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Editorial

Exosome-like vesicles of helminths: implication of pathogenesis 
and vaccine development
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Helminthes are multicel lular parasit ic  pathogens 
including nematodes (roundworms), cestoda (tapeworms) 
and trematoda (flukes) (1). These parasites cause hosts’ 
weakness and diseases by living in and feeding on living 
hosts, by receiving nourishment (1). Deep understanding of 
mechanism between parasites and hosts may help to develop 
a novel and effective intervention against parasitic diseases.

Extracellular vesicles (EVs) are small membrane bounded 
vesicles that formed via the invagination of endocytic 
compartments generating multivesicular bodies (MVBs) and 
then released to the extracellular space after fusion of the 
MVBs with the plasma membrane. Consequently, various 
proteins, lipids, and nucleic acids are capsulated into EVs. It 
has been demonstrated that exosomes not only contribute to 
importantly biological functions such as tissue repair, neural 
communication, immunological response and the transfer of 
pathogenic proteins (2) but also regulate cellular functions, 
including motility and polarization, immune responses and 
development, and contribute to diseases such as cancer and 
neurodegeneration (3). In parasites, the pioneering study of 
parasitic exosomes was determined in Trypanosoma brucei in 
2001 (4). Subsequently, several protozoa such as Trichomonas 
vaginalis, T. cruzi, Leishmania spp., and helminths can also 
found to secrete EVs into living hosts (5). In helminths, 
secreted EVs have important roles in establishing and 
maintaining infection. There are two groups of EVs 
associated with parasitic infection: EVs secreted from 

extracellular pathogens and EVs produced by host cells 
infected by parasitic pathogens. Accumulated evidences 
indicated that pathogenic EVs can act as signal molecules 
both in parasite–parasite inter-communication as well as in 
parasite-host interactions for maintaining normal parasitic 
physiology and leading to the pathogenesis of host (6,7).

Firstly, Marcilla and co-worker demonstrated that 
two trematodes, Echinostoma caproni (E. caproni) and 
Fasciola hepatica (F. hepatica) can secrete exosome-like 
vesicles and these EVs can be taken up by host cells, 
suggesting their potential role in the communication 
between the parasites and the host (6). In addition, 
Cwiklinski et al. characterize the EVs that involved in 
pathogenesis and migration of parasite through host 
tissue, from F. hepatica (8). This was one of the first 
studies to compare soluble and vesicular secretome of  
F. hepatica and describe the EV biogenesis, cargo sorting, 
and membrane trafficking and cytoskeleton regulation 
in F. hepatica. EVs secreted from F. hepatica are enriched 
in miRNAs and are associated with immune regulatory 
function (9). In flatworm, earlier study examining the 
glycocalyx of Schistosoma mansoni (S. mansoni) cercariae 
indicated the potential presence of structures similar to 
MVBs around schistosomula tegument (10). Recent studies 
in S. japonicum demonstrated that adult schistosomes secrete 
exosome-like vesicles that are able to uptake by mammalian 
cells and their miRNA cargos could potentially regulate 



Riaz and Cheng. Exosome-like vesicles of helminths for parasitic diseases

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2017;5(7):175atm.amegroups.com

Page 2 of 3

the expression of host’s genes (11,12). Similarly, studies in 
S. mansoni also demonstrated that schistosomes can secrete 
EVs enriching small non-coding RNAs and proteins that 
some of them are similar to vaccine candidate (13,14). 
In nematodes, Buck and coworker demonstrated that 
Heligmosomoides polygyrus (H. polygyrus) secretes exosomes 
that are internalized by host cells. These are enriched in 
specific proteins, including those associated with exosome 
biogenesis (e.g., alix, enolase, HSP70), as well as many 
proteins of unknown function and contain miRNAs and 
other classes of non-coding RNA. In addition, they further 
demonstrated that the H. polygyrus exosomes could suppress 
immunological response in vivo (15). Overall, EVs from 
helminths could play important roles in the regulation of 
host immunological responses to tolerate the parasitic living 
in a final host.

As EVs carry proteins, lipids and nucleic acids from 
originating cells, these parasitic exosomes or exosome-like 
vesicles may express numerous proteins of their originating 
pathogen, and also release several molecules that involved 
in origination of these vesicles (16). These proteins and 
molecules could be potential biomarkers for diagnosis of 
helminths. Meanwhile, the concept for the use of exosomes 
as vaccine was first begun in the field of cancer where 
exosomes released from dendritic cells (DC) were used to 
mobilize immune system (17). Recent advances in disease 
control making scientists more confident for the use of 
antigen origin exosomes in vaccine progress. For instance, 
Toxoplasma gondii (T. gondii) infected DC-derived exosomes 
were used to protect against T. gondii infection in mice (18). 
DC derived exosomes from cells infected with the parasite 
Eimeria were found to convey protection in a poultry 
model (19). Furthermore, DC derived exosomes were also 
found to confer protective immunity against Leishmania in 
mice (20). In addition, exosome associated protein, CD63-
like tetraspanins, from cestode Echinococcus granulosus has 
been implicated for the targeting of recipient cells and 
considering the use of exosomal protein as a promising 
tool for vaccination against alveolar echinococcosis (21). 
Moreover, mice immunized with purified exosomes from 
E. caproni reduced the symptom severity and mortality 
and increase the level of IFN-γ, IL-4 and TGF-β (22). 
Cumulative evidence suggests that exosomes based vaccine 
may be an important strategy for developing novel vaccine 
against parasitic diseases.

Although current studies of helminths EVs significantly 
expand our knowledge of host-pathogen interaction, 
and our general understanding for roles of EVs involved 

in biogenesis and pathogenesis of helminths is steadily 
increasing. By deeply characterizing the functions of EVs 
may result in the identification of novel biomarkers and 
therapeutic strategies against neglected tropical diseases.
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