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Abstract: Hematopoiesis requires a complex interplay between the hematopoietic stem and progenitor 
cells and the cells of the bone marrow microenvironment (BMM). The BMM is heterogeneous, with 
different regions having distinct cellular, molecular, and metabolic composition and function. Studies have 
shown that this niche is disrupted in patients with acute myeloid leukemia (AML), which plays a crucial 
role in disease progression. This review provides a comprehensive overview of the components of vascular 
and endosteal niches and the molecular mechanisms by which they regulate normal hematopoiesis. We 
also discuss how these niches are modified in the context of AML, into a disease-promoting niche and 
how the modified niches in turn regulate AML blast survival and proliferation. We focus on mechanisms 
of modifications in structural and cellular components of the bone marrow (BM) niche by the AML cells 
and its impact on leukemic progression and patient outcome. Finally, we also discuss mechanisms by which 
the altered BM niche protects AML blasts from treatment agents, thereby causing therapy resistance in 
AML patients. We also summarize ongoing clinical trials that target various BM niche components in the 
treatment of AML patients. Hence, the BM niche represents a promising target to treat AML and promote 
normal hematopoiesis.
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Introduction

Acute myeloid leukemia (AML) arises from the hijack of 
normal hematopoiesis by malignant hematopoietic stem and 
progenitor cell (HSPC) clones. According to the American 
Cancer Society, AML is the second most common type of 
leukemia found in the adult population, accounting for 31% 
of all leukemia cases. The prognosis rate is significantly low 
in AML patients with 5 years survival rate being less than 
28% (1). Despite many advances in treating AML, these 
therapies fail to cure the disease completely. Disease relapse 
is largely due to leukemic stem cells (LSCs) escaping from 
chemotherapeutic drugs and anti-cancer agents. The bone 
marrow (BM) niche is considered to be remodeled to favor 
AML progression by bidirectional interactions between 
BM microenvironmental cells and the leukemic cells (2). 
During leukemogenesis, deviancy of the BM niche also 
results in enhanced competitiveness between AML-HSPC 
and leukemic blast proliferation (3). Understanding various 
hematopoietic stem cell (HSC)-niche interactions during 
normal hematopoiesis becomes important. Further insights 
into the dynamics of remodeling of BM niches during 
leukemogenesis form an integral part of modern cancer 
research. Targeting these leukemic niches is emerging as a 
new avenue for developing novel treatment strategies for 
AML treatment.

Normal hematopoiesis

Hematopoiesis and HSCs 

In adult mammals, HSCs primarily reside in the BM 
compartments of long bones. The frequency of HSCs in 
human BM is about 1 in 3×106 cells, analyzed by limiting 
dilution assay performed in non-obese diabetic severe 
combined immunodeficient (NOD/SCID) mice (4). The 
extremely rare frequency of HSCs makes the study of HSC 
biology a complicated and exhaustive work. The work done 
on HSCs in the last few decades has been very helpful in 
shedding light on the orchestrated process of HSC self-
renewal and commitment to form intermediate progenitors 
that finally give rise to fully differentiated specific blood 
cell types. The process is very complex and recent studies 
on single-cell tracking, transcriptional regulation, and 
epigenetic mechanisms have made the understanding of 
the process much clearer. Any deviation in this extremely 
balanced and orchestrated process leads to various kinds of 
hematological disorders including various kinds of leukemia.

Hematopoietic niches

Although stem cells possess the property to self-renew 
and differentiate, the micro-environment surrounding 
the stem cells is known to regulate the fate, functionality, 
and quiescence of these stem cells. This unique micro-
environment supporting the maintenance of stem cell 
properties was first characterized by Schofield in 1978 
and was termed as “Stem Cell Niche” (5). In addition 
to cell intrinsic properties, HSCs are also governed by 
external cues from surrounding cells. The complex micro-
environment surrounding the HSCs is made up of different 
cell types and extra-cellular elements. This unique micro-
environment facilitates the maintenance of the HSCs in 
their multi-potent state and supports the maturation of 
progenitors (6). 

The complex structure of the BM niche is made up of a 
variety of cell types and their spatial locations in BM. along 
with persistent niche dynamics of everchanging BM cell 
populations, blood flow, and oxygen concentrations (7). A 
single HSC residing in its niche, responds to the array of 
signals arising from the numerous types of surrounding 
cells simultaneously. These HSCs although reside in 
special niches, have contentious cross-talk with the long-
distance cells via molecular and cellular mediators which 
modulate HSC response and decide their fates. HSC niches 
are studied and characterized in detail using invertebrate 
models of C. elegans (8) and D. melanogaster (9). Further 
studies on mammalian systems using murine and human 
cells have helped us understand the imperative role of the 
BM-niche in modulating stem cell functionality (10-14). 
Advancement of science and development of several novel 
technologies for imaging of cells, analyzing the cellular 
dynamics using sophisticated methods of proteomic analysis, 
single-cell RNA sequencing, and bioinformatic platforms 
for studies of cell-cell interactions have helped us increase 
our understanding about the HSC-niche interactions. The 
picture of the HSC niche is now becoming explicit, and the 
role of different niche components is now becoming a lot 
more comprehensive.

In the marrow, the BM stromal cells provide the basis 
for the physical structures of the BM microenvironment. 
Stromal cells arise from the mesenchymal stem cells 
(MSCs) and have a multipotent capacity to differentiate 
into various cell types. BM stromal cells express an array 
of HSC-supportive molecules and orchestrate the process 
of HSC self-renewal, proliferation, and differentiation. 
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This process is majorly modulated through the production 
of cytokines, expression of cell-to-cell surface signaling 
molecules, secretion of the extracellular matrix, or via 
soluble mediators (15). Along with MSCs, osteoblasts (16),  
endothelial cells (ECs) (17) sympathetic nerve fibers, 
perivascular MSCs, and CD169+ macrophages (18) regulate 
the HSC functionality and form the important cellular 
constituents of the HSC niche. Marrow adipocytes which 
are yet another cell type derived from MSCs, reduce the 
hematopoietic activity of the BM compartment (19). Thus, 
the niche acts as a complex cellular unit, composing a 
variety of cell types coordinately functioning to produce 
different regulatory and signaling molecules. The BM niche 
is not a static entity and it constantly changes in response 
to molecular signals which consequently display changes in 
the HSC functionality. However, the mechanisms involved 
in the cellular crosstalk within the BM microenvironment 
remain poorly understood.

The BM HSC niches are divided into the endosteal/
osteoblastic niche and vascular niche. The endosteal niche 
facilitates HSC maintenance and quiescence, whereas 
the vascular niche is permissive to the proliferation and 
differentiation of HSCs (18,20,21). Even though the 
role of specific cellular components of the HSC niche is 
extensively studied, the multi-level complexity of BM niche 
composition makes precise definition of the BM niche a 
difficult task.

Endosteal niche

The quiescent HSCs, reside adjacent to the bone 
endosteum in the undifferentiated state and move gradually 
towards of the central axis of the BM upon activation 
(22,23). Endosteal niche is made up of spatially distributed 
populations of osteo-lineage primed MSCs (osteo-MSCs), 
pre-osteoblasts, osteoblasts, osteoclasts, and mature cells 
of BM lining (24). This HSC niche is termed an endosteal 
niche. Imaging of long bones in mice confirms the presence 
of the long term (LT)-HSCs in the endosteal zone of the 
BM microenvironment (25). Tracking transplanted HSCs 
shows that these HSCs finally home near the osteoblasts in 
the BM endosteal niche (26-28). Similar studies also suggest 
that the HSCs reside close to the sinusoidal ECs in the 
trabecular region of the BM cavity (29,30).

Osteoblasts, also known as bone-forming cells, are the 
best characterized HSC niche cells. Osteoblasts are known 
to be present at the inner lining of the BM and interact 
with the quiescent and primitive LT-HSCs. Studies on 

osteoblasts and their effect on hematopoiesis have shown a 
positive correlation between osteoblast number in BM with 
the number of LT-HSC in the BM (16,31). Conditional 
deletion of bone morphogenetic protein receptor 1α 
(Bmpr1α) causes an increase in the frequency of osteoblasts 
in BM which correspondingly results in an increased 
HSC population, confirming the role of osteoblasts in 
HSC maintenance and proliferation (25). BM imaging 
studies show the close physical interaction of HSC with 
osteo-lineage cells (30,32). Another report on tracking 
transplanted cells in BM confirms the association of 
engrafted LT-HSCs with osteoblasts, but at the same time, 
progenitor cells of hematopoietic lineage do not show such 
selective association with osteo-lineage cells (33). Growing 
evidence of reports on osteoblastic cells suggests that the 
osteoblasts can support the quiescent state of HSC along 
with the maintenance of their stemness and functionality. 
Osteoblasts are also used as feeder cells for ex vivo culturing 
of HSCs and have been shown to support HSC growth 
and maintain their functionality (34). Furthermore, HSCs 
co-cultured with osteoblasts show better engraftment 
potential and can completely reconstitute the complete 
hematopoietic system (30,35). Adherence of HSCs to 
the osteoblasts results in their self-renewal, while when 
the HSCs leave these osteoblastic niches, they undergo 
differentiation (36). The osteoblasts are known to secrete 
an extended array of HSC-supportive factors such as 
cytokines chemokine (C-X-C) ligand 12 (CXCL12) (37), 
angiopoietin-1 (Ang-1) (38), thrombopoietin (THP) (39,40), 
WNT (41), Notch (42), n-cadherin (43), osteopontin 
(44,45), granulocyte-colony stimulating factor (G-CSF), 
granulocyte-macrophage colony stimulating factor (GM-
CSF), interleukin-12 (IL-12) (34). Exosomes derived from 
osteoblasts alleviate the radiation-induced hematopoietic 
injury by targeting programmed cell death 4 (PDCD4) via 
micro RNA-21 (46). 

Osteoclasts are cells specially equipped for bone 
resorption. Their activity antagonizes the activity of 
osteoblast cells. The balanced activity of osteoblasts 
and osteoclasts determines bone formation activity (47). 
The role of osteoclasts in HSC regulation is not much 
studied. According to several reports, osteoclasts are 
thought to be the dispensable elements of the HSC niche. 
A mouse model with a disrupted receptor activator of 
nuclear factor kappa B gene (RANK), cytokine required 
for osteoclast differentiation, does not show any change 
in its HSC compartment (48). In yet another study, mice 
completely deficient in osteoclast production also yielded 
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similar observations (49). Contrastingly, Mansour et al. 
demonstrated that osteoclast activity is required for HSC 
niche formation. Using a mouse model with impaired 
endochondral ossification caused by the loss of osteoclast 
activity, they showed that this loss of osteoclast activity 
results in the increase of mesenchymal progenitors with 
reduced osteoblast formation. Whereas restoration of 
osteoclast activity reversed the defects in the BM niche 
resulting in a reduced HSC population and defective 
homing. This indirect regulation of the HSC niche by 
the osteoclasts is dependent on their bone resorption 
activity and linked with their capacity to support osteoblast 
commitment (50).

Vascular niche

The histochemical analysis of femoral bones from mice for 
signaling lymphocytic activation molecules expressing HSCs 
(SLAM HSCs) identified by expression of CD150+CD48−

CD41−Lineage− markers also reveals that the majority of 
the SLAM HSCs are present in the proximity of sinusoidal 
ECs. This has led to the identification of a second type of 
HSC niche termed as vascular niche (17). The components 
of the vascular niche are mainly MSCs, ECs, CXCL12 
abundant reticular (CAR) cells, platelet-derived growth 
factor receptor-α (PDGFR-α+) expressing MSCs, Nestin+ 
MSCs, and macrophages. 

The cells that are known to form the HSC niche and 
modulate HSCs are majorly of mesenchymal origin. These 
cells are mainly derived from MSCs. MSCs are cells with 
self-renewing capacity and are also able to differentiate into 
osteoblasts, chondrocytes, fibroblasts, and adipocytes (51).  
MSCs secrete various types of growth factors and 
cytokines required for HSC survival and maintenance. 
They also have immuno-modulatory activity. For this 
reason, MSCs have been used in HSC transplantations 
to recuperate hematopoiesis after transplantation (52,53). 
The use of MSCs along with HSCs for transplantation 
helps to facilitate HSC engraftment and prevent graft 
failure resulting in graft-versus-host disease (54). MSCs 
also regulate HSCs via secreted extracellular vesicles. 
The crosstalk between the MSCs and HSCs mediated by 
the extracellular vesicle secreted by MSCs regulates the 
functionality of HSCs (55).

The heterogeneous population of cells appearing from 
undifferentiated MSCs and expressing melanoma-associated 
cell adhesion molecule (MCAM) are referred to as BM 
stromal cells. These include CAR cells, PDGFR-α+ MSCs, 

Nestin+ MSCs, and leptin receptor (LepR+) MSC. The 
BM stromal cells can maintain HSCs and preserve their 
function and express high levels of HSC-supportive factors 
such as stem cell factor (SCF) and CXCL12 (56-58). These 
cells also play a crucial role in HSC proliferation, self-
renewal, and trafficking (59). Tagging CXCL12 with green 
fluorescent protein (GFP) confirmed the highest expression 
of CXCL12 in CAR cells (60). CAR cells are primitive 
mesenchymal cells and possess the ability to differentiate 
into adipocytes and osteoblasts. The ablation of CAR 
cells in a transgenic mouse model results in a decrease 
in HSC frequency and long-term reconstitution activity 
along with an increase in HSC quiescence, highlighting 
the importance of CAR cells in the HSC niche (61). 
PDGFR-α+ cells are also considered to be one of the major 
constituents of the HSC niche and show a good amount 
of colony forming units-fibroblast (CFU-F) activity (62), 
which is a gold standard assay used for analysis of MSC 
functionality. CAR cells are reported to express PDGFR-α, 
and thus, PDGFR-α+ MSCs are overlapping populations 
of CAR cells. PDGFR-α+ MSCs have been reported to be 
present in perivascular niches and support the expansion 
of hematopoietic progenitors (56). Nestin+ MSCs are 
considered yet another type of HSC-supportive stromal cell 
population. Like CAR cells, Nestin+ MSCs can differentiate 
into adipocytes, chondrocytes, and osteoblasts (63). These 
cells are found to be in proximity to sympathetic nerve 
fibers which regulate the HSCs in a variety of ways (64). 
Nestin+ MSCs express very high levels of CXCL12 and their 
ablation in BM results in reduced LT-HSC frequency (15).  
Mesenchymal stem/progenitors are also known to express 
LepR on their surface and are termed LepR+ MSCs (57,58). 
This is yet another overlapping population of CAR cells 
and Nestin+ MSCs (56,65). Due to the expression of SCF 
and CXCL12 by LepR+ stromal cells, they are regarded as 
positive regulators of HSC activity (57,58).

ECs have the same origin as that of HSCs; both cells 
originate from a common primitive cell type called 
hemangioblast (66). ECs also participate in the lining of 
the blood vessels and vascular niche formation, suggesting 
their important role in HSC regulation (57,67). Earlier 
studies report the HSC-supportive ability of ECs and 
their use in in-vitro HSC cultures (68). BM dysfunction 
is frequent in mice lacking the functional cytokine 
receptor glycoprotein130 in ECs (69). The BM ECs guide 
hematopoiesis through the expression of fibroblast growth 
factor (FGF) (70), epidermal growth factor (EGF) (71), and 
Ang-1 (17). ECs when transplanted with HSCs assist the 
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HSC homing resulting in higher engraftment and increased 
hematopoietic activity in recipients (72). Blocking vascular 
endothelial growth factor receptor-2 (VEGFR2) during BM 
recovery impairs hematopoietic reconstitution (73). Reports 
also demonstrate that protecting the ECs during irradiation 
helps in the speedy recovery of BM with an increase in the 
long-term reconstitution potential of HSCs (74). 

Sympathetic nerves control the HSC trafficking and 
the expression into the peripheral blood. They do so by 
regulating the periodical adrenergic signal release (75). 
Sympathetic nerves coordinate with Nestin+ stromal 
cells and modulate the expression of Ang-1, CXCL12, 
vascular cell adhesion molecule-1 (VCAM-1), and SCF. 
These genes are required for HSC maintenance and their 
down-regulation results in the egress of HSCs into the 
bloodstream (64). The Schwann cells that wrap around 
these nerves are found to activate (transforming growth 
factor-beta) TGF-β signaling in HSCs and maintain their 
quiescence (76). 

Macrophages regulate HSCs indirectly through 
the modulation of Nestin+ stromal cells, osteoblast, 
and sympathetic nerves (77). Like sympathetic nerves, 
macrophages regulate HSC mobilization by regulating the 
CXCL12 expression in other types of niche cells (78).

As discussed in this section, various BM niche cells 
regulate HSCs by interacting with them via a systemized 
molecular network. BM niches thus coordinate to regulate 
normal hematopoiesis by endosteal niche favoring the 
maintaining the pool of quiescent HSCs while the vascular 
niche favors the proliferation and maintenance of HSC 
numbers. A few of these molecules, their source, and their 
role in the regulation of HSCs under normal and stress 
conditions are summarized in Table 1.

Leukemic BM niche

Remodeling of hematopoietic niches in AML

Numerous studies  have highl ighted that  the BM 
microenvironment (BMM) is drastically modified by AML 
cells to promote leukemic progression and inhibit normal 
hematopoiesis. Studies using patient data and mouse models 
have shown that AML cells induce complex molecular 
changes within BM niche cells, resulting in the structural 
and functional disruption of normal BMM. These changes 
create a pro-leukemic niche that preferentially favors the 
survival and proliferation of immature leukemic blasts while 
suppressing the proliferation and differentiation of normal 

HSPCs. The next sections will elucidate how the endosteal 
and vascular BM niches are modified, and how the altered 
niches support leukemic progression (Table 2).

Remodeling of endosteal niche

The leukemic endosteal niche is marked by a loss of 
balance of osteoprogenitor cells and mature osteoblasts that 
result in disruption of the normal endosteal physiology. 
MSCs present within the endosteal niche can undergo 
differentiation to give mature adipocytes, osteoblasts, 
and chondrocytes. While for normal hematopoiesis the 
differentiation balance is maintained, this balance is 
disrupted in AML. Study by Battula et al. showed that 
AML cells secrete bone morphogenic proteins (BMPs) that 
induce MSCs to differentiate into osteoprogenitors through 
the activation of the Smad (suppressor of mothers against 
decapentaplegic)-1/5 signaling pathway (87). Furthermore, 
activation of the Smad1/5 pathway induced connective 
tissue growth factor (CTGF) expression in MSCs, which 
enhanced leukemic engraftment in mouse models of AML. 
The same group had previously shown that AML-MSCs 
were unable to differentiate into functional adipocytes (104).

Whi l e  AML-pr imed  MSCs  exh ib i t  i nc rea sed 
differentiation potential towards osteo-lineage cells, the 
resulting cells produced are immature and unable to 
support hematopoietic cells. Scadden’s group has shown a 
decreased number of mature osteo-lineage cells in the BM 
niche of mice transplanted with mixed lineage leukemia-
AF9 (MLL-AF9) AML cells (105). Through lineage tracing, 
Hanoun et al. showed that while MSCs from leukemic 
mice were primed towards osteogenic differentiation, 
they gave rise to osteoblast precursors lacking osteocalcin 
expression, a maker of mature osteoblasts, which resulted 
in a signification reduction of mineralized trabecular bone 
volumes (94). Another study using MSCs from AML 
patients showed decreased bone formation potential of 
MSCs in vivo (106). Furthermore, AML-derived exosomes 
induced the expression of Dickkopf WNT signaling 
pathway inhibitor 1 (DKK1), a suppressor of osteogenesis, 
thereby resulting in the loss of osteoblasts (91). Several 
studies have highlighted the roles of AML-derived 
exosomes on the modulation of BM niche (107,108). In 
the same study, the authors showed that AML exosomes 
induced downregulation of key HSC supporting factors 
CXCL12, SCF, and insulin-like growth factor 1 (IGF1) in 
BM stromal cells, thereby decreasing their ability to support 
normal HSCs. Another study by Huan et al. demonstrated 
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Table 1 BM niche cells express HSC regulatory molecules

No. Cell type Molecules expressed Effect on HSCs References

1. Mesenchymal stromal cells CXCL12 Maintenance of quiescent HSC (79) 

2. CXCL12-abundant reticular 
(CAR) cells

CXCL12 Maintenance of quiescent HSC pool (59)

SCF Maintenance of HSCs (18)

3. N-cadherin+ mesenchymal 
stromal cells

SCF Maintenance of HSC functionality (80)

4. LepR+ stromal cells SCF Maintenance of hematopoietic stem/progenitor cell 
population and functional erythropoiesis

(81)

Pleiotrophin Maintenance of quiescent HSC pool during steady state (82)

5. Perivascular stromal cells CXCL12 Deletion depletes HSCs and progenitors,  
mobilization of HSCs

(58) 

6. Nestin+ MSCs CXCL12, SCF, angiopoietin, 
IL7, VCAM, osteopontin 

Maintenance of HSC, HSC homing (56,63)

7. Osteoblasts Jagged 1 Increase in the number of HSCs (16)

THPO Transiently increase in quiescent HSC population and 
subsequently induction of HSC proliferation 

(40)

GCSF Normal myelopoiesis (83)

Ang-1 Maintenance of HSC quiescence and long-term 
repopulating ability

(38)

CXCL12 Deletion depletes progenitors, not HSCs (58)

Osteopontin Negatively regulate HSC expansion (44)

8. Spindle-shaped N-cadherin + 
CD45-osteoblasts

BMP Controls the number of HSCs and HSC niche size (25)

9. Adipocytes TGF-β Inhibitor of hematopoiesis (84)

10. Endothelial cells SCF Maintenance of HSCs (81)

Pleiotrophin Regeneration of HSCs after irradiation stress (82)

CXCL12 Deletion depletes HSCs, progenitors unaffected (58)

11. Megakaryocytes CXCL4 Regulates cell cycle activity and quiescence of HSCs (85)

THPO Regulates cell cycle activity and quiescence of HSCs (86)

BM, bone marrow; HSC, hematopoietic stem cell; MSCs, mesenchymal stem cells.

that AML-derived exosomes induced downregulation of 
critical retention factors SCF and CXCL12 in stromal cells 
resulting in HSPC mobilization from the BM (90).

Intravital imaging studies in mouse models of AML 
identified distinct changes that take place within the 
endosteal niche during leukemic progression. Endosteal 
vessels and the adjacent mature osteoblasts are gradually 
lost during the course of leukemogenesis, due to increased 
secretion of inflammatory cytokines tumor necrosis factor 
(TNF) and CXCL2 by AML cells within the endosteal 

regions which in turn results in a decreased number of 
functional HSCs. This in turn resulted in decreased number 
of normal, functional HSCs within the endosteal niche (93).

Arterioles within the bone metaphysis region are 
associated with neuron glial antigen 2 (NG2)+ niche cells 
and the sympathetic nervous system (SNS) network, which 
is critical for maintaining HSC migration (64). Chen et al. 
found decreased sympathetic nerve fibers and Schwann cells 
in the BM of AML patients (109). Furthermore, using the 
MLL-AF9 mouse model of AML, Hanoun et al. showed 
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Table 2 BM niche modification during AML

No. BM component Modification in AML References

1. MSCs AML cell-derived BMPs induce MSC differentiation into osteoprogenitors through the Smad1/5 
signaling pathway and promote AML progression

(87)

MSCs transfer mitochondria to AML blasts through AML-derived tunneling nanotubes, which 
increases AML cell survival

(88)

AML-MSCs secrete CXCL12 to increase long-term survival and proliferation of AML cells 
through the mTOR pathway

(89)

AML-derived exosomes decrease key HSC supporting factors CXCL12, KITL, IGF1,  
and SCF in BM stromal cells

(90,91)

2. Osteoblasts AML-derived exosomes inhibit osteogenesis through DKK1 (91)

AML-derived oncometabolite kynurenine induces a proinflammatory state in  
osteoblasts through serotonin receptor 1B which promotes AML blast proliferation

(92)

3. Endosteal vessels Loss of endosteal vessels through secretion of TNF and CXCL2 by AML cells (93)

4. Sympathetic nerves 
and Schwann cells

Sympathetic nerves and Schwann’s cells are lost in the BM of AML patients (94)

Decreased β2 adrenergic signaling in sympathetic nerves extends leukemic cell proliferation (94)

5. Macrophages M2 polarization of macrophages in AML BM through Gfi1 and arginase II (95,96)

6. Sinusoidal vessels Increased BM micro-vessel density through VEGFA in AML patients (97)

Increased vascular leakiness in AML BM through nitric oxide signaling resulting in preferential 
proliferation of leukemic HSCs compared to normal HSCs

(98,99)

AML blasts up-regulate E-selectin on BM vasculature inducing PI3K/AKT and RAS/MAPK 
survival pathways in AML blasts 

(100,101)

7. Pericytes Decreased pericyte coverage of BM vasculature in BM biopsies of AML patients (97)

8. Adipocytes Increased lipolysis of adipocytes results in the release of fatty acids which promotes AML blast 
survival and proliferation

(102,103)

BM, bone marrow; AML, acute myeloid leukemia; MSC, mesenchymal stromal cell; BMP, bone morphogenic protein; mTOR, mammalian 
target of rapamycin; HSC, hematopoietic stem cell; SCF, stem cell factor; TNF, tumor necrosis factor.

that these niche cells are lost in AML, and the AML cells 
co-opt the SNS fibers to promote AML progression (94). 

The endosteal region also harbors macrophages that 
interact with LT-HSCs to support their quiescence (110).  
Several  studies  have shown the presence of  pro-
leukemogenic macrophages within the AML niche. 
Using the MLL-AF9 mouse model, Al-Matary et al. 
found increased infiltration of M2 macrophages in AML 
BM and identified transcriptional repressor growth 
factor independent 1 transcriptional repressor (Gfi1) to 
play an important role in macrophage polarization (95). 
Furthermore, AML blasts secrete increased arginase II, 
resulting in M2 polarization of macrophages, which in turn 
inhibits T cell proliferation (96).

Remodeling of the vascular niche

The modifications within the vascular niche are distinct 
from those observed in the endosteal niche. In the AML 
patient’s BM, an increased number of sinusoidal blood 
vessels fill the central marrow region. Padró et al. showed 
that the BM of patients with AML had significantly 
increased BM micro-vessel density (MVD) compared to 
healthy individuals (111). This is likely due to increased 
expression of VEGFA expression by AML cells in BM (97). 
Additionally, a study reported a positive correlation between 
MVD and the proliferation index of leukemic blasts (112). 
Kuzu et al. showed that AML patients exhibited increased 
MVD independent of increase in BM cellularity or presence 
of leukemic blasts and it was associated with shorter overall 
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survival (113). To understand the significance of increased 
microvascular density in AML, Passaro et al. analyzed 
vascular permeability in a mouse model of AML. They 
showed that increased nitric oxide signaling in ECs resulted 
in vascular leakiness and increased hypoxia in BM (98).

Pericytes are mural cells that are present along ECs on 
the vasculature. They provide structural support to blood 
vessels and are also crucial for hematopoiesis. Using BM 
biopsies of AML patients, preliminary study by Weidenaar 
et al. have shown that pericyte coverage is decreased in 
AML patients (97). Similarly, Passaro et al. showed reduced 
normal pericyte coverage in the BM of a patient-derived 
xenograft model of AML (98). Collectively, these studies 
suggest loss of pericyte coverage as a potential mechanism 
of altered vascular permeability in AML.

Alteration of BM adipocytes is also involved in AML 
development. Morphological changes and lipolysis are 
induced in adipocytes due to the uncontrolled proliferation 
of AML blasts resulting in a limited marrow cavity (102).

Altogether, these studies highlight a transformed 
BM niche in AML. The altered BM niche in AML 
reciprocally interacts with the AML blasts and influences 
their proliferation, survival, and apoptosis through various 
mechanisms. The following sections will focus on how these 
altered BM components affect leukemogenesis.

Regulation of leukemic blasts by the endosteal niche

As described in the sections above, AML blasts remodel 
the endosteum, and these remodeled endosteal regions 
are unable to support non-leukemic HSCs and cause 
disruption of normal hematopoiesis. Krevvata et al. 
showed that depletion of osteoblasts through genetic and 
pharmacological means in mice with AML promoted 
disease progression, while preservation of osteoblast 
numbers resulted in recovery of normal marrow function 
and prolonged survival of mice (114). Studies focusing 
on osteoblasts have identified diverse mechanisms in 
regulating leukemic pathogenesis. Krause et al. have shown 
that activation of TGF-β1 signaling through parathyroid 
hormone receptors on osteoblasts enhances engraftment 
in the MLL-AF9 mouse model (115). Kode et al. have also 
shown that activation of β-catenin in osteoblasts upregulates 
Notch signaling in HSCs and is sufficient to induce 
leukemic transformation in mice and may be implicated in 
the pathogenesis of human AML (116). A detailed metabolic 
study by Galán-Díez et al. showed that AML-derived 

oncometabolite kynurenine induces a proinflammatory state 
in osteoblasts through serotonin receptor 1B. This results in 
the secretion of inflammatory molecule acute-phase protein 
serum amyloid A by osteoblasts, which in turn selectively 
promotes AML blast proliferation (92). Together these 
studies highlight the importance of osteoblast-leukemia cell 
cross-talk in leukemic progression.

A study by Chow et al. described the importance of 
sympathetic neuropathy in AML mouse models (77). 
They showed that mice with denervated BM had increased 
infiltration of LSCs upon transplantation and decreased 
survival. Furthermore, they showed that inhibition of the 
β2 adrenergic receptor by antagonists resulted in extended 
leukemic cell proliferation while treatment with β2 
adrenergic agonist limited LSC expansion by rescuing the 
healthy BM niche (94).

Regulation of leukemic blasts by the vascular niche

The reprogrammed vascular niche plays a critical role in the 
regulation of leukemic pathogenesis. A study by Winkler 
et al. initially reported using the MLL-AF9 AML model 
that AML blasts up-regulate E-selectin expression on the 
BM ECs in mice with AML (100). Through experiments 
involving genetic or pharmacological inhibition of E-selectin 
expression, they proved that E-selectin is required for 
maintenance of LSCs in the BM. The same group later 
showed that contact of AML blasts with vascular E-selectin 
induces phosphoinositide 3-kinase PI3K/AKT, and rat 
sarcoma protein (RAS)/mitogen-activated protein kinase 
(MAPK) survival and regenerative signaling pathways 
within the BM AML blasts (101).

Vascular remodeling and increased vessel leakiness results 
in a hypoxic BMM and leukemic cells are better adapted 
to survive in hypoxic microenvironments compared to 
HSCs. Indeed, a study by Jensen et al. showed that hypoxic 
conditions in BM of leukemic rats severely inhibited the 
proliferation of normal HSCs compared to leukemic  
HSCs (99). Another study reported that hypoxic BM-
induced transcription of macrophage inhibitor factor (MIF) 
by hypoxia-inducible factor 1α (HIF-1α) in AML blasts and 
targeted inhibition of MIF improved survival in models of 
AML (117). Interestingly, the anti-leukemic role of HIF-
1α has also been reported previously. A study showed that 
HIF-1α repressed the expression of miR-17, and miR-
20a, which inhibited the expression of p21, and signal 
transducer and activator of transcription 3 (STAT3), which 
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ultimately resulted in decreased proliferation and induction 
of differentiation of AML cells (118).

Altered MSCs in the leukemic BM play a crucial role in 
leukemic progression. A study analyzed the gene expression 
patterns of MSCs derived from AML patients and found 
that AML-MSCs gene expression patterns impaired their 
ability to support the expansion of normal committed 
hematopoietic progenitors from umbilical cord blood 
compared to healthy donors, highlighting their contribution 
towards emergence or progression of leukemia (119). 
Another study identified that MSCs transfer mitochondria 
to AML blasts through AML-derived tunneling nanotubes, 
which increased AML cell survival, and inhibition of 
mitochondrial transfer improved survival in a mouse model 
of AML (88). Through in vitro co-culture experiments, a 
study reported that BM MSCs secrete soluble mediators 
like CXCL12, which increased activation of the mammalian 
target of rapamycin (mTOR) pathway and its downstream 
targets in primary AML cells, which ultimately increased 
long-term survival and proliferation of AML cells (89).

While adipocytes are generally known to inhibit 
normal hematopoiesis, they play an interesting role in 
leukemic pathogenesis. A study by Shafat et al. showed that 
adipocytes support the survival and proliferation of AML 
blasts in vitro. Furthermore, they showed that AML blasts 
induce lipolysis of adipocytes which results in the release of 
fatty acids, which are in turn utilized by the AML blasts for 
their survival and proliferation (103).

Mechanism of immune evasion

As discussed in the earlier sections, there is emerging 
evidence that normal hematopoiesis is suppressed by 
the LSCs which remodel the BM niche into a leukemia-
friendly microenvironment by increased hypoxia and 
inflammation in addition to metabolic adaptation (Figure 1).  
This ultimately enables immune system avoidance and 
the initiation of protective pathways that promote the 
advancement of leukemia (110). LSCs by their dominant 
proliferation-promoting signals deregulate the BM  
niche (120). MSCs through Toll-like receptor 4 (TLR4) 
offer protection to AML blasts from natural killer (NK) cell-
mediated killing by cell-cell contact-dependent mechanism 
(121-123). MSCs derived from AML patients further show 
their inhibitory effects by inducing regulatory T cells (Tregs) 
and upregulating the indoleamine 2,3-dioxygenase (IDO) 
pathway (124). MSCs derived from AML exhibit enhanced 

immunosuppressive and anti-inflammatory properties. 
This is demonstrated by their increased ability to inhibit 
lymphocyte growth in vitro, as well as more significant 
reduction in pro-inflammatory cytokine secretion, such 
as IL-10, when compared to MSCs derived from healthy 
donors (125).

Leukemic cells also present deregulated energy 
metabolism, increasing competition for critical nutrients 
that result in increased release of metabolites such as 
reactive oxygen species (ROS) that have inhibitory effects 
on the immune subsets (126). Additionally, the metabolic 
requirements of leukemia cells are sustained by MSCs 
that differentiate into adipocytes, forming a distinctive 
microenvironment (127,128). Within this environment, the 
transfer of fatty acids to leukemia cells is facilitated through 
fatty acid binding protein 4 (FABP4), promoting fatty acid 
oxidation (FAO) (103,129). An abundance of fatty acids 
can impede the functions of effector T-cells and promote 
regulatory T-cell (Tregs) differentiation (130). FAO can 
also hinder the activation of effector T-cells by increasing 
programmed cell death protein 1 (PD-1) expression and 
suppressing interferon-gamma (INF-γ) secretion while 
stimulating Treg cell production via the activation of the 
MAPK signaling pathway (131). 

The  oxygen-regu l a t ed  component  HIF-1α  i s 
overexpressed in the leukemic niche (132). HIF-1α 
signaling on both the AML blasts and the stromal cells 
promotes the expression of VEGF, C-X-C chemokine 
receptor type 4 (CXCR4), CXCL12, and SCF (133). AML 
blasts and especially LSCs express CXCR4 on their surface 
and migrate in response to CXCL12 (134), decreasing 
normal HSCs in the leukemic niche resulting in altered 
immune cell homing (94). Increased levels of CXCR4 in 
AML blast cells have been demonstrated to be associated 
with unfavorable outcomes (135). Further, upregulation of 
surface CXCR4 is induced by chemotherapy which causes 
stromal protection from additional chemotherapy-induced 
apoptosis (136).

Role of niches in treatment-refractory AML patients: 
mechanisms of therapy resistance 

Analogous to normal HSCs, AML cells engage in both 
physical and functional interactions with the stroma in the 
BMM (137). AML arises when LSCs modify the regular 
BMM for their benefit (137). This transformed niche 
collaborates with the LSC, supporting its quiescence and 
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survival by offering structural reinforcement or secreting 
various cytokines to elude treatment (137,138). These 
connections are crucial in the onset, advancement, and 
recurrence of AML (139). Quiescent LSCs located in 
osteoblast-rich regions of BM are sheltered from cell cycle-
dependent chemotherapy (140). Both soluble elements 
and cell-cell contact-mediated paths safeguard AML cells 
from chemotherapy while being cocultured with stromal 
cell layers (141,142). For instance, both direct stromal 

interaction and stroma-derived soluble factors play a role in 
extracellular regulated kinase (ERK)-mediated resistance to 
FMS-like tyrosine kinase 3 (FLT3) inhibitors (137).

Attachment and act ivat ion of  pro-survival  and 
proliferative pathways in the leukemic blasts occur through 
the interaction of the β-1 integrin receptor family members, 
specifically very late antigen-4 (VLA-4) and VLA-5, as well 
as the β-2 integrin lymphocyte function-associated antigen 
1 (LFA-1) found on leukemic cells. These receptors interact 

BA Normal BM niche Leukemic BM niche

Figure 1 Remodeling of hematopoietic BM niche during AML. (A) Normal BM niche is made up of two compartments of (I) endosteal 
niche-harboring quiescent HSCs and (II) vascular niche—HSC proliferative niche supporting normal hematopoiesis. All the components 
of BM niches act in the orchestrated manner to support balanced hematopoiesis producing required numbers of mature blood cells as and 
when required. (B) BM niche transforms drastically during leukemogenesis. These changes inhibit normal hematopoiesis and support LSC 
and leukemic blast proliferation. Various changes such as—loss of osteoblast/osteoprogenitor ratio, increased frequency of inflammatory 
osteoblasts, reduced osteoclasts, in endosteal niche; increased SMAD1/5 signaling in MSCs, increased E-selectin and VEGFA in endothelial 
cells, increased microvessel numbers, reduced pericyte coverage leading to leaky vessels. Along with this increase in macrophage polarization 
and neuropathy is observed during AML progression. Further, increased hypoxia in BM, lipolysis in adipocytes and inflammation in BM 
microenvironment favors the shifting of hematopoiesis from normal to leukemic state. Red arrows indicate increased levels of corresponding 
molecules or phenomenon. Black arrows denote the trajectory of effect of corresponding molecules. Green circular arrows represent 
proliferation while red circular blunt arrows represent blockage of proliferation. This figure was created with Biorender.com. BM, bone 
marrow; AML, acute myeloid leukemia; HSC, hematopoietic stem cell; MSC, mesenchymal stem cell; CAR MSC, CXCL12 abundant 
reticular MSC; SCF, stem cell factor; LSC, leukemic stem cell.
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with stromal ligands such as VCAM-1, fibronectin, and 
intracellular adhesion molecule 1 (ICAM-1) (143-145). 
Interaction of VLA-4 on the leukemia cells with ICAM-1 
on the MSC activates the nuclear factor kappa B (NF-κB)  
signaling pathway which reduces the sensitivity to 
chemotherapy in the leukemia cells (146).

Leukemic cell survivability is increased by yet another 
mechanism, where MSCs transfer mitochondria through 
endocytic pathways or tunneling nanotubes or gap 
junctions to AML cells; this process is further improved 
by chemotherapy and linked with increased adenosine 
triphosphate (ATP) synthesis in AML cells through oxidative 
phosphorylation (147,148). Initiation of mitochondrial 
transfer occurs via AML-derived NOX2 through superoxide 
generation (88), and the surface molecule CD38 also has 
a crucial role (149). High levels of ROS generated in the 
leukemic niche due to continuous activation of NOX and 
mitochondrial production from oxidative phosphorylation 
enable AML blasts to evade anti-leukemic effector 
lymphocytes. Free radicals deactivate T and NK cells by 
triggering PAR-1 dependent apoptosis (150-152). Further, 
in the leukemic niche, extracellular ATP is significantly 
increased which is converted to immunosuppressive mediator 
adenosine by tumor cells, Tregs, and myeloid-derived 
suppressor cells (MDSCs) (153,154). AML progression causes 
substantial remodeling of vascular endothelium mainly in the 
endosteal BM region with increased vascular permeability, 
decreased blood flow, and vessel loss resulting in a hypoxic 
leukemic niche (93,98). Due to this, several BM regions are 
hypo-perfused resulting in decreased drug biodistribution 
and immune cell trafficking (155,156). Additionally, the 
ability of immune cells to adhere to the endothelium is 
diminished due to the elevated E-selectin levels caused by 
increased inflammation from AML blasts (157). There are 
many reports suggesting cholesterol homeostasis as one of 
the mechanisms of AML chemoresistance. Cholesterol levels 
are significantly increased in AML samples exposed in vitro 
to chemotherapy. Blocking these elevated acute cholesterol 
levels may sensitize AML cells for therapy (74,158). These 
mechanisms of therapy resistance are briefly illustrated in 
Figure 2.

Future therapeutic options targeting leukemic 
niches for AML treatment

The BMM is significantly altered by leukemic cells for their 
survival and proliferation. This remodeling is a result of the 
complex interplay between LSC, their BM niche, and the 

outcome of treatment. The molecular players involved are 
highly dynamic, inducing molecular changes that converge 
to activate survival, protective autophagy, or quiescence of 
LSCs. The influence of the leukemic microenvironment 
on therapeutic outcomes or the probable targets of 
the leukemic microenvironment has not been better 
characterized. Identifying these protective mechanisms 
to target LSC along with the current therapeutic regime 
can be the combinatorial future approach (159). Targeting 
niche cells/LSCs to reduce leukemic progression without 
disrupting the normal stem cell self-renewal or encouraging 
migration of leukemic cells out of the protective BM niche 
can be a promising strategy to increase their susceptibility 
to treatment (160).

Disrupting the CXCL12/CXCR4 axis that releases AML 
blasts from the BM by small-molecule inhibitors [plerixafor 
(AMD3100)], short peptides [BL-8040 (BKT140)], and 
antibodies [ulocuplumab (BMS-936564/MDX-1338)] 
reported can be used to effectively overcome therapy 
resistance (137,161). A tellurium compound AS101 can be 
used to disrupt the pro-survival and proliferative pathways 
in the leukemic blasts through VLA-4 (137). A potent 
E-selectin inhibitor GMI-1271 may reduce the adhesion 
of AML cells to the stroma and enhance chemotherapy 
efficiency (137) (Table 3).

As discussed earlier, MSCs transfer mitochondria 
to leukemic blasts via endocytic pathways, tunneling 
nanotubes, or gap junctions. Daratumumab, a monoclonal 
anti-CD38 antibody approved to treat multiple myeloma, 
has demonstrated the ability to hinder the transportation 
of mitochondria to AML cells by deactivating peroxisome 
proliferator-activated receptor-gamma coactivator (PGC)-
1 alpha, decreasing superoxide levels with N-acetylcysteine, 
and obstructing connexin-43 gap-junctions. This ultimately 
reduces the oxygen consumption rate and suppresses the 
growth of leukemic cells (88,162-164). A phase II clinical 
trial has been reported for daratumumab-hyaluronidase 
in treating chemotherapy-resistant and relapsed minimal 
residual disease (MRD) in T-cell acute lymphoblastic 
leukemia. Counteracting hypoxia by repairing the 
malfunctioning tumor vasculature with NOS inhibitors 
could potentially augment drug delivery and improve T-cell 
functionality (98). There is an interesting report, where 
the cholesterol-lowering drug lovastatin induced cell-
autonomous inhibition of LSCs in a co-culture with MSCs 
and further prolonged the survival of mice injected with 
lovastatin pretreated LSC-stromal co-cultures (158,165). 
Targeting the deregulated energy consumption of LSCs by 
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FAO inhibitors like avocatin B in combination with other 
drugs can eliminate residual LSC populations with adapted 
energy homeostasis (166). The compounds/drugs under 
clinical trial such as CXCR4 inhibitors, VLA-4 inhibitors, 
E-selectin inhibitors, Hypoxia-activated agents, and 
cholesterol synthesis inhibitors are listed with intervention/
treatment regimen, patient population, and clinical trial 
phase details in Table 3. 

Conclusions

A better understanding of LSCs, the surrounding 
microenvironment, and the molecular signals may help 
develop niche-targeted treatment of refractory AML. 
Accordingly, novel strategies can be developed to combat 
LSCs protected in the BM niche by targeting deregulated 
molecular pathways or dysfunctional components within 
the niches along with conventional chemotherapy.

Mechanisms of therapy resistance

Figure 2 Mechanisms of therapy resistance in AML. Immune evasion: MSCs protect LSCs and AML blast from NK cell mediated killing 
through TLR4, and also induce T-reg cells. MSCs also suppress the lymphocyte proliferation by reduced secretion of pro-inflammatory 
cytokines. Along with this, increased T cell death due to increased fatty acids, increased ROS and increased adenosine helps AML blasts to 
escape ant-leukemic effector lymphocytes. Metabolic effects: AML MSCs differentiate into AML supportive adipocytes. Stromal cells also 
protect LSCs from drug-induced apoptosis by CXCR4 upregulation and increasing Hif-1α expression in them. Other factors: interaction 
of VLA4 from AML cells with ICAM1 on MSCs reduced chemotherapy sensitivity of AML cells via NF-κβ pathway. Decreased blood 
flow in AML BM also decreases the bio-distribution of anti-cancer drug. Osteoblasts protect the quiescent LSCs from chemotherapy. Red 
arrows indicate increased levels of corresponding molecules or phenomenon. Black and green arrows denote the trajectory of effect of 
corresponding molecules. Black circular arrows represent proliferation while red circular arrows represent increased proliferation. Red lines 
with blunt heads represent the blockage of the activity. This figure was created with Biorender.com. AML, acute myeloid leukemia; MSC, 
mesenchymal stem cell; LSC, leukemic stem cell; NK, natural killer; ROS, reactive oxygen species; BM, bone marrow.
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Table 3 Clinical trials targeting the bone marrow niche modification during acute myeloid leukemia

No. Inhibitors Intervention/treatment Patient population
ClinicalTrials.gov 

ID
Phase

1. CXCR4 
inhibitors

Plerixafor + daunorubicin/cytarabine Untreated, 18–70 years NCT00990054 I

Plerixafor + daunorubicin/clofarabine  
and daunorubicin/cytarabine

Untreated, 60 years and older NCT01236144 I

Plerixafor + G-CSF,  
mitoxantrone/etoposide/cytarabine

Relapsed/refractory, 18 years and older NCT00906945 I

Plerixafor + decitabine Untreated, 60 years and older NCT01352650 I

Plerixafor + cytarabine/etoposide Relapsed/refractory, 3–30 years NCT01319864 I

Ulocuplumab +  
mitoxantrone/etoposide/cytarabine

Relapsed/refractory, 18 years and older NCT01120457 I

CX-01 + idarubicin/cytarabine Untreated, 18–80 years NCT02056782 I

Plerixafor +  
mitoxantrone/etoposide/cytarabine

Relapsed/refractory NCT00512252 I/II

Plerixafor + clofarabine Untreated, 60 years and older NCT01160354 I/II

Plerixafor +  
fludarabine/idarubicin/cyarabine/G-CSF

Second-line induction, up to 65 years NCT01435343 I/II

Plerixafor +  
busulfan/fludarabine/thymoglobulin

Allogeneic stem cell transplantation,  
18–65 years

NCT00822770 I/II

BL-8040 (BKT140) + cytarabine Relapsed/refractory, 18–75 years NCT01838395 IIa

2. VLA-4 inhibitor AS101 + chemotherapy Untreated, 60 years and older NCT01010373 II

3. E-selectin 
inhibitor

GMI-1271 (uproleselan) + chemotherapy Relapsed/refractory, 18–60 years NCT04839341 I

GMI-1271 + fludarabine + cytarabine Relapsed/refractory, up to 17 years NCT05146739 I

GMI-1271 +  
mitoxantrone/etoposide/cytarabine

Relapsed/refractory or untreated,  
60 years and older

NCT02306291 I/II

GMI-1271 + chemotherapy Relapsed/refractory, 18 years and older NCT02306291 I/II

GMI-1271 + chemotherapy Relapsed/refractory, 18–75 years NCT05054543 and 
NCT03616470

III

4. Hypoxia-
activated 
agents

TH-302 Relapsed/refractory, 18 years and older NCT01149915 I

5. Cholesterol 
synthesis 
inhibitor

Pravastatin + idarubicin + cytarabine Untreated, 18–74 years NCT01831232 NA

Pravastatin + idarubicin + cytarabine Untreated and relapsed/refractory,  
18 years and older

NCT00107523 I

Atorvastatin Relapsed/refractory, 18 years and older NCT03560882 I

Pitavastatin +  
venetoclax/azacytidine/decitabine

Relapsed/refractory, 18 years and older NCT04512105 I

Pravastatin +  
cyclosporine + etopside/mitoxantrone

Relapsed/refractory, 18 years and older NCT01342887 I/II

Lovastatin + cytarabine Relapsed/refractory, 18–99 years NCT00583102 I/II

Pravastatin + idarubicin + cytarabine Relapsed/refractory, 18 years and older NCT00840177 II

G-CSF, granulocyte-colony stimulating factor.
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