient-specificity. Because of this, there exists a need for quantitative fracture 
risk prediction tailored to the patient’s individual bone geometry. To address this need, this study aims to 
develop and validate a finite element (FE) technique that can be used to create patient-specific models and 
more accurately identify fracture risk. Model validation was performed using canine radii.
Methods: Radii were harvested from eight canines euthanized for reasons unrelated to the study. A 
semicircular osteotomy was made in the distal portion of each bone to simulate tumor lysis. Samples 
underwent computed tomography (CT) scanning and were randomly assigned to loading groups for 
destructive mechanical testing. Three samples were tested in torsion, three in cantilever bending, and 
two in compression. FE models were created for each bone from the corresponding CT scan to replicate 
patient-specific geometry. Material properties were based on equations relating scan properties to elastic 
modulus. Boundary conditions and loads were added to the models based on the sample’s treatment group. 
Stiffness and strain data were collected from both the mechanical testing and FE simulation, and yield load 
predictions were made based on maximum principal strain. Experimental and computational results were 
compared using a linear regression.
Results: The FE models were most accurate in predicting stiffness, followed by strain, with yield load 
having the lowest accuracy. Linear regressions resulted in R2 values of 0.9335 for bending and compression 
and 0.8798 for torsion.
Conclusions: The proposed FE technique is a valid method for predicting fracture in a canine model of 
osteosarcoma. This method could provide patient-specific, quantitative data to aid clinicians in decisions 
regarding surgical intervention for patients with bone tumors.
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Introduction

Background

Pathological fractures due to bone metastases are a 
significant challenge for patients suffering from advanced 
stages of cancer. Fracture incidence rates are highest among 
those with multiple myeloma, breast, and prostate cancer 
(43%, 35%, and 19% respectively) (1). Complications 
arising from pathological fractures have been found to 
increase mortality risk (1,2); for breast cancer patients in 
particular, fractures have been associated with a 32% higher 
risk of death (1). Bone tumors can also be caused by primary 
bone cancer, such as osteosarcoma, where the cancer 
originates in the bone. Though more prevalent in animals 
than humans, osteosarcoma causes similar symptoms and 
tumor structure to bone metastases (3). Typical treatments 
for bone tumors include radiotherapy, internal fixation 
(such as plates and intramedullary nails), and amputation 
(4,5). Choosing the ideal treatment depends heavily on 
the patient’s fracture risk; unfortunately, this risk is often 
uncertain, and doctors are forced to base treatment plans 
on qualitative guidelines developed from retrospective 
analyses of similar tumors (6). One of the most common 
guidelines is the Mirels’ classification, which considers size, 
site, and nature of the lesion, along with pain level. With 
the Mirels’ classification, a numerical score of 1–3 is given 
to each of these metrics, and the sum of scores is used to 
advise treatment (7). The drawback of this method is the 
lack of patient-specific, quantitative data, particularly for 

borderline scores where it’s unclear where radiotherapy or 
surgical intervention is the best treatment.

Rationale and knowledge gap

One way to quantify fracture risk is through the creation of 
patient-specific finite element (FE) models that are capable 
of predicting bone fracture mechanics. The basis of the FE 
method lies in breaking a large numerical problem, in this 
scenario the mechanics of an entire limb, into many, much 
smaller and computationally simpler numerical problems, 
referred to as elements. To create an accurate FE model, 
computed tomography (CT) scans can be collected from 
the patient and converted to a geometrically accurate 
FE computer model composed of elements, each with 
unique properties related to the corresponding CT scan 
density. This allows for close replication of bone geometry 
and heterogenous material properties (8). By applying 
physiologically relevant forces to the model and observing 
stresses within the bone, predictions can be made regarding 
the probability of bone fracture, providing a quantitative 
assessment tool relative to the semi-qualitative and more 
general technique currently used, greatly benefiting the 
patient. In the case of bone cancer, preemptive surgical 
intervention can help stabilize the bone if the model 
predicts fracture. If bone fracture is not predicted, then the 
patient is spared unnecessary surgical treatment (9).

FE modeling has been used previously for orthopedic 
bone characterization and fracture prediction applications. 
Many studies have focused on long bones such as the femur 
or humerus (8-10), while others have modeled irregular 
bones like spinal vertebrae (11). Some studies have also 
modeled metastatic lesions from human cadaveric tissue 
(12,13). To our knowledge, no previous FE studies have 
been done on a canine osteosarcoma model. All of these 
previous studies use a similar procedure of transforming 
CT scans into FE models and assigning material properties, 
with the main differences being element size and material 
definition. One method of defining materials in the model 
is to identify separate regions within the bone (cortical, 
trabecular, and marrow) and specifying a homogeneous 
elastic modulus in each region, typically derived from 
population averages (14). This approach generally lacks 
the accuracy of more refined techniques and is not suitable 
for patient-specific applications. The second method is 
to use Hounsfield units from the CT scan to define bone 
density and elastic modulus from predetermined linear 
relationships, resulting in a model with heterogenous 

Highlight box

Key findings 
• The study showed no significant differences between experimental 

and finite element (FE) data for stiffness, strain, and yield load, 
supporting the validity of the FE technique.   

What is known and what is new?  
• Fracture risk prediction in patients with bone tumors is currently 

based on semi-qualitative methods that don’t consider the patient’s 
specific bone geometry.

• This study develops a FE technique that can create patient-specific 
models based on computed tomography scans. These models can 
be tested under a variety of loading conditions to determine the 
patient’s risk of fracture. 

What is the implication, and what should change now? 
• Clinicians can use this predicted fracture risk to make more 

informed treatment decisions for the patient, especially regarding 
whether surgical intervention is necessary.
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material properties that can account for differences in elastic 
modulus between trabecular and cortical bone. The main 
drawback of this method is that the density relationships are 
derived only for bone and can’t necessarily be extrapolated 
for use in soft tissue such as bone marrow. However, since 
long bone mechanics are heavily dominated by cortical bone 
material strength with little contribution from soft tissue 
constituents, simplification of these soft tissue properties do 
not greatly affect model accuracy.

Many previous models have not demonstrated large-scale 
clinical validation. Due to the relatively greater prevalence 
of osteosarcoma in canines (15) as compared to humans, a 
canine model was used in this study to leverage the patient 
population as a means of expedited clinical validation of 
the fracture prediction model. The canine osteosarcoma 
model will serve as a preliminary model to validate the 
procedure before moving on to testing with lesions and 
human tissue. The benefit of starting with canines is that 
the modeling procedure could eventually be tested on living 
canine patients to determine whether it’s clinically feasible 
and allow for making appropriate changes to the technique 
necessary to be useful in humans.

Objective 

To address the need of improved long bone fracture 
prediction for cancer patients, the aim of this study was to 
develop and validate an FE technique capable of predicting 
fracture using a canine radius model. This model was 

chosen due to the prevalence of osteosarcoma in large dog 
breeds (15). 

Methods

Sample preparation

Eight healthy radii from three right limbs and five left 
limbs were collected from canine patients euthanized for 
unrelated reasons. Because this study used cadaver tissues 
and no in vivo experiments, review by an Animal Care and 
Use Committee was not required. Breeds included four 
Great Danes, two Great Pyrenees, one Rottweiler, and one 
Mastiff with a mean patient mass of 67.4 kg and standard 
deviation of 18.4 kg. To model the effect of a sarcoma, 
semicircular osteotomies were created at the distal end of 
each radius using a crescentic oscillating saw (Figure 1).  
Osteotomy size varied based on the width of the individual radii, 
with half of the bone width being removed at the thinnest point 
of the defect (Figure 1B,1D). Samples subsequently underwent 
CT scans (Siemens Somatom Definition AS 64-slice scanner, 
SIEMENS Healthineers, Munich, Germany) at 1 mm slice 
resolution and were randomly allocated to one of three loading 
groups for biomechanical testing: cantilever bending (n=3, 
sample IDs B1–B3), torsion (n=3, sample IDs T1–T3), and 
compression (n=2, sample IDs C1,C2).

Mechanical testing

All samples were potted in quick-cure resin (Smooth-Cast 

Figure 1 Sample preparation for torsion (A,B) and bending/compression (C,D). Strain gauges were glued to the bone surface, and wires 
were held in place with tape to keep organized during testing. Torsion samples were potted on both ends, while bending and compression 
samples were only potted at the proximal end.

A C

B D

Strain gauge

Defect

Defect

Strain gauge
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320; Smooth-On, Inc., Macungie, PA, USA) at the proximal 
end of the bone away from the osteotomy defect. Torsion 
samples were additionally potted distal to the osteotomy. 
For compression and bending tests, the distal end of the 
bone remained unfixed. Before potting, three wood screws 
were inserted in the regions marked for fixation to prevent 
slippage of the radii within the resin. Rosette strain gauges 
(Tokyo Measuring Instruments Laboratory Co., Ltd., 
Tokyo, Japan) were then attached to the periosteal surface 
of the bone directly opposite the osteotomy where bone 
stress was anticipated to be greatest (Figure 1A,1C). Samples 
were loaded in a servohydraulic testing machine (MTS 
Landmark; MTS System Corp., Eden Prairie, MN, USA) 
according to their allotted treatment group (Figure 2A-2C)  
and destructive biomechanical tests were performed to 
failure at a loading rate of 0.1 mm/s or 0.5 degrees/s.  
Outcome parameters included stiffness (compressive, 
bending, or torsional), strain, and yield load or torque. 

FE modeling

Patient-specific FE models were created for each bone by 
using individual CT scans and replicating the corresponding 
biomechanical loading conditions for each sample (Figure 3).  
CT scans were uploaded to ITK Snap (Penn Image 
Computing and Science Laboratory, Philadelphia, PA, USA) 
for 3D segmentation (Figure 3B). Initial segmentation was 
performed automatically, followed by manual segmentation 
to fill gaps and smooth surfaces (Figure 3C). Resulting 
surface meshes were further refined in MeshLab (ISTI-CNR 

Research Center, Pisa, Italy) using a surface reconstruction 
with a voxel size of 1.0mm. Final meshes were created 
using Coreform Cubit (Coreform, Orem, UT, USA) using 
tetrahedral elements (Figure 3D). Models had an average 
of 338,300 elements and 431,200 nodes, with element sides 
having a maximum length of 1 mm. A mesh convergence 
analysis was performed, and this element size of 1 mm was 
determined to be converged (within 1% difference in strain 
and strain energy from a 0.75 mm mesh).

Material properties were assigned in the software 
Bonemat (Insituto Ortopedico Rizzoli, Bologna, Italy) 
using previously established relationships between CT 
scan Hounsfield units (HU), bone density (ρ), and elastic 
modulus (E) in canine bone as seen in {Eqs. [1,2]} (8).

0.9839 0.00049332 HUρ = + ∗  [1]

3.091858E ρ= ∗  [2]

Both the tetrahedral mesh and CT scan DICOM files 
were uploaded to Bonemat and aligned to ensure that the 
generated material properties were accurate relative to 
location in the bone. Because these equations were applied 
to the entire model and not regionally within the bone, 
medullary cavity elastic modulus was manually input as a 
constant isotropic value of 0.02 MPa (16). The medullary 
cavity was defined using an HU cutoff for bone of 226 HU,  
corresponding to an elastic modulus of 2,462 MPa. All 
regions in the model with a modulus lower than this 
were considered to be part of the medullary cavity; this 

Figure 2 Comparison of mechanical testing setup and FE conditions for compression (A), torsion (B), and bending (C). In the FE images, 
boundary conditions constraining all 6 degrees of freedom are shown at the proximal end of each bone, and loads are represented by orange 
arrows. In the torsion FE model, a coupling constraint is applied to all nodes distal to the dotted line and the moment is applied across all 
constrained nodes. The defect in the torsion images is not visible due to the orientation of the bone but is located directly behind the strain 
gauge. FE, finite element.

A B C
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was confirmed by visual inspection of these regions. This 
proposed method of defining materials was compared 
to two other possibilities: solely using Eqs. [1,2] for the 
entire model, and neglecting bone marrow by removing 
all material within the medullary cavity. The proposed 
method was determined to be the most accurate of the 
three. 

All models were uploaded to Abaqus (2020, Dassault 
Sytemes, Velizy-Villacoublay, France) for FE analysis. 
Element geometric order was changed from linear to 
quadratic while keeping the tetrahedral element type. 
Locations of potting resin, strain gages, and load points 
were determined via image analysis of photographs taken 
during mechanical testing. Boundary conditions were 
added to each model to simulate potting fixation (fixed 
displacement and rotation in all directions) at the distal 
end of the bone using an Encastre boundary condition. 
Loads were then added according to the corresponding 
biomechanical testing treatment group where all load 
magnitudes were set to the corresponding yield load or 
torque value determined during testing. For compression, 
an axial point load was applied to a 2 mm2 area at the most 
proximal aspect of the bone. For bending samples, the point 
load was oriented perpendicular to the long axis of the 
bone. For torsion samples, a pure moment was applied to 
the proximal potting region via a coupling constraint. 

Analysis was performed on each model to determine output 

parameter values. Stiffness data were generated from the slope 
of force-displacement curves up to experimental yield values. 
Strain was taken as an average of the maximum principal 
strain (εmax) for seven surface elements at the location of the 
strain gage. Yield load from the model was predicted using 
a maximum principal strain-based criterion (10) assuming 
bone failure in tension {Eqs. [3,4]}. The threshold strain for 
this criterion was 0.0073, which is the yield strain of human 
bone in tension (10) and has been used in previous canine  
studies (8). This criterion was used as it was determined to be 
more conservative than stress-based yield criteria (17).

 
0.0073

maxrisk factor
ε

=  [3]

  
 

applied loadyield load
risk factor

=  [4]

Statistical analysis

Statistical comparisons were not performed between 
experimental and computational results due to the limited 
sample size in each loading group (N=3 for bending, N=3 
for torsion, and N=2 for compressions). To assess how 
well the FE models predicted experimental results, linear 
regressions were performed on predicted yield load versus 
experimental yield load. Regressions with R2 values close to 
one indicate good correlation between results.

A B C D

Figure 3 Model creation process showing experimental setup (A), computed tomography scan (B), segmented bone (C), and finite element 
model mesh (D).
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Results

Experimental results

Fracture modes for each specimen followed trends according 
to mechanical loading type (Figure 4). Both compression 
samples failed via oblique fractures at the osteotomy; 
C1 demonstrated a clear oblique fracture (Figure 4D),  
and C2 failed by an oblique fracture with an additional 
transverse fracture proximal to the main fracture (Figure 4C).  
All torsion samples failed via a spiral fracture starting at 
the osteotomy that traveled proximally along the bone 
(Figure 4B). All bending samples splintered at the thinnest 
point of the osteotomy (Figure 4A). Quantitative results are 
summarized in Table 1. Yield loads for individual samples 
were 867 N (C1), 1,028 N (C2), 157 N (B1), 403 N (B2), 

471 N (B3), 7.7 N·m (T1), 5.0 N·m (T2), and 3.8 N·m (T3).

FE results

Comparisons of individual sample data are illustrated in 
Figures 5,6, and Table 2. The FE models accurately predicted 
stiffness, with all samples having less than 7.5% error and 
three samples within a 1% error. Plots of linear regressions are 
shown in Figure 7 for bending and compression (Figure 7A)  
and for torsion (Figure 7B). The respective R2 values were 
0.9335 and 0.8798.

Discussion

Overall, the FE model was most accurate in predicting 

Figure 4 Fracture location under different loading scenarios: bending (A), torsion (B), compression for sample C2 (C), compression for 
sample C1 (D). Torsion samples exhibited spiral fractures starting at the osteotomy and traveling proximally. Compression and bending 
samples both failed at the thinnest point of the osteotomy. Bending samples splintered at this point. Both compression samples showed 
oblique fractures, with sample C2 having an additional transverse fracture.

A B

C

D

Table 1 Experimentally determined average values of yield load, stiffness, and maximum principal strain (measured at the strain gauge location 
when yield occurred)

Loading type Stiffness Maximum principal strain (µε) at osteotomy Yield load/torque

Bending (N=3) 28.9±13.9 N/mm 9,502±2,018 343±135 N

Torsion (N=3) 16.9±8.5 N·mm/rad 5,197±343 5.50±1.61 N·m

Compression (N=2) 421±116 N/mm 5,354±652 947±81 N

Data are presented as means ± standard deviations.
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stiffness, followed by strain, with yield load having the 
lowest accuracy. Some of the error in the strain-based yield 
load predictions likely resulted because the location of 
the fracture did not occur at the region of interest (ROI) 
(location of strain gauge measurements) in all samples, 
particularly for torsion samples. Furthermore, strain 
values in the FE model changed considerably with slight 
movements in ROI location, so any error accumulated by 
image analysis of ROI location and manual ROI placement 
within the model may have resulted in increased errors in 
strain data accuracy. It is clear that exact replication of the 
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Figure 6 Comparison of yield strain between experimental and 
finite element data. 

Table 2 Percent errors between finite element and experimental data for each sample

Error type
Bending Torsion Compression

B1 B2 B3 T1 T2 T3 C1 C2

Stiffness error (%) 0.34 5.3 −5.2 −0.72 −2.7 −7.3 0.03 7.3

Strain error (%) −1.9 7.4 15.1 −11.1 10.7 −6.2 −3.9 31.6

Yield load error (%) −11.5 −12.5 −48.6 54.2 19.0 64.6 26.5 18.0
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Figure 7 Linear regression comparing experimental and FE yield for compression and bending (A) and torsion (B). Compression and 
bending were grouped together to ensure sample size was sufficient to perform linear regression. FE, finite element.

experimental and model strain measurement areas is critical 
when making these predictions. On the other hand, the 
force and displacement data used to calculate stiffness was 
less sensitive to the exact placement of the point load and 
more sensitive to the angle of the load. Because all loads 
were directly aligned with a coordinate axis, it was relatively 
easy to ensure load alignment in the FE model, therefore 
minimizing error in stiffness predictions. 

When loaded under compression, samples generally 
yielded at a higher load and exhibited greater stiffness 
than the other loading types, which is consistent with data 
published by Hart et al. (18). Maximum principal strain, 
measured at the thinnest point of the osteotomy, was 
highest in bending, while torsion and compression resulted 
in similar values. 

Ultimately, this modeling procedure meets the goal of 
providing a method to predict fracture in cancer patients 
better than current clinical semi-qualitative methods. While 
the Mirels’ scoring system may be sufficient in determining 
treatment type for patients with minor or severe tumors, 
decisions regarding moderate tumors are made solely based 
on clinical judgment (7). Although some deep learning 
methods are being developed to predict fracture better 
than Mirels’ (19,20), these still base their analysis on similar 
tumors, and not patient-specific tumor properties. The 
accuracy of the models in this study would provide helpful, 
patient-specific numerical data for such tumors so that the 
doctor can more confidently assess the severity of fracture 
risk. 

Evaluating a clinical example can be useful in the context 
of this study. Peak compression forces in a canine forelimb 
when jumping from a height of 0.65 m have been measured 
to be 30.84±3.66 N/kg (21), which is meant to represent 

a dog jumping from a vehicle tailgate. Using the average 
canine mass in this study of 67.4 kg, this results in a force of 
2,078±247 N. Based on the predicted yield load for the two 
compression samples (1,097 and 1,212 N), both samples 
would have failed in this loading scenario (actual yield loads 
of 867 and 1,028 N support this conclusion). This example 
shows how the proposed FE model could be used to predict 
fracture likelihood in a canine patient based on common 
physiological loads. The same technique could be applied 
to human patients once the model has been validated on 
human tissue. With this knowledge, clinicians could make 
more informed decisions regarding ideal treatment for the 
patient.

Results from this study were compared to similar fracture 
prediction studies. When performing a linear regression on 
the relationship between experimental and FE-predicted 
yield, R2 values of 0.94 for compression/bending and 0.88 
for torsion were observed. These values are similar to 
previous research that used CT-based FE models to assess 
fracture likelihood in metastatic femurs which reported 
R2 values of 0.90 and 0.93 for intact bones and bone with 
lesions, respectively (12). Two separate groups utilized 
similar FE methods in femurs and reported R2 correlations 
of 0.78 (22) and 0.88 (23). This suggests that the proposed 
modeling procedure possesses similar accuracy to other 
published methods.

The modeling procedure of this study mainly differed 
from other CT-based FE models in the definition of material 
property. Stadelmann et al. set a constant elastic modulus 
(10 GPa) for their publication on human vertebrae (13),  
while others used HU and density equations to calculate 
modulus without considering the effect of bone marrow 
on mechanics (24,25). The technique outlined in this study 
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used similar equations for bone (though for canine rather 
than human) but set bone marrow modulus to a constant 
value. When investigating methods of applying material 
properties, it was found that using these equations for the 
whole model (including the medullary cavity) had a 30% 
higher error than proposed method, while neglecting 
bone marrow had a 38% higher error. This suggests that 
bone marrow does affect bone mechanics and should be 
accounted for.

This study had several limitations that could affect the 
overall accuracy and usefulness of the results. The main 
limitation was that this study had a small sample size; 
additional samples are needed in future studies to support 
validation of the models more robustly. Another major 
limitation of this procedure is the amount of manual input 
required to develop these models, which allows for some 
slight variation in properties between models, and increases 
the time required to test a model. These drawbacks limit 
this method’s usefulness in clinical applications, as model 
creation would require trained personnel and may increase 
patient costs. However, now that the technique has been 
validated, this problem may be addressed in future studies 
by implementing automation for segmentation, meshing, 
and material assignment. The need for CT scanning 
currently also limits clinical feasibility, as this isn’t always 
the standard of care for patients with bone tumors (plain 
radiographs are more commonly used). However, the 
prevalence of CT scanning in this population may increase 
as more diagnostic computational modeling technology 
becomes available. Second, this study utilizes simple 
loading conditions, whereas bones in vivo are subject to 
complex combined loading that include combinations 
of compression, bending, and torsional loading. Further 
research is needed to quantify how these combined loads 
affect bone yield load magnitudes and strains. Finally, this 
study utilized simplified osteotomy defects to represent 
osteosarcoma lesions. Although the osteotomy simulates the 
weakening of the bone that occurs in active lesions, it does 
not take into account structural and material properties of 
the tumor. Future work will further investigate the use of 
FE models on limbs with clinically diagnosed osteosarcoma 
to better represent the effect of tumors on fracture 
mechanics. Once validated, this model could also be used 
to test the effect of fixation such as plates or intramedullary 
nails that may optimize patient limb strength and surgical 
invasiveness. 

Conclusions

In conclusion, the FE technique presented in this study shows 
promising accuracy in predicting bone fracture mechanics 
in canine radii with artificial osteosarcoma defects. Although 
more work is needed in order to translate to humans, this 
method could eventually provide clinicians with quantitative 
data to support decisions regarding surgical intervention for 
patients with osteosarcoma or bone metastases. 
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