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Editorial

Can pancreatitis be treated by inhibiting Ca2+ signaling?
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Ionized calcium (Ca2+) has long been known to be a major 
controller of cell function including pancreatic acinar cell 
secretion; in fact, research on pancreatic acinar cells in the 
1980’s was instrumental in establishing the mechanisms by 
which sequestered calcium is released into the cytoplasm to 
act as an intracellular messenger in response to hormones 
and neurotransmitters (1). In acinar cells this signaling 
consists of transient Ca2+ elevations in the apical pole of 
the cell that triggers exocytosis of zymogen granules (2). 
Hyperstimulation of acinar cells especially by CCK led to 
a large single peak of Ca2+ followed by a plateau of elevated 
calcium. Since hyperstimulation by the CCK analog 
cerulein has long been known to induce experimental 
pancreatitis (3), it was a logical step forward to show using 
isolated pancreatic acini that a high level of intracellular 
Ca2+ was associated with and probably caused premature 
trypsin activation, cell vacuolization, and necrosis which 
are considered the in vitro equivalent of acute pancreatitis  
(AP) (4-6).

Animal models of AP have been shown to involve 
two major pathways, the premature activation of trypsin 
and the development of local and systemic inflammation 
triggered by activation of NFκ-B in the acinar cell (7,8). 
Both pathways are activated in part by Ca2+ but targeting 
Ca2+ signaling to treat pancreatitis had to await a detailed 
knowledge of Ca2+ signaling (2,9,10). 

Figure 1 shows some of the molecules involved in 
regulating intracellular Ca2+ in acinar cells. The inositol 
1, 4, 5-trisphosphate receptor (IP3R) and the ryanodine 

receptor (RyR) release Ca2+ from the ER into the cytoplasm 
while PMCA and SERCA are ATPases pumping Ca2+ out of 
the cytoplasm and into extracellular space or back into the 
ER respectively. When the ER calcium store is depleted, 
the protein stromal interaction molecule (STIM) 1 and 2 
present in the ER membrane aggregates and moves to the 
plasma membrane to activate calcium influx through the 
calcium channels Orai1 and TRPC3. Agents targeting the 
IP3 receptor, the RyR, the Ca2+ influx mechanism mediated 
by Orai1, the calcium activated phosphatase calcineurin, 
and the plasma membrane calcium efflux pump PMCA are 
all under study as ways to diminish pancreatitis. Because of 
its central position in Ca2+ signaling and relevance to this 
Editorial some additional information on the IP3R will be 
presented. IP3Rs are coded for by 3 genes (Type 1, 2 and 3) 
in vertebrates that are closely related. Each IP3R is a large 
protein of about 2,700 amino acids and they assemble into 
homo or heterotetramers which contain a central pore 
that functions as a gated Ca2+ channel (11). IP3 binds to a 
segment termed the IP3-binding core in the N terminal 
portion which leads to an opening of the transmembrane 
channel. This event is also regulated by Ca2+, ATP, 
phosphorylation of the IP3R, by various kinases but most 
importantly the cyclic adenosine monophosphate (cAMP) 
activated kinase, and the binding of a large number of 
proteins (12,13). The Ca2+ released by the IP3R channel can 
also activate the RyR, a related calcium channel prominent 
in muscle that is activated by Ca2+ but not IP3. RyRs are also 
present in acinar cells and play a supporting role in Ca2+ 
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mobilization under physiological conditions.
A study recently published in Gut by Huang, Sutton 

and colleagues on the use of caffeine to protect against 
experimental pancreatitis provides hope that targeting 
Ca2+ may provide a therapeutic mechanism for human 
pancreatitis (14). Caffeine had previously been shown to 
inhibit intracellular Ca2+ signaling mediated by IP3 (1,15). 
In pancreatic acinar cells it is not clear whether caffeine was 
blocking IP3 production or action (16). Huang et al. utilized 
both isolated acini and intact mice as well as measuring 
caffeine metabolites and the intracellular concentration 
of caffeine (14). They showed that when intracellular 
caffeine levels reached 2 mM in mouse acinar cells that 
Ca2+ signaling induced by acetylcholine was inhibited and 
that dosage of 25 mg/kg caffeine every hour to mice led 
to similar serum levels of caffeine. They also showed that 
caffeine blocked the effect of uncaged IP3 although higher 
concentrations of caffeine seem to have been required. 
Most importantly, they showed that caffeine given after 
the toxic insult significantly ameliorated three models of 
experimental AP, those induced by cerulein, bile salts and 
ethanol plus fatty acid. While related xanthines and caffeine 

metabolites could inhibit Ca2+ signaling, only caffeine 
inhibited pancreatitis. The work is comprehensive, well 
carried out and a significant step forward in developing a 
therapeutic protocol that can be applied to human disease.

Caffeine is chemically 1, 3, 7-trimethylxanthine and 
is structurally related to adenosine (Figure 2). Its major 
actions are as a CNS stimulant, a relaxer of smooth muscle, 
a stimulant of cardiac muscle and a stimulant of urinary 
diuresis. These and other overall effects result from a 
number of biochemical actions which include inhibition 
of adenosine receptors, inhibition of cyclic nucleotide 
phosphodiesterase which increases cAMP levels and as 
a modulator of intracellular Ca2+ handling. Caffeine is 
metabolized primarily in the liver and its major metabolites 
are paraxanthine, theobromine and theophylline, each of 
which lacks one specific methyl group. The metabolism 
is carried out by cytochrome P450 enzymes particularly 
CYP1A2 and the metabolites are excreted in the urine (17). 
The plasma half-life of caffeine is 4–6 hours in humans and 
1 hour in mouse and can be affected by polymorphisms in 
CYP enzymes. It is important to note that drinking a cup of 
coffee results in plasma caffeine of at most 10 μM which is 
a hundred times lower than the concentrations studied by 
Huang et al. (14).

Caffeine has both advantages and disadvantages 
as a potential therapeutic agent. It is cell permeant, 
inexpensive and acts orally as attested by millions of users. 
A disadvantage is that the therapeutic dose may be close 
to the toxic dose. The other disadvantage is that caffeine 
has multiple actions throughout the body and the actual 
target affecting pancreatitis is unclear. Huang et al. assume 
that caffeine is an IP3R antagonist (14). The current state-
of-the-art for studying IP3 receptors is to express normal 
or modified IP3R in DT40 cells which lack endogenous 
IP3R. Saleem et al. studied DT40 cells expressing IP3R type 
1, 2 and 3 individually and found that caffeine was a low 
affinity antagonist of IP3R1 without affecting binding of 
IP3 (18). However, caffeine had no effect on IP3 induced 
calcium release by IP3R type 2 and 3, the most abundant 
forms in pancreatic acinar cells and whose compound gene 
deletion blocks acinar cell secretion (19). Thus caffeine 
may have other and possibly multiple targets in acinar cells. 
Epidemiological data on caffeine consumption and the 
occurrence of pancreatitis is mixed (20,21) and such chronic 
consumption almost certainly leads to lower plasma levels 
of caffeine then used by Huang et al.

Of the other mechanisms to ameliorate pancreatitis by 
inhibiting Ca2+ signaling, the best studied is to block the 

Figure 1 Pathways of calcium signaling through IP3 in pancreatic 
acinar cells initiated by CCK and acetylcholine. The sites at which 
caffeine has been shown to inhibit signaling, the Gq activated 
phospholipase C (PLC) that produces IP3 and the IP3 R are shown. 
Figure simplified from the Pancreapedia with permission. For 
more detail on acinar cell Ca2+ signaling see the Pancreapedia 
review (10).
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calcium release-activated calcium channel whose major 
channel component is the protein Orai1. This process of 
Ca2+ entry is also known as store-operated calcium entry 
and is activated by decreases in endoplasmic reticulum 
calcium stores and mediated by STIM1 and STIM2 which 
activate distinct channels composed of Orail1 and TRPC3 
by physical interaction (22,23). Two Orai channel blockers 
have been developed, GSK-7975A by GlaxoSmithKline 
and CM_128 by CalciMedica. Gerasimenko et al. showed 
in isolated mouse acini that GSK-7975A inhibited store-
operated calcium entry induced by depleting ER calcium 
stores with thapsigargin, a SERCA inhibitor and by 
palmitoleic ethyl ester, a toxic metabolite of alcohol induced 
pancreatitis (24). Wen et al. then showed that both of the 
Orai1 inhibitors reduced pancreatitis in mice induced by 
cerulein, bile salts or ethanol plus palmitoleic acid when 
given 1 hour after induction of pancreatitis and to a lesser 
extent after 6 hours (25). The Orai inhibitors were also 
shown to prevent necrosis in vitro in isolated human as well 
as mouse pancreatic cells. Another approach to inhibit Ca2+ 
signaling is to increase Mg2+ as it can act to attenuate Ca2+ 
signaling in some physiological situations. In particular, 
high extracellular Mg2+ has been reported to reduce store 
operated Ca2+ entry in isolated mouse acini (26). Mg2+ 
administration to rats and mice has been shown to reduce 
experimental pancreatitis (27) and is under study in clinical 
trials. Mg2+ has the advantage that it is safe and easy to 
administer although the exact mechanism of action is not 
fully understood.

Several issues need to be overcome before inhibiting 
Ca2+ signaling will become a useful therapeutic protocol. 

First, inhibiting Ca2+ signaling is expected to have effects 
throughout the body. At this point there is no way to target 
only pancreas. Second, all in vivo studies to date have been 
carried out in mice. While there are good reasons for the 
ascendancy of mice as experimental animals, larger animals 
show a slower time course of events and sometimes a 
qualitative difference. To date the success of translating 
therapeutic approaches for pancreatitis from mice to 
humans has been poor. Current research standards require 
multiple experimental models but they are all generally in 
mice. Whether studies in large animals such as pigs would 
help is unknown. Finally, the calcium signaling events occur 
early in the course of pancreatitis and patients, especially 
in referral centers, come with established disease. It will 
be important to compare efficacy in rapidly treated cases 
seen in the ER within a limited number of hours after the 
initiation of symptoms with patients seen after 24–48 hours. 
In this regard, studies evaluating ERCP induced pancreatitis 
have an advantage even though the pancreatitis is usually 
mild. Patients requiring treatment after pancreatitis is 
established may not benefit as much and may require other 
treatments.

Overall, blocking the sustained increase in intracellular 
free Ca2+ has the potential to reduce the cellular damage in 
pancreatitis. Both caffeine and the calcium influx blockers 
are worthy of further study.
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