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Abstract: Radiotherapy is a mainstay of treatment for head and neck cancer. However, the morbidity of
treatment remains a clinical challenge. Molecular profiling has provided further insight into tumor biology and
tumor sensitivity to radiation, and this information could be used to personalize treatment. In this review, we discuss
published signatures of radiosensitivity and discuss the pathways that may be important in dictating radiation

sensitivity. Applications of these signatures could result in less morbidity if dose de-escalation efforts are successful.
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Introduction

Head and neck cancer is the sixth most common cancer
in the world with about 600,000 new cases annually, with
the 5-year overall survival rates between 50-60%. Head
and neck cancers comprise tumors of the oral cavity,
larynx, pharynx, salivary glands, and nasal passages, with
squamous cell carcinoma (SCC) being the most common
histological type. Currently, the known risk factors for head
and neck squamous cell carcinoma (HNSCC) in developed
countries include smoking and alcohol consumption (NCI
Surveillance, Epidemiology, and End Results Program,
http://seer.cancer.gov/statfacts/html/laryn.html). These
represent about 1% of all new malignancies in the United
States and the cumulative cost of care for patients with
head and neck cancer is estimated at over 4 billion dollars
annually by the year 2020 (NCI Cancer Prevalence and
Cost of Care Projections, (https://costprojections.cancer.
gov/graph.php). This is in part due to the side effects
related to standard therapies, which consist of surgery,
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chemotherapy, and/or radiation. Effective strategies to
alleviate unwanted toxicities to improve patient quality of
life and reduce costs are elusive.

From a biological perspective, the human epidermal
growth factor receptor (EGFR) was initially shown to be a
key factor in the aggressiveness of head and neck cancers
and their response to radiotherapy (1). This led to the
landmark study combining the EGFR inhibitor cetuximab
with radiation, which showed an overall survival benefit
compared to radiation alone (2). Since then, no biologic
therapy against new targets has shown benefit for patients
with head and neck cancer. However, in recent years, it
has become evident that the human papilloma virus (HPV)
is not only an important risk factor, particularly amongst
non-smokers; but is also associated with radiosensitivity
in oropharyngeal cancer. Nonetheless, its clinical utility in
other types of HNSCC is controversial (3,4).

In this review, we discuss studies which report various
biomarkers of radiation sensitivity in head and neck cancer
and discuss the pathways which play important roles in the
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Figure 1 Targetable pathways and biomarkers of radioresistance in head and neck cancer. Relationship of various biomarkers of

radioresistance and the associated signaling pathways. EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition;

AMPK, adenosine monophosphate-activated kinase.

regulation of radiosensitivity. An overview of pathways is
shown in Figure 1.

Biomarkers and radiosensitivity

Radiotherapy is one of the most important treatment
modalities for various types of cancers including head and
neck cancer. Disease-related mortality in HNSCC is due
primarily to locoregional failure, thus understanding the
mechanisms of radioresistance are imperative. Irradiation
is known to affect various cellular processes to promote
cellular damage and thus trigger tumor death. Some of
those cellular mechanisms altered by irradiation include
DNA repair, cell cycle regulation, and the reoxygenation
of tumors. Technological advances have achieved
improvements on targeting the irradiation precisely to the
gross tumor and development of different fractionation
modalities to optimize the biological effects of irradiation.
Nonetheless, radiosensitivity still varies between tissues and
tumor types.

Irradiation induces changes in gene expression in
multiple cancer cell lines including HNSCC. In the
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genomic era, this type of comprehensive profiling has
become more important in the pre-irradiation setting in
order to identify molecular tumor signatures to predict
radiosensitivity (7able 1). Identifying these biomarkers for
various tumor types would permit a better stratification of
patients based on their predicted response to irradiation.
They would also increase the understanding of the intrinsic
cellular mechanisms of radioresistance in cancer, thus
promoting the development of adjuvant medications
to personalize radiosensitization and improve patient
outcomes.

To this end, the Torres Roca’s group created an
algorithm to assign a radiosensitivity index (RSI) to tumors
based on their genomic profile, in order to predict their
response to irradiation (17-19). They identified a set of
genes that were strongly associated to radiosensitivity and
created RSI gene signature. Their findings in various types
of cancers including rectal, esophageal, head and neck
cancer, and breast cancer. Gene Ontology analysis showed
that these genes were involved in DNA damage response,
histone deacetylation, cell-cycle regulation, apoptosis, and
proliferation; all of which play important roles in radiation
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response. The sensitivity and specificity of this molecular
signature of radiosensitivity was high, and it did not
correlate with response to other types of therapies.

Although the RSI has been validated in various cancer
types, work from others suggests that each tumor behaves
differently and thus genomic data cannot be extrapolated
to all tumor types. In HNSCC, this aspect is supported
by the previous findings of the positive-HPV status being
associated to radiosensitivity only for oropharyngeal cancers
compared to other HNSCC tumor sites. Given these
limitations, the results from previous work in HNSCC (Table
I) are difficult to be interpreted particularly since there has
been heterogeneity amongst the types and subtypes of the
tumor tissues used, as well as the treatments received prior
to analysis. Some studies have also suggested that a stem cell
fraction within the tumors are the initiating pre-cancerous
cells (20,21). These data highlight the importance of the
context in which biomarkers are identified when designing
signatures of radioresistance for HNSCC.

Recently, de Jong et al. [2015] reported a gene signature
of radiosensitivity specific to laryngeal HNSCC (5). They
used 32 HNSCC cell lines from primary laryngeal cancers
with known radiosensitivity, which were not exposed to
radiation or chemotherapy prior to collection. Their
findings were then validated using patient tumor samples
and genetically modified cell lines.

Statistically significant mRNA expression differences
were found between cell line groups. They also observed
an inverse correlation between microRINAs (miRs) relative
to the cell lines’ radioresistance. miRs are short segments
of non-coding single-stranded RNAs composed of 21-24
nucleotides that suppress gene expression by binding to
complementary segments at the 3’-untranslated region of
mRNAs. Since the discovery of miRs by Victor Ambros
and Gary Ruvkun in 1993, there has been extensive work to
characterize their specific targets and role in human disease
(22,23). A role in cancer was first suggested by Calin ez al.
[2002] reporting a deletion of miR-15 and miR-16 in B-cell
chronic lymphocytic leukemia (CLL) (24,25).

Twelve miRs were identified and linked to the regulation
of the differentially identified mRNAs. These findings
from their in vitro studies were then validated using samples
from 34 pts with T2-3 tumors who were treated with
radiotherapy alone with a curative intent (17 with local
recurrence, 17 without local recurrence). The expression
levels of the most significant miRs differentially expressed
in the cell lines was tested in these patient tumor samples.
Patients with local recurrence were found to have low

© Annals of Translational Medicine. All rights reserved.
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miR-203 levels in their tumor samples. Although statistical
significance was not achieved for other miRs, samples
from patients with higher recurrence rates also showed
lower expression of miR-452, miR-200b, and miR-141.
The cellular functions associated with the differentially
expressed mRNAs and miRs suggested epithelial-
mesenchymal transition (EMT) mechanisms as predictive
of radioresistance. However, allocation of the correct gene
targets for every miR remains a challenge. Thus to validate
that the differentially expressed mRNAs were involved in
EMT, they used two sets of cell lines genetically modified
to undergo EMT and their respective parental controls.
The cells that had undergone EMT were more resistant to
radiotherapy.

MicroRNAs and EMT

Multiple studies in cancer suggest that miRs play a role in
cancer pathogenesis by their regulatory effects on EMT.
EMT is a cellular developmental process associated with
increased cellular mobility, migration, and invasion of cells.
Thus EMT appears to be one important mechanism of
tumor metastasis including in laryngeal cancer (26). Various
pathways have been identified as potential targets to prevent
EMT in cancer. Yang et al. [2016] recently proposed FAK/
PI3K and AURKA as potential targetable pathways (27,28)
(Figure I).

In relation to the role of miRs in EMT, miR-200 family
and miR-203 have been shown to be negative regulators
of EMT (29). This appears to be mediated by a double
negative feedback loop between Zeb1/2 and miR-200 family.
Hypoxia and TGFp upregulate the expression of Zebl1/2
which repress miR-200 gene expression thus initiating
EMT. Conversely, increased levels of miR-200 inhibit
Zeb1/2 and the cell status switches from mesenchymal to an
epithelial state. The role of miR-203 in laryngeal cancer as
suggested by de Jong’s findings are not surprising since this
association with EMT has also been found in other cancers.
Upregulation of Zeb1/2 and Snaill/2 suppress miR-203 in
prostate and breast cancer cells, which then promotes EMT
and tumor metastasis.

EMT and radiosensitivity

Recent work from Johansson er 4/. [2016] also supports
a role of the EMT process in radioresistance (30). They
found expression profiles of EMT signature genes, CDH1
(E-cadherin), CDH2 (N-cadherin), FOXC2, TWIST,

atm.amegroups.com Ann Transl Med 2016;4(24):524
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VIM, and FNI1 in cell lines from 25 HNSCC primary
tissues. Amongst the 25 cell lines, 4 showed a higher
expression of the EMT signature genes. These four lines
with EMT signature showed a mesenchymal morphology,
higher migratory capacity, and radioresistance. It is also
important to note that the 4 lines with highest EMT
signature had a CD44 high/EGFR Low pattern previously
associated with stemness in HNSCC and in mammary
tumor cells.

The EMT signature was similarly observed in both the
radioresistant cell lines and tumors from patients in the de
Jong study, which includes a list of genes that also define
cancer stem cells (31). Two cell lines that showed low
expression of EMT genes were induced to undergo EMT
via upregulation of the TGFp pathway. Taken together,
these data suggest that radioresistant cells exhibit EMT
properties and biomarkers associated to EMT regulatory
mechanisms.

Other pathways of radiosensitivity

One of the most common signaling pathways associated
to radiosensitivity is the EGFR-PI3K/AKT pathway (32).
In vitro exposure of prostate cancer cells to dual inhibitors
of the PI3K/mTOR pathway triggered radiosensitization
by shifting the cell cycle towards arrest in the G2 phase
of the cell cycle. PI3K/mTor inhibition at G2 also caused
a reduction in DNA double strand base repair and non-
homologous end joining repair mechanisms, repressed
colony formation, and induce apoptosis.

A recent relationship was reported between adenosine
monophosphate-activated kinase (AMPK) and radioresistance
in colon cancer samples (33). AMPK is a known regulator
of cellular energy and reprogramming metabolism.
Radioresistant tumors were found to have up-regulation
of the AMPK protein and AMPK mRNA levels. On the
contrary radiosensitive colon cancer cells showed down
regulation of AMPK mRNA and protein levels. Further,
activating the AMPK pathway in cancer cells with metformin
promoted radioresistance #z vitro, while inhibition of AMPK
pathway by RNAi or chemical molecules re-sensitized
radioresistant cancer cells. This study demonstrates the
possibility of using AMPK pathway inhibitors as targeted
therapies to enhance the radiosensitivity of tumors.

A proteomic and transcriptomic analysis of HPV-negative
HNSCC was also recently performed that identified several
proteins that were dysregulated in radioresistant cells
including FGFR, ERK1, EGFR, and PTK2/FAK (34).
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In vitro inhibition of PTK2/FAK, but not FGFR, led to
significant radiosensitization in several HNSCC cell lines.
The mechanisms appeared to be potentiation of DNA
damage by increased G2/M arrest of tumor cells. The
PTK2/FAK protein expression was associated with its gene
copy number, and correlated with outcomes on a cohort
of HNSCC patients treated with radiation. A similar
association was observed in the Head and Neck Cancer
subgroup of the cancer genome atlas (TCGA). Thus,
PTK2/FAK copy number could be a predictive genomic
marker of radioresistance in HNSCC.

Summary

There is tremendous potential in this era of precision
medicine to apply molecular signatures to predict the
response of various tumors to radiotherapy. Many pathways
are known to regulate radiation sensitivity, and novel
biomarkers such as miRs are emerging to regulate such
pathways. More evidence supports the EMT pathway in
promoting radioresistance, and key players of EMT can be
potentially targeted to enhance radiosensitivity of tumors
including EGFR, TFGp, mTOR, PKI3 and AMPK.
These tindings warrant further validation studies before
implementing these signatures into the clinic.
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