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Abstract: Since the initial discovery of missense MET mutations in hereditary papillary renal carcinoma (HPRC), 

activating MET mutations have been identified in a diverse range of human cancers. MET mutations have been 

identified in several functional domains including the kinase, juxtamembrane, and Sema domains. Studies of these 

mutations have been invaluable for our understanding of the tumor initiating activity of MET, receptor tyrosine 

kinase (RTK) recycling and regulation, and mechanisms of resistance to kinase inhibition. These studies also 

demonstrate that mutationally activated MET plays a significant role in a wide range of cancers and RTKs can 

promote tumor progression through diverse mechanisms. This review will cover the various MET mutations that 

have been identified, their mechanism of action, and the significant role that mutationally-activated MET plays in 

tumor initiation, progression, and therapeutic resistance.
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Deregulated MET signaling occurs in cancer through 
several mechanisms including overexpression, amplification, 
autocrine signaling, and mutational activation. In this 
chapter, we focus on the breadth of MET activating 
mutations that have been discovered and their tumorigenic 
consequences. Studies of these MET mutations have been 
invaluable for our understanding of the tumor initiating 
activity of MET, receptor tyrosine kinase (RTK) recycling 
and regulation, and mechanisms of resistance to kinase 
inhibition. In addition, we will discuss the various tumor 
types where MET mutations have been found and what 
these mutations have revealed about the significant role 
that mutationally-activated MET plays in tumor initiation, 
progression, and therapeutic resistance.

MET kinase domain mutations in hereditary 
papillary renal carcinoma (HPRC)

The first activating mutations identified within the MET 
gene were discovered by a genome-wide analysis of families 

with HPRC (1). These seminal studies were the first 
genetic evidence demonstrating oncogenic activity of MET 
in humans. The germline missense mutations identified 
in HPRC patients (M1149T, V1206L, V1238I, D1246N, 
and Y1248C) flank the critical tyrosine residues Y1234 and 
Y1235 within the kinase domain (Figure 1). In addition, 
Schmidt et al. discovered somatic missense MET mutations 
(D1246H, Y1228C, and M1268T) within the same region 
in sporadic renal carcinomas (1,2). Cytogenetic studies 
revealed that the papillary renal carcinomas harboring 
MET mutations also contained trisomy of chromosome 7 
(MET is located at 7q31). In each tumor, the Chromosome 
7 triplication consisted of the non-random duplication of 
the chromosome harboring the mutated MET allele (3). 
The requirement for a second copy of the mutant MET 
allele in papillary renal carcinomas suggested that there 
is a necessary dose of activated MET required for tumor 
initiation in the kidney. Importantly, these findings revealed 
that mutated MET is a driver gene in hereditary and 
sporadic papillary renal carcinomas (SPRC).
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Figure 1 Mutations found within the functional MET domains. MET is expressed at the plasma membrane: the extracellular portion 
consists of the Sema domain, a PSI domain, and four immunoglobulin-plexin-transcription (IPT) repeats; the intracellular region contains 
the juxtamembrane domain, the tyrosine kinase domain and the carboxyterminal docking site. The cancer type in which mutations have been 
identified is noted in parentheses: breast cancer (BC), cancer of unknown primary origin (CUP), colorectal cancer (CRC), gastric cancer (GC), 
hepatocellular carcinoma (HCC), hereditary papillary renal carcinoma (HPRC), non-small cell lung cancer (NSCLC), small cell lung cancer 
(SCLC), and sporadic papillary renal carcinoma (SPRC). Note that the amino acid positions are based on the position number reported in 
the original publications. The numbering of several sites has been amended in more recent sequence reports (i.e., T1010I is often reported 
as T992I).
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Understanding how mutations within the MET kinase 
domain affect activation and downstream signaling is vital 
for our understanding of dysregulated RTK signaling and 
for the development of effective kinase inhibitors. Several 
in vitro, xenograft, and transgene experiments verified the 
inherent oncogenic activity of the MET kinase domain 
mutations found in HPRC. These studies revealed that the 
kinase domain Met mutations induce constitutive receptor 
activation (2,4,5) and mutationally activated Met can be 
ligand-dependent or ligand-independent (5-8). Knock-
in in vivo models of the kinase domain mutations were 
developed to characterize how mutationally activated 
MET effects tumorigenesis from initiation to malignant 
progression. Germline knock-in mouse models were 
created carrying unique Met kinase mutations including 
WT, D1226N, Y1228C, M1248T, and M1248T/L1193V 
(9,10). Interestingly the different mutant Met knock-in lines 
developed unique tumor profiles including carcinomas, 
sarcomas, and lymphomas. For example, MetM1248T mice 
developed a mix of carcinomas and lymphomas while 
mice harboring D1226N, Y1228C, and M1248T/L1193V 
mutations developed a high frequency of sarcomas and 
some lymphomas. These mouse models also replicated 
the genomic events observed in human HPRC where 
nonrandom duplication of the mutant Met allele was 
observed in the majority of the tumors. Even though 
the knock-in mutation models never developed renal 
carcinomas, when placed on an FVB/N background, each 
Met mutant (except for D1226N) developed aggressive 
mammary carcinomas (11). Again, unique mammary 
carcinoma phenotypes were observed between the M1248T, 
Y1228C, and M1248T/L1193V lines (12). Since the only 
differences between these animals were the Met mutations 
and the murine background strain, this study indicated that 
either the mutated kinase structure itself or the level of 
kinase they impose (or both) influence the tissue-specificity 
for tumor formation. Overall, these studies demonstrated 
that the activating mutations affect more than just MET 
kinase activity and have the potential to drive tumorigenesis 
in numerous tissue types.

After the discovery of MET mutations in HRPC, 
studies in other solid tumors identified MET kinase 
domain mutations and some mutations outside the kinase 
domain in childhood hepatocellular carcinomas, breast 
cancer, colorectal cancer (CRC), head and neck squamous 
cell cancers (HNSCC), gastric carcinomas (GC), and 
cancers of unknown primary origin (CUP) (Figure 1)  
(13-21). For several years after the initial discovery, the 

small number of MET kinase activating mutations identified 
in other carcinomas suggested that mutations within the 
MET kinase domain were rare events in cancer. However, 
recent genomic screens have revealed that activating MET 
mutations are more frequent than initially thought (22) 
(COSMIC database at www.cancer.sanger.ac.uk/cosmic). 
The diversity of cancers in which MET mutations have been 
identified suggests that mutationally activated MET plays a 
significant role in the tumorigenic process in a wide range 
of cell types.

MET juxtamembrane and Sema domain mutations

Since the original screens for kinase domain mutations 
in other solid cancers identified few variants, searches 
expanded to regions outside of the kinase domain. In 
addition to the discovery of novel driver MET mutations, 
these findings have been critical for our understanding of 
receptor tyrosine kinase recycling and downregulation. 
The first juxtamembrane domain (JM) mutations were 
discovered in a gastric cancer (P1009S) and a breast cancer 
biopsy (T1010I) (Figure 1) (16). Though the importance 
and frequency of these mutations was later established in 
several lung cancer studies (23,24). In a sequencing analysis 
of small cell lung cancers (SCLC) and non-small cell lung 
cancers (NSCLC), Ma et al. identified missense mutations 
in the JM domain (R988C, T1010I, S1058P) and the Sema 
domain (E168D, L299F, S323G, and N375S) (23,25). A 
separate study in NSCLC and CRCs identified several 
mutations in the Sema (N375S) and the JM (R970C and 
T992I) domains (24). These JM domain mutations were 
shown to attenuate MET receptor ubiquitination and 
degradation and prolong MET signaling. Sema domain 
mutations have not been carefully evaluated but likely 
affects the structure of the ligand-binding domain (26). In 
addition, novel intronic mutations flanking exon 14 were 
discovered that result in an alternatively spliced MET 
transcript which encodes for a deletion of the JM domain 
(METex14del) (24,25). Like the JM domain mutations, 
METex14del receptor downregulation is abrogated by loss 
of the Cbl site on the JM domain and results in elevated, 
membrane expression of MET. Importantly, these studies 
uncovered a novel and distinct mechanism of oncogenic 
RTK activation through altered RTK downregulation 
(27,28). The incidence of MET mutations in lung cancers 
is 3% in squamous cell lung cancers, 5.6% in NSCLC, and 
8% in lung adenocarcinomas (29-31). The implications 
of MET JM domain mutations and receptor regulation on 
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the clinical outcome of lung cancer patients have become 
evident in recent years (32-37). Moreover, the importance 
of these Sema and JM domain mutations is not limited to 
lung cancer. MET mutations have been detected in 9% of 
advanced breast cancer (20) and 7.4% advanced ovarian 
cancer patients (38). These studies underscore the role of 
mutationally activated MET in a wide range of cancers 
and the diverse mechanisms by which RTKs can achieve 
oncogenic activity.

Reemergence of MET kinase domain mutations 
during resistance

Tyrosine kinase inhibitors (TKIs) have had significant 
success in breast cancer (trastuzumab), melanoma 
(vemurafenib), and lung cancer (erlotinib), but in spite of 
these promising results, the clinical response to TKIs is 
often not durable. The efficacy of targeting kinases has 
been clearly demonstrated in lung cancer; however these 
studies have also highlighted the numerous mechanisms 
by which acquired resistance occurs. The presence of 
EGFR mutations, ALK fusions, and MET amplification in 
NSCLC has allowed for the clinical development of several 
therapeutic approaches using TKIs. For example, EGFR-
mutant NSCLCs are sensitive to EGFR TKIs (gefitinib 
and erlotinib); however, resistance typically develops after 
9–14 months (39,40). The most common mechanism of 
TKI resistance is a second-site mutation (T790M) in the 
EGFR kinase domain, however in approximately 20% of 
cases, EGFR inhibition leads to the expansion of subclones 
harboring amplified MET. Until recently, MET kinase 
domain mutations have been limited to papillary renal 
carcinomas, yet the use of TKIs in lung cancer revealed 
that MET kinase domain mutations may be a mechanism of 
therapeutic resistance in refractory lung cancer. In a study 
of a lung adenocarcinoma patient who had progressed on 
erlotinib treatment, both mutated EGFR and amplified 
MET were identified in the tumor. Treatment with 
combined MET and EGFR inhibitors (savolitinib and 
osimertinib) resulted in a dramatic clinical response (41).  
When resistance developed to combined MET and EGFR 
inhibition, a MET D1228V kinase domain mutation was 
detected. In a separate study, a NSCLC patient with a 
METex14 deletion was treated with the MET inhibitor 
crizotinib and upon progression a D1228N mutation was 
detected (42). Likewise in NSCLC patient with a METex14 
deletion, a Y1230C mutation was also detected at a very low 
frequency (mutant allele frequency =0.3%); however after 

13 months of crizotinib treatment the tumor progressed 
and the Y1230C allele was detected in 3.5% of circulating 
tumor DNA (43). These results indicate that MET kinase 
domain mutations may be a mechanism to circumvent 
MET TKI inhibition. Several earlier studies have 
demonstrated the ability of MET kinase domain mutations 
to diminish the efficacy of MET inhibitors (44-46).  
It is likely that additional and novel mutations will be 
identified with the emergence of genomic profiling of 
recurrent disease through biopsies, circulating tumor cells, 
and circulating DNA. Therefore it is essential that we gain 
a clear understanding of how MET activating mutations 
alter the three-dimensional structure of the receptor in 
order to predict and develop effective MET inhibitors.

Summary

In summary, the search for MET mutations has uncovered 
the variety of cancers that deregulated MET affects from 
the early stages of tumor initiation to therapeutic resistance 
and recurrence. Moreover, the variety of mutations 
identified within the MET receptor has illuminated unique 
mechanisms of tumor initiation including nonrandom 
duplication of mutant alleles, intronic splice site alterations, 
and altered receptor downregulation. Advances in genomic 
screening and structural analyses are likely to shed 
additional light on the prevalence and functional activity of 
mutationally-activated MET. With this knowledge, MET-
targeted therapies may benefit patients in a wide range of 
cancers.
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