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Advances in fluorescent-image guided surgery

Mark J. Landau, Daniel J. Gould, Ketan M. Patel

Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) 

Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: Ketan M. Patel, MD. Division of Plastic & Reconstructive Surgery, Keck Medical Center of USC, 1510 San Pablo St., Suite 415, 

Los Angeles, CA 90033, USA. Email: ketan.patel@med.usc.edu.

Abstract: Fluorescence imaging is increasingly gaining intraoperative applications. Here, we highlight a few 

recent advances in the surgical use of fluorescent probes.

Keywords: Fluorescent probes; lymphedema; robotic surgical procedures; staining and labeling; surgery; tumor 

imaging

Submitted Jul 21, 2016. Accepted for publication Sep 21, 2016.

doi: 10.21037/atm.2016.10.70

View this article at: http://dx.doi.org/10.21037/atm.2016.10.70

Introduction

The first use of fluorescent imaging in surgery dates to 
1948 when surgeons noticed fluorescein concentration 
increased in malignant tissue and used this property 
to identify and localize intracranial neoplasms during 
neurosurgery (1). Since then, additional fluorescent agents 
have been used for a variety of surgical applications. 
Clinically, fluorescent agents can be used to establish 
positive margins with high resolution, map lymph nodes, 
detect residual disease, predict metastatic potential, and 
assist in drug delivery (2-8). Intraoperative fluorescence 
imaging offers the benefits of high contrast and sensitivity, 
low cost, ease of use, safety, and visualization of cells 
and tissues both in vitro and in vivo (9,10). Near-infrared 
contrast agents, such as the widely used indocyanine green 
(ICG), allow surgeons to visualize fluorescence wavelengths 
otherwise invisible to the naked eye while permitting 
deeper tissue penetration and enhanced contrast against 
autofluorescence (11,12). For the purpose of surgical 
oncology, an ideal probe provides the contrast required 
for resection of an entire tumor or affected lymph node 
while sparing healthy tissue (13). Therefore, a current 
challenge is to design probes with high selectivity for 
tumors, clear visualization, and minimal toxicity (14). 
Other applications of intraoperative fluorescent imaging, 

such as lymphatic imaging and angiography, also benefit 
from the development of new probes (10,12). An additional 
technical challenge remains in integrating new probes with 
surgical technology both existing and in development. 
We discuss three currently evolving uses of fluorescent 
probes in surgery: biochemically activatable “smart” 
probes, fluorescent imaging of the lymphatic system, and 
fluorescence-assisted robotic surgery. We also discuss new 
imaging modalities designed to improve detection of cancer.

Activatable fluorescent probes

Activatable fluorescent probes (“smart” probes) target 
tumor cells by taking advantage of the physiologic 
differences between cancerous and normal cells, thus 
enhancing tumor margin detection (15). These probes 
remain quenched until they are selectively activated into 
fluorescent molecules by tumor cells. Several strategies 
for this method of detection have been developed. One 
of the earliest examples of the use of these activatable 
fluorescent probes in vivo exploited the fact that proteolytic 
enzymes are of a higher concentration in tumors (16,17). 
The delivered agents, consisting of a fluorophore attached 
to a peptide, are cleaved by proteases to release a fluorescent 
molecule (16). This strategy has been applied to design 
activatable cell-penetrating peptides (ACPP) labeled with 
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a Cy5 fluorophore and conjugated to a macromolecular 
dendrimer carrier, which reduces nonspecific uptake by 
skin, cartilage, and kidney (18-21). Tumor surgery in 
mice guided by these conjugated ACPPs resulted in fewer 
residual cancer cells in a variety of cancer models (20,21). 
Owing to their selective uptake into cancer cells, ACPPs 
have also been employed to deliver anti-neoplastic agents 
such as monomethyl auristatin E specifically to tumors 
(22-24). Recently, ratiometric ACPPs have been adapted 
to identify quantifiably measure both primary tumors and 
metastases, providing detailed information about cancer 
invasion (18,25-27). 

Probes have also been developed to simultaneously 
target matrix metalloproteinase (MMP) with an activatable 
fluorescent probe and human epidermal growth factor 
receptor 2 (HER2) with an “always-on” probe (15). 
Targeting these two important biomarkers, which are 
commonly overexpressed in breast cancer, has the 
potential to improve the detection of tumor margins 
and intraoperatively provide information regarding the 
molecular characteristics of the tumor (15,28). Another 
example of simultaneous targeting involves an activatable 
fluorescent peptide targeting MMP-2, a protease with 
increased activities in many cancers, and integrin αvβ3, 
involved in the activation of MMP-2 (29-31). This molecule 
improved the fluorescent signal over MMP targeting alone 
and revealed a potential new strategy for the delivery of 
chemotherapeutic agents (29). 

Several protease-activated fluorescent probes for topical 
administration have been synthesized (32,33). These probes 
can be sprayed onto tissue surfaces that are suspected of 
harboring tumors and require a lower dose than systemic 
administration (32,34). Human clinical studies of these 
probes revealed that on-site topical administration of 
aspirated specimens provided rapid visualization and 
diagnosis of pancreatic tumors (35). Work with “always on” 
fluorescent molecules has demonstrated that probes can 
also be topically applied directly to esophageal neoplasia 
in patients (34). These probes, which bind specifically to 
high-grade dysplasia and esophageal adenocarcinoma in 
Barrett’s esophageus, were safe and effective for localizing 
disease (34). These studies demonstrate another potential 
avenue for the delivery of smart probes.

Clinical trials have recently begun using LUM015, a 
protease-activated fluorescent molecule, constituting the 
first in-human phase 1 clinical trial of this type of imaging 
probe (36). The activation of LUM015 relies on cathepsin 
proteases, enzymes commonly overexpressed by tumors (37). 

LUM015 is optically inactive under normal conditions, 
but upon proteolytic cleavage by specific cathepsins, a 
covalently attached quencher molecule is released and 
fluorescence signal greatly intensifies (36). LUM015 was 
injected intravenously into 15 patients with either invasive 
ductal carcinoma or soft tissue sarcoma and was well 
tolerated with no adverse pharmacological activity (36). 
Tumors were surgically removed and examined ex vivo 
by fluorescent imaging (36,38). Six hours after injection, 
fluorescence signal in tumors was significantly higher than 
in adipose tissue or muscle, demonstrating the tumor-
selective biodistribution and activation of LUM015 (36). 
These findings helped validate the use of LUM015 for 
intraoperative imaging as a means to intraoperatively define 
tumor margins, detect residual cancer cells, and reduce the 
rates of reexcision. Pharmacokinetics were similar between 
humans and mice, an encouraging finding that could 
increase the likelihood of additional activatable probes 
being translated to use in humans (36,39). 

An additional strategy that does not rely on protease 
catalysis for activation instead uses a self-assembling 
polymer micelle conjugated to anti-HER2 antibodies 
with fluorescent probes encapsulated inside (40). These 
fluorescent probes become activated upon degradation of 
the micelle after its uptake into HER2-positive tumors, 
validating their potential use in visualizing and classifying 
tumors (40). Another probe design that relies on the unique 
surface environment of cancer cells takes advantage of the 
cell surface glycoprotein fibroblast activation protein-alpha 
to activate a fluorescence signal (41). Novel activatable 
probes targeting additional physiologic characteristics of 
cancer cells, such as thiol concentration, decreased pH, 
surface lectins, and antibody binding, are also currently in 
development (8,42-46). Translating these activatable probes 
into clinical studies could significantly increase the number 
and quality of intraoperative imaging tools available during 
cancer excision.

Endogenously synthesized fluorescent porphyrins have 
been used in the clinic to guide malignant glioma resection 
(47-50). Their use has allowed physicians to achieve a 
significantly higher rate of complete resections compared to 
surgeries done without the use of fluorescent visualization 
(47-51). Though not considered an activatable probe in 
the traditional sense, fluorescent porphyrin synthesis is 
stimulated in cancerous tissue by 5-aminolevulinic acid, a 
natural biochemical precursor of hemoglobin that is orally 
administered prior to surgery (49). This biological pathway 
further exemplifies the potential to exploit differences in 
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cancer metabolism in designing selective probes with higher 
diagnostic accuracy and increased signal, two important 
challenges that remain in the implementation of fluorescent 
agents in surgery (52). 

As new cancer targets are identified, fluorescent 
probes can be designed to bind them selectively. If these 
biomarkers are sufficiently specific for tumor cells, low 
systemic concentrations of fluorescent probes can achieve 
high concentrations within tumors and define tumor edges 
without the need for enzymatic activation. Such is the case 
for recently developed “always-on” probes that bind cancer 
biomarkers including urokinase plasminogen activator, 
folate receptor-α, carbonic anhydrase IX, and albumin 
degradation (53-57). However, combining the discovery 
of novel biomarkers with activatable fluorescent molecules 
has the potential to further increase selectivity and improve 
intraoperative tumor imaging. 

Fluorescent imaging of the lymphatics

Fluorescent ICG has frequently been used as an alternative 
to dyes or radioactive gamma probes to guide sentinel 
lymph node biopsy (58-60). Fluorescent molecules offer the 
advantages of ease of use ease of use and low invasiveness 
compared to methods requiring exposure to radiation (58). 
ICG was effectively used as a surgical guide to accurately 
detect and remove axillary sentinel lymph nodes (58). 
Sentinel nodes were more likely to be identified by the 
fluorescence method than the blue dye method (60). 
Improved accuracy of sentinel lymph node biopsy allows 
the sparing of healthy nodes and potentially of the healthy 
portions of nodes partially invaded by metastasis, reducing 
the risk of post-surgical lymphedema. (59) The ability to 
precisely track lymphatic flow could also aid the design 
lymphatic-delivered therapies (59). 

A recent study highlighted the use of a novel macrophage-
specific fluorescent probe for intraoperative lymph node 
staging (61). Discovered via a high-throughput screen, this 
probe selectively binds monocytes and macrophages, the 
latter of which are a main component of lymph nodes (61). 
A deficient fluorescent signal caused by the replacement of 
macrophages by disseminated tumor cells could therefore 
diagnose the precise location of a nodal metastasis (61). 
Because of its unique binding property, this probe could be 
used not only to detect metastases in vivo but also to track 
local inflammation and adenopathy (61). Such studies lay 
the foundation for in vivo imaging technology that could 
eliminate unnecessary lymph node biopsies or dissections, 

reducing the postoperative complications of cancer 
therapies.

Some studies have demonstrated the potential use of 
multicolor quantum dots, each with a sharply defined 
emission spectrum, to simultaneously map lymphatic 
flow from multiple lymphatic basins (62-64). Fluorescent 
mapping of lymph flow from different regions can 
provide insight into drainage mechanisms and help 
surgical planning, reducing the incidence of postoperative 
lymphedema. Additionally, quantum dots offer the 
advantages of selective localization to and accumulation in 
axillary lymph nodes (65). 

Beyond identifying sentinel lymph nodes intraoperatively, 
fluorescent molecules have also been used to examine 
secondary lymphedema as a complication following lymph 
node dissection. Preoperatively, ICG fluorescence can be 
used to assess the functional severity of lymphedema of the 
extremities and can help stage and select patients for surgical 
treatment (66-73). Compared to lymphoscintigraphy 
(the alternative method of imaging lymphedema), ICG 
fluorescence lymphography is more accurate, less invasive, 
and of a lower cost, making it more suitable for routine 
evaluations (74-76). Fluorescence visualization can also be 
utilized in evaluating other causes of lymphedema, such as 
lipedema, Fabry’s disease, congenital Milroy lymphedema, 
lymphatic malformations, or lymphedema praecox 
(71,77,78). Fluorescence lymphography is an important 
tool for lymphedema evaluation partially due to the fact 
that, unlike lymphoscintigraphy, fluorescent imaging can 
discriminate the lymphatic vessel contractility responsible 
for lymph flow (78-80). 

Fluorescence lymphography is useful in early stages 
and mild cases of lymphedema, which is important when 
considering that lymphedema progresses slowly and may 
appear long after cancer treatment (81,82). Visualizing 
a “splash pattern” of fluorescence after ICG injection 
indicates a very early stage of lymphedema, even if the limb 
is otherwise asymptomatic (83). This allows physicians to 
detect lymphedema even in a subclinical stage, allowing 
for a timelier diagnosis and treatment of lymphedema (83). 
Fluorescent visualization provides better insight into 
lymphatic function when assessing lymphatic function prior 
to, during, or after surgery (79). It also helps determine 
the suitability of a lymphaticovenular shunt operation, 
one of the surgical treatments for lymphedema (74). ICG 
fluorescence is used intraoperatively to identify active 
lymphatic channels during lymphaticovenular shunt 
operations (79,84-88). Fluorescence imaging allows for the 
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prompt identification of the functional lymphatic vessels 
and helps predict postsurgical outcomes (66). 

Recent cases have demonstrated the versatility of ICG 
fluorescent visualization in potentially guiding the treatment 
of a multitude lymphatic disorders. Fluorescent imaging 
of lymphatic flow has been used outside of the realm of 
cancer and lymphedema as a means of aiding therapy for 
chylothorax (89,90). Chylothorax results from leakage of 
lymph from the thoracic duct or its tributaries, causing 
chyle to accumulate within the pleural cavity (89,91). It is 
a rare but serious complication following heart surgery in 
children (89). In one case involving a pediatric patient with 
chylothorax, ICG fluorescence helped physicians visualize 
obstructed lymphatic drainage and guide the choice of 
surgical intervention (89). ICG fluorescence lymphography 
was also used intraoperatively in two adult patients with 
lymphatic injury following an esophagectomy (90,92). In 
one case of chylothorax, ICG fluorescent imaging was 
used to identify the precise site of a chyle fistula, allowing 
surgeons to suture it and prevent chyle leakage (90). In a 
case of chylorrhea, intraoperative fluorescence navigation 
aided in thoracic duct ligation, successfully stopping the 
chylorrhea (92). These studies demonstrate that fluorescent 
probes could feasibly be employed to increase the efficiency 
of chylothorax and chylorrhea treatment and to reveal 
the pathogenesis of these poorly understood conditions 
(89,90,92-94). As a whole, fluorescent visualization has the 
potential to significantly increase our understanding of the 
lymphatic system, guide surgical intervention, and manage 
therapies (95). 

Fluorescence-assisted robotic surgery

Fluorescent imaging has been used in a wide variety of 
applications to help guide robotic-assisted surgeries. Robotic 
surgeries are ideal for several procedures because they are 
precise, minimally invasive, and capable of reducing blood 
loss and shortening postoperative stay (96). Fluorescence has 
been used intraoperatively in these surgeries to visualize 
vascular and lymphatic anatomy, evaluate tissue perfusion, 
map biliary anatomy, identify lesions, and image metabolic 
activity (96-103). Combining the minimally-invasive 
approach of robotic surgery with the accuracy and precision 
of fluorescence has the potential to improve safety and 
outcomes in a wide range of treatments, with several studies 
already highlighting the benefits.

The major current uses of fluorescence-assisted robotic 
surgeries are in gastroenterologic, urologic, and gynecologic 

surgeries. During robotic-assisted esophagectomy, ICG 
allowed surgeons to examine and preserve the right 
gastroepiploic vascular arcade (97). It often identified small 
vessels that would not have otherwise been visualized (97). 
In robot-assisted laparoscopic gastrectomy, fluorescence 
imaging was used to identify lymph nodes from different 
lymphatic basins, helping surgeons sample the lymph 
nodes and stage gastric cancer patients (104). Because 
ICG is metabolized mainly by hepatic parenchymal cells 
and secreted into the bile, it has been used to visualize the 
biliary tree during robotic cholecystectomy for gallstone 
disease (101,105,106). This application of fluorescent 
imaging is safe, effective, and particularly helpful with obese 
patients or in cases of acute cholecystitis, two cases that 
make the surgery more challenging (101,106). In one case, 
fluorescent imaging during robotic cholecystectomy helped 
avoid surgical injury by identifying an aberrant canaliculus, 
a structure that is otherwise difficult to detect (100). 

When applied to robotic-assisted colorectal surgery 
intended to spare the sphincter of rectal cancer patients, 
fluorescent imaging was used to simultaneously map 
local lymph nodes and assess perfusion status (4). This 
served the dual benefit of demarcating lymph node edges 
and preventing anastomotic leak, the most significant 
complication following this surgery (4,107). To this 
point, causes of anastomotic leakage after rectal surgery 
is considered unpredictable, but the ability to precisely 
visualize complex and possibly abnormal vasculature has 
the potential to reduce rates of ischemic injury (107). 
Additional studies have confirmed the benefit of fluorescent 
imaging in robotic-assisted surgeries for colorectal cancer, 
guiding surgeons and allowing them to adjust their planned 
incisions (98,99,108). One group employed a novel 
combination of fluorescence visualization and augmented-
reality three-dimensional imaging to guide robotic 
duodenopancreatectomy in a patient with an intraductal 
papillary mucinous neoplasm (109). This research 
emphasizes the role of technological breakthroughs in 
surgery, robotics, and computer science in improving 
patient care.

Fluorescence-guided robotic surgery has found a wide 
range of applications in urologic procedures (110). The 
first use of this technology in this field helped to both 
identify renal vasculature and differentiate tumors from 
normal parenchyma in laparoscopic nephrectomy for renal 
cortical tumors (102). Interestingly, later studies showed 
that malignant kidney tumors tended to be hypofluorescent 
while benign tumors ranged from isofluorescent to 



Annals of Translational Medicine, Vol 4, No 20 October 2016 Page 5 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(20):392atm.amegroups.com

hyperfluorescent, validating that ICG can also help 
differentiate between different tumor types (103). In 
robotic nephrectomies where warm ischemia is induced 
by renal artery clamping, using fluorescent visualization as 
a visual aid helped reduce the overall time the kidney was 
ischemic (111). As seen with other surgeries, ICG alerted 
surgeons to abnormal vascular anatomy, helping them 
avoid unintended injuries that would be otherwise difficult 
to predict (112,113). This technology could help surgeons 
spare larger portions of the kidney in partial nephrectomy 
and reduce postoperative complications, blood loss, and 
metastasis (113,114). Similarly, ICG was used in robotic 
partial adrenalectomy to differentiate between adrenal 
mass and normal parenchyma, helping to spare as much 
of the adrenal gland as possible while completely excising 
the tumor (115,116). This was also performed on the basis 
that several types of neoplasms are hypofluorescent on ICG 
imaging compared to normal tissue (115,116). Preclinical 
studies are currently underway to validate the use of 
fluorescence in anatrophic nephrolithotomy to identify 
avascular renal planes, assisting the removal of staghorn 
calculi (117). Intraureteric injection of ICG was used to 
identify the ureter and locate ureteral strictures in robotic-
assisted ureteral construction (118,119). One group used 
a novel technique of imaging near-infrared fluorescence 
without an injectable contrast agent during robotic-assisted 
laporoscopic surgery of the urinary tract (120). Instead, 
they imaged the near-infrared emission of white light from 
endoscopic instruments (120). They were able to precisely 
identify the extent of a ureteric stricture, bladder diverticula, 
and tumor locations (120). 

In robotic radical prostatectomy, ICG was injected 
into the prostate to mark prostatic tissue and map 
potential sentinel lymph nodes (121). Because ICG is 
not prostate specific, new fluorescent tracers that achieve 
targeting via prostate-specific membrane antigen are 
being developed to enhance tissue contrast (122). Bladder 
cancer patients underwent an experimental technique 
in which ICG was injected both directly into the tumor 
and intravenously (123). This permitted tumor marking, 
sentinel lymph node detection, and mesenteric vasculature 
identification to be accomplished simultaneously (123). 

In a recent study, Paley et al. combined fluorescent 
lymph node mapping with robotic hysterectomy in 
patients with endometrial cancer (124). They found that 
this technology can help accurately and safely avoid full 
lymphadenectomies in women with high grade metastatic 
tumors, thus preventing secondary complications such as 

lymphedema (124). Previous research has confirmed that 
combining robotic-assisted hysterectomies with fluorescent 
sentinel lymph node mapping outperformed colorimetric 
dyes (125-128). These studies and their successors have the 
potential to change the standard of care for endometrial 
cancer therapy, which as of yet does not have a consensus 
regarding the utility of sentinel lymph node mapping (124). 

An interesting application of fluorescence in robotic 
surgery involved its use in identifying nervous tissue 
in patients undergoing a robotic thymectomy (129). 
After injecting ICG, physicians were able to identify the 
periocardiophrenic neurovascular bundle with an 80% 
success rate (129). This technology could reduce surgery 
time and the risk of accidental nerve injury. During 
robotic anatomic segmentectomy, a procedure used to 
treat early-stage lung cancer, ICG was used to demarcate 
boundaries of lung segments for surgical resection (130). 
ICG could also identify the parathyroid glands in a canine 
model, suggesting yet another potential use in visualizing 
specialized tissue (131). Although additional studies are 
needed to fully validate the utility of fluorescent imaging 
in robotic-assisted surgeries, a growing body of evidence 
indicates that coupling these technologies has the 
potential to further increase the efficacy and safety of these 
procedures.

In vivo microscopy and nanotechnology

For many years now, several groups have focused on using 
live microscopy for better detection of certain cancer types, 
including notably oral cancer (132). Autofluorescence 
microscopy helps to better delineate cancerous tissues 
from normal tissues and assists in oral mucosa, where that 
differentiation may be very difficult. At Rice University, 
one collaboration between bioengineering laboratories and 
surgical oncologist has helped to develop an FDA approved 
device which harnesses a multispectral digital microscope, 
or one capable of several different imaging modalities to 
help better define cancerous lesions. Richards-Kortum 
and colleagues ran clinical trials and demonstrated this 
type of imaging may help better direct surgical biopsy 
and definitive therapy (133). This is one example of how 
advanced microscopy and multimodal imaging has led to an 
intraoperative guidance of resection. 

Other labs have focused on the use of quantum dots 
or gold nanoshells to help label tumors and to provide 
for cellular imaging with near infrared microscopy that 
can penetrate human tissues (134,135). These very small 
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materials can be fine-tuned in order to fluoresce or to 
generate heat when excited in order to serve as fluorescent 
markers of cells and tissues or to target tissues for ablation. 
Groups have shown this technology to be useful even in  
in vivo  single molecular imaging for sentinel node 
navigation; they specifically developed it for molecular 
targeting drug-delivery systems (136). These advances 
represent a paradigm shift in the way we think about 
operations and intraoperative imaging. Imagine a situation 
where the surgeons can see only affected nodes and 
lymphatic channels, where they can have cellular resolution 
for their surgical resections or for image guidance. In the 
future these technologies could be combined and cells could 
be labelled and then utilized as therapeutic and they could 
be monitored in vivo.

Conclusions

Fluorescence imaging technology is gaining several new 
surgical applications. At the same time, the technology itself 
is frequently being updated, with many new fluorescent 
probes and imaging strategies in development. However, 
several obstacles and limitations still exist that must be 
overcome for fluorescent imaging to gain even wider use 
than its current applications. One question that remains 
is whether the potential benefits of fluorescent imaging 
warrant the cost of adding it to a surgical field. For 
example, one study estimated the cost adding near-infrared 
fluorescence imaging to robotic partial nephrectomy to 
be approximately $100,000 and the cost of ICG per vial 
to be approximately $100 (137). Additionally, imaging 
agents must undergo the same FDA approval process as 
other pharmaceutical drugs, making it take approximately a 
decade and $150 million for a fluorescent probe to become 
available on the market (3). These probes, however, seem 
much less lucrative to develop as they are only administered 
around the time of surgery rather than prescribed to be 
taken frequently. More evidence confirming the reduction 
of postoperative complications could help validate the initial 
time and expense required.

Iodine is rapidly excreted by the body and has a low 
penetrative ability (3,96). This means that to achieve 
sufficient contrast it must be administered very close to the 
time of surgery or the dose must be increased (36). The 
presence of inflammation, fibrosis, or excess fat also makes 
visualizing ICG more difficult (96,138). Another limitation 
to the implementation of these fluorescent probes is their 
contraindications. For example, approximately 1% of the 

population is hypersensitive to iodine and cannot be given 
ICG (139). Another contraindication is elevated liver 
function tests (113). Alternative imaging molecules must 
be sought for these patients. Additionally, newer detection 
methods could improve imaging by quantitatively assessing 
and mapping fluorescence intensity instead of relying on 
qualitative evaluation.

Studies are underway to identify molecules capable of 
selectively targeting specific tissues, many of which could 
have a significant clinical impact. Recently developed 
fluorescently labeled peptides can specifically label 
degenerated nerve branches, which in the future could aid 
patients undergoing surgical nerve repair (140). Another 
fluorescent probe was capable of quantitatively evaluating 
traumatic brain injury (141). Though these probes have not 
yet been used in humans, combining them with existing 
imagining and surgical technology has the potential to 
increase the efficacy of future surgeries. A great deal of 
current research and clinical trials are examining the 
potential use of quantum dots as an alternative fluorescent 
marker (65,142-145). These molecules would overcome 
the obstacle of iodine allergy and can be easily modified to 
alter their biodistribution and fluorescence emission. They 
also allow quantitative detection, have a high fluorescence 
intensity, and have a long emission lifetime. As fluorescence 
imaging becomes more sophisticated and targeted, 
additional surgical applications will follow, benefiting both 
patients and physicians.
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