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Commentary

A sensible approach to targeting STAT3-mediated transcription
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Many cancers overexpress oncogenic proteins that drive 
robust tumorigenic signaling cascades which can be 
amenable to therapeutic targeting. However, inhibition of 
these proteins has been met with limited success to date, 
at least in part, due to the numerous feedback mechanisms 
driven by activation of alternative signaling pathways. 
To avoid the toxicities of targeting multiple receptors 
and oncogenic proteins, drug development focused on 
transcription factors is attractive. Transcription factors such 
as NF-κB, beta catenin and signal transducers and activators 
of transcription (STATs) are activated in the cytoplasm 
by numerous upstream signaling nodes before shuttling 
to the nucleus to drive transcription of mitogenic and 
antiapoptotic genes. Their ability to convey signaling from 
multiple oncogenic drivers and mediate gene expression 
makes them very promising therapeutic targets. An article 
published in November 2015 by Hong et al. in the journal 
Science Translational Medicine demonstrated that targeting 
the STAT family member STAT3 using an antisense 
oligonucleotide (ASO) AZD9150 resulted in potent and 
specific inhibition of STAT3 expression and suppression of 
lymphoma and lung cancer growth in preclinical models (1). 
They further observed antitumor activity with AZD9150 
in a dose escalation study with 25 treatment-refractory 
patients. 

STATs are a family of transcription factors that are 
phosphorylated by various upstream activators. Upon 
phosphorylation STATs enter the nucleus and form 
transcription complexes via their DNA-binding domains 
(DBD) (2,3). One STAT family member, STAT3, is 
constitutively active in numerous tumor models including 
lymphoma, lung cancer and head and neck squamous cell 
cancer (HNSCC). STAT3 drives the expression of genes 
such as CCND1, MCL1, BCL2L1, BIRC5, IL6 and MYC (4) 

which have both tumor-intrinsic and extrinsic effects. 
The STAT3 pathway can be targeted by inhibiting 

ups t ream JAK k inases  (e .g . ,  AZD1480) ,  STAT3 
dimerization (e.g., Stattic) (5) or STAT3-mediated DNA 
binding (STA-21, STAT3 Decoy) (6,7). However, JAK 
inhibitors have resulted in anemia and thrombocytopenia in 
clinical trials and JAK-independent mechanisms of STAT3 
activation in cancer have been reported (8). Stattic has 
displayed promising potential in different cancer models but 
has also been shown to promote increased redox reactions 
that can trigger off-target effects (9). To specifically target 
STAT3, Hong et al. investigated the inhibition of STAT3 
mRNA expression and transcriptional output using ASO 
technology. The authors modified their STAT3 ASO with 
constrained ethyl residues (cET) on either side of an 8–10 
base phosphorothioate-modified deoxynucleotide, which 
improved stability and efficacy of targeting STAT3 mRNA 
both in vitro and in vivo. This was a critical finding since a 
major limitation of prior ASOs has been their poor cellular 
uptake. Importantly, the authors’ cET modification to the 
STAT3 ASO permitted lipid-independent uptake into cell 
lines in vitro. Additionally, the modified STAT3 ASO did 
not inhibit STAT1 or STAT5 underscoring the specificity 
of the ASO. This is a key finding since another group of 
STAT3 inhibitors, the STAT3 decoy oligonucleotides, have 
been shown to inhibit both STAT3 and STAT1 (10,11). 
STAT1 plays an important role in negatively regulating 
cell growth (12,13); therefore, cross-inhibition of STAT1 
by STAT3 decoys may diminish the antitumor effects of 
STAT3 blockade. However, STAT3 decoys with specificity 
to STAT3 alone are currently being developed (14).

Hong et al. observed that AZD9150 efficiently depleted 
STAT3 mRNA levels and abrogated the growth of 
lymphoma and NSCLC xenograft tumors in vivo when 



Bhola et al. Antisense targeting of STAT3

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(Suppl 1):S57atm.amegroups.com

Page 2 of 3

used as a single agent. Notably, STAT3 activation has been 
shown to be induced by inhibitors of receptor tyrosine 
kinases or MEK in various oncogene-addicted solid 
tumor models (15-17). In one such study, RNAi-mediated 
inhibition of the STAT3 was sufficient to overcome 
erlotinib resistance (15). Furthermore, clinical testing 
of gefitinib and erlotinib in lung cancer demonstrated 
complete responses in patients with low STAT3 levels 
(RNA-seq) and increased recurrences in patients with 
high STAT3. Therefore, while AZD9150 may be potent 
against lymphomas as a monotherapy, combination of 
AZD9150 with other oncogenic targeting agents may be a 
promising therapeutic approach against solid tumors. This 
is concordant with the clinical efficacy observed in certain 
models by Hong et al., where AZD9150 resulted in tumor 
reduction in patients who failed prior therapeutic regimens. 

While the findings by Hong and co-authors demonstrate 
the impact of STAT3 inhibition on tumor growth, their 
promising results with AZD9150 also highlights the 
potential therapeutic application of ASOs. In earlier 
studies, the application of methoxyethyl residues (MOEs) 
and locked nucleic acids (LNAs) proved to enhance the 
potency of ASOs; however, these additions were linked 
with increased toxicity when tested in preclinical and 
clinical settings. Combination of the structural elements of 
MOEs and LNAs led to the development of constrained 
MOEs (cMOE) and ethyl residues (cET) (18). Addition 
of the cMOE or cET modifications to ASOs improved 
potency and decreased susceptibility to nuclease digestion 
to a greater degree than the LNA or MOE modifications 
alone. As shown by Hong et al., AZD9150 displayed greater 
uptake and potency compared to the second-generation 
MOE-containing ASOs. The advances made in ASO 
chemistry can now be exploited for other difficult-to-target 
genes or driver mutations beyond STAT3. This chemistry 
can also be applied to the development of oligonucleotide 
decoy compounds that inhibit protein interaction functions 
and target specific cells. For example, Zhang et al. have 
shown that an immune cell-specific STAT3 decoy abrogated 
leukemia growth and immune checkpoint signaling in 
a mouse model (19). In this case, the STAT3 decoy was 
conjugated to a CpG decoy which targets the Toll-like 
receptor 9 (TLR9) found on immune cells. Their decoy 
only used phosphorothioate modifications to prevent 
nuclease digestion. Based on the findings with AZD9150, 
addition of the cET residues to the CpG-STAT3 decoy may 
further improve the efficacy and stability of this compound 
for clinical application. 

Taken together, the results by Hong et al. demonstrate 
the potency of their ASO technology in achieving specific 
inhibition of STAT3 and the efficacy of their compound 
in promoting antitumor effects in preclinical and clinical 
settings. Since the patient cohort used for the dose 
escalation study was small, further investigations are needed 
to assess the efficacy and toxicity of AZD9150 in human 
cancer patients. Additionally, in vitro studies using RNAi 
molecules have been shown to activate distinct feedback 
mechanisms from those activated by pharmacological 
inhibitors (20). Evaluation of the potential feedback 
mechanisms activated by AZD9150 and similar ASOs also 
warrants further investigation in light of the promising 
preliminary findings reported by Hong et al. for AZD9150.
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