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Mouse models of HCC

In order to deeply investigate the hepatocarcionegenesis 
and new potential therapies in humans, there is growing 
interest to recreate experimental models that could be used 
in basic research, able to resemble the human characteristics 
of HCC.

In vitro testing of human HCC cell lines is usually an early 
step in the process of anticancer drug discovery that requires 
evaluation of viability, cell proliferation, clonogenicity and 
apoptosis. Several cell lines are currently used in literature: 

Huh7.5, HepG2, Hep3B and SK-Hep1 (1).
While results obtained using cell cultures provide 

important information regarding drug efficacy and 
mechanisms of action, in vitro systems lack the power to 
recapitulate the complex relationship between the tumor 
and its microenvironment. 

Based on these data, a key role in the study of HCC is 
played by the in vivo experimental models (2). Concerning 
experimental models of HCC, genetic models, conditioned 
knock-out or transgenic models are mainly used to study 

Review Article

New insights in hepatocellular carcinoma: from bench to bedside

Samuele De Minicis, Marco Marzioni, Antonio Benedetti, Gianluca Svegliati-Baroni

Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy

Corresponding to: Samuele De Minicis. Department of Gastroenterology, Università Politecnica delle Marche, Via Tronto, 10, 60020 Ancona, Italy. 

Email: s.deminicis@yahoo.it; s.deminicis@univpm.it.

Abstract: Hepatocarcinogenesis is a multistep process involving different genetic alterations that 
ultimately lead to malignant transformation of the hepatocyte. The liver is one of the main targets for 
different metastatic foci, but it represents an important and frequent locus of degeneration in the course 
of chronic disease. In fact, Hepatocellular carcinoma (HCC) represents the outcome of the natural history 
of chronic liver diseases, from the condition of fibrosis, to cirrhosis and finally to cancer. HCC is the sixth 
most common cancer in the world, some 630,000 new cases being diagnosed each year. Furthermore, about 
the 80% of people with HCC, have seen their clinical history developing from fibrosis, to cirrhosis and 
finally to cancer. The three main causes of HCC development are represented by HBV, HCV infection 
and alcoholism. Moreover, metabolic disease [starting from Non Alcoholic Fatty Liver Disease (NAFLD), 
Non Alcoholic Steatohepatitis (NASH)] and, with reduced frequency, some autoimmune disease may 
lead to HCC development. An additional rare cause of carcinogenetic degeneration of the liver, especially 
developed in African and Asian Countries, is represented by aflatoxin B1. The mechanisms by which these 
etiologic factors may induce HCC development involve a wide range of pathway and molecules, currently 
under investigation. In summary, the hepatocarcionogenesis results from a multifactorial process leading 
to the common condition of genetic changes in mature hepatocytes mainly characterized by uncontrolled 
proliferation and cell death. 

Advances in understanding the mechanism of action are fundamental for the development of new 
potential therapies and results primarily from the association of the research activities coming from basic and 
clinical science.

This review article analyzes the current models used in basic research to investigate HCC activity, and the 
advances obtained from a basic and clinical point of view.

Key Words: Hepatocellular carcinoma; liver fibrosis; metabolic syndrome; NAFLD; NASH

Submitted Dec 11, 2012. Accepted for publication Jan 31, 2013.

doi: 10.3978/j.issn.2305-5839.2013.01.06

Scan to your mobile device or view this article at: http://www.atmjournal.org/article/view/1601/2226



De Minicis et al. New insights in HCC

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2013;1(2):15www.atmjournal.org

Page 2 of 11

the involvement of specific protein in the carcinogenetic 
process (3,4), while chemotoxic agents-induced HCC [such 
as N-nitrosodiethylamine (DEN) model] may provide 
a useful technique to study the interactions of different 
molecules and drugs. However, chemotoxic-induced HCC 
models do not completely resemble the human disease. 

The DEN (N-nitrosodiethylamine) model of HCC 
is mainly used in basic research and promotes cancer 
development both in rats and in mice. DEN may be 
administered at different age of the mouse, however 
the results may vary in terms of efficacy and efficiency. 
To reduce the time of HCC development and limit the 
administration of the carcinogen, several studies adopted the 
association of promoting-agents to a single dose of DEN 
administration, the so called “two stage models” of HCC. 
Among the promoting agents, phenobarbital (PB) needs 
to be taken in consideration: the effects of PB promotion 
on DEN-initiated mice also vary considerably depending 
upon strain, sex and age of the mice (5-7). These models 
are largely used in literature and represent a good model to 
define and study the primitive HCC nodule, independently 
from the condition of cirrhosis. 

Other experimental models of HCC involves AFB 
administration have been used in literature to specifically 
investigate the mechanisms involved in AFB-induced 
hepatocarcinogenesis, yet limited to the specific cases in 
which the AFB mechanisms need to be elucidated (8,9). 

An increasing interest has been recently related to the 
metabolic conditions leading from simple steatosis to 
HCC in humans. This issue led to the development of 
additional mouse-model based on the use of diets, such 
as the choline deficient diet (CDD). In origin, such a diet 
has been developed to induce steatohepatitis, fibrosis and 
cirrhosis in mice and rats (10,11). More recently, it has been 
observed that mice subjected to CDD diet develop HCC 
formation after 50-52 weeks (10). The effects of CDD have 
been also evaluated in association with the administration 
of chemotoxic compounds (12). Ethionine supplementation 
to CDD diet is able to enhance the oval cells stimulation 
increasing the carcinogenetic potential (13,14). Similarly, 
combination of the CDD and DEN results in the earlier 
induction of HCC (12). A small variation of the current 
diet is represented by the choline-deficient and iron-
supplemented l-amino acid-defined (CDAA) diet that 
mimics the same effect of the CDD diet in a shorter time 
frame (11,15). 

An additional method used in basic research for the 
study of cancer is represented by the xenograft models: 

in xenograft models, the tumors are induced by injecting 
human cancer cells in immune deficient mice, such as 
athymic (nude) or severe combined immune deficient 
(SCID) mice (16). Among the xenograft models, the main 
ones are (I) the ectopic model, in which human cancer cells 
are directly injected subcutaneously in the flank of mice, and 
(II) the orthotopic model, in which tumor cells are injected 
directly into the mouse liver. These models are largely used 
in literature for the study of the metastatic spread of the 
tumor (17). 

Finally, a considerable part of the basic research has 
been conducted in the HCC field by the use of genetically 
modified models. Genetically modified mouse models 
(GMM) have the purpose to mimic pathophysiological 
and molecular features of HCC (18). This approach allows 
to test the effects of oncogenes in the presence or not of 
carcinogenic agents. GMMs may be further improved 
by using cDNA constructs containing a promoter able to 
target a specific cell type (19). Mice with albumin promoter 
are often used in this field.

Rather than constitutive tissue-specific deleted expression 
of genes, an alternative model could be represented by the 
induction of specific genes, obtained generating transgenic 
mice. Among them, it is important to consider the 
transgenic mice models expressing viral genes for hepatitis. 
Most of the HBV-related transgenic animals express the 
HBx genes, which are associated with altered hepatocellular 
functions and HCC development (20). Concerning the 
HCV infection, transgenic mice expressing core, E1 and E2 
structural proteins are mainly used in basic research (21). 

In line with the in vitro study identifying the main 
singalling pathways potentially involved in HCC, several 
specific transgenic mice have been created and used in 
literature (22). The Myc transgenic mice are genetically 
close to human HCC of good prognosis and may be 
specifically used to study the entire range of pathways 
involved at this level (23). β-catenin transgenic mice have 
been used in the study of HCC: β-catenin is involved in the 
development and regeneration of the liver and β-catenin 
mutations are an early event in hepatocarcinogenesis (24). 
Mutations in growth factor genes, such as Tumor Growth 
Factor α (TGFα), Epidermal growth factor, Fibroblast 
growth factor 19, Platelet-derived growth factor (PDGF) 
and TGFβ1, have been recognized as involved in HCC 
development (25,26). Thus, specific transgenic mice have 
been created in basic research.

Moreover, transgenic mice expressing a human form of 
transport-impaired Alpha-1 antitrypsin [transport-impaired 
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Alpha-1 antitrypsin (AAT) (27)] represents a good model 
for studying the effects of AAT deficiency on the liver. AAT 
deficiency is an autosomal recessive disorder in which a 
mutation causes the production of AAT that is unable to 
be transported (27). This leads to decreased AAT activity 
in serum and deposition of excessive AAT in the liver. 
Both heterozygous and homozygous individuals develop 
cirrhosis and HCC. AAT-deficient mice develop HCC after  
52-90 weeks of age (27).

As demonstrated by in vitro studies, PTEN is a tumor 
suppressor gene that regulates the serine-threonine kinase 
protein kinase B (PKB⁄akt) pathway. Thus, PTEN knock 
out mice also develop HCC in vivo, in 66% of male and 
30% of female mice by 40-44 weeks of age (28). PTEN 
deficiency induces cellular hyper-proliferation, anti-
apoptosis and oncogenesis (29). Liver-specific PTEN-
deficient mice develop hepatic steatosis, inflammation 
and fibrosis, thus resembling the features of human non-
alcoholic steatohepatitis (NASH) (28).

In addition to the pure carcinogenetic mechanism 
evaluated by the previously described models, recent 
advances  have  demonstrated the  involvement  of 
inflammation pathways in the process of HCC formation. 
This issue has been clearly demonstrated by the use of 
hepatocytes specific NEMO deletion (IKK gamma subunit 
involved in the regulation of NFκB pathway). Several 
studies demonstrated that NEMO-mediated NF-kappaB 
activation in hepatocytes has an essential physiological 
function to prevent the spontaneous development of 
steatohepatitis and hepatocellular carcinoma, identifying 
NEMO as a tumor suppressor in the liver. NEMO specific 
hepatocytes-deleted mice spontaneously develop tumor 
after 10 to 12 months (30-32).

Finally, as a proof of the real existance of a link between 
fibrosis and cancer in the liver, an additional genetically 
modified mouse model has been used in basic research: 
as widely demonstrated in literature hepatocyte-specific 
deletion of TAK1 in mice results in spontaneous hepatocyte 
death, inflammation, fibrosis, and consequently in the 
development of HCC with a success rate represented by 
clear macroscopic nodules of 80% after 9 months (33).

Signalling pathways 

In vivo study and the associated in vitro evaluation of 
specific molecules allow researchers to investigate the main 
potential mechanisms involved in carcinogenesis, defining 
several pathways strictly related to the process (Figure 1).

This approach to basic research provided therefore the 
tools to discover the involvement of several mechanisms 
in carcinogenesis: among these, a special mention is 
related to the Wnt signaling pathway that is significantly 
deregulated in a number of cancers, including HCC (34). 
Wnt pathway is involved in HCC arising from HBV/HCV 
infections and alcoholic liver cirrhosis. Up-regulation of 
one of its component, frizzled-7, and dephosphorylation 
of β-catenin is frequently observed in HCC (35,36). The 
use of transgenic mice for β-catenin allowed to directly 
demonstrate the molecule involvement in the HCC 
formation, leading researchers to deeply investigate 
the mechanism. Based on these models, it has been 
demonstrated that mutations in β-catenin arise in HCC. 
This issue has been also demonstrated in patients with 
increased exposure to HCV infection and aflatoxin (37,38).

In the spectrum of genes related to HCC, a key role 
is played by p53. Several studies have reported that p53 

HCC

Jak/STAT Growth factors
MAPK
HBV,HCV, etc

Wnt/β-catenin
HBV, HCV, Alcohol, Aflatoxin

P53
HBV, Hemocrhromatosis, Aflatoxin

Inflammation/cytokines
HBV, HCV

stress

Figure 1 Intracellular pathways involved in the process of hepatocellular carcinoma formation and development
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mutations and inactivation play a critical role in HCC. The 
studies conducted in vivo on experimental models of HCC 
have been additionally confirmed in humans. Specifically, 
mutation of p53 correlates with the HCC developments 
induced by aflatoxin B1 (AFB1), as demonstrated using 
mouse models and subsequently confirmed in humans. 
Thus, detection of mutant p53 in plasma serves as a potential 
biomarker for AFB1 exposure and presence of HCC. 

Human ras proteins H-Ras, N-Ras, K-ras4A, and 
K-Ras4B are small GTP-binding proteins that function as 
molecular switches to influence cell growth, differentiation 
and apoptosis (39). Single point mutations in codon 13 
of H-ras, codon 12 of N-ras, and codon 61 of K-ras were 
originally observed in HCC caused by various chemicals 
such DEN (40-43). By the use of this model it has been 
demonstrated that Ras interacts with a downstream 
serine/threonine kinase Raf-1 leading to its activation and 
downstream signaling, which includes activation of MAPK 
kinases MEK1 and MEK2, to regulate proliferation and 
apoptosis (44). Activation of Ras and expression of Ras 
pathway proteins such as p21 were also reported in solid 
tumors as well as in cell lines (45,46). The strategies of 
inhibiting several kinases and suppressing Ras expression 
using antisense RNA has been successfully applied in cell 
line and in animal models (47,48). 

In vivo mouse models of HCC have been also used to 
investigate the role of JAK/STAT pathways (49). STAT 
activation occurs through tyrosine phosphorylation by Janus 
kinases (JAKs). Activated STATs stimulate the transcription 
of suppressors of cytokine signaling (SOCS) genes. SOCS 
proteins, in turn, bind phosphorylated JAKs and their 
receptors to inhibit this pathway, thereby preventing 
overactivation of cytokine-stimulated cells (50). Thus, 
SOCS are part of the negative feedback loop in the JAK/ 
STAT circuitry. Two other families of STAT inhibitors that 
are described in the literature include the protein inhibitors 
of activated STATs and the SH2-containing proteins (51). 
JAK stimulation of STATs activates cell proliferation, 

migration, differentiation, and apoptosis, and deregulation 
of inhibitors leads to human diseases, including cancer (49). 
Inactivation of SOCS-1 and SSI-1, a JAK-binding protein, 
in HCC have been reported (49,50) as has the ubiquitous 
activation of the JAK/STAT pathway (52).

Proteins and cellular factors of other signaling pathways 
can also influence the molecular dynamics of HCC. For 
example, vascular endothelial growth factor and fibroblast 
growth factor play important roles in HCC development 
(53,54). It was reported recently that inflammation 
is inherently associated with cancer and a number of 
cytokines are involved in promoting HCC development 
and progression, especially during infection with hepatitis 
viruses (55). In particular, Th2 cytokines are induced 
and Th1 cytokines decreased in metastases. Therefore, 
modulating the expression of cytokines and the use of 
inhibitors of inflammatory cytokines might be critical 
in alleviating HCC progression. In a recent study, it was 
shown that the use of inhibitors of epidermal growth 
factor receptor and transforming growth factor prevented 
the development of HCC in rat liver, demonstrating the 
harmful nature of these growth factors if they exist in 
excessive amounts (56,57).

Clinical relevance and current treatment

Althoguh the enormous amount of data coming from basic 
research and the interest in developing drugs potentially 
effective, the clinical and pharmacological treament of 
HCC is still limited to the advanced stage of the disease.

As well established in the clinical practice, concerning the 
HCC development and the best treatment, it is mandatory to 
refer to the Barcelona Clinic Liver Cancer (BCLC) staging 
system, that represent not only a useful tool for classifying 
patients according to their prognosis, but also a method for 
selecting the appropriate treatment (Table 1) (58).

Surgical treatments are the first treatment choice to 
consider. Resection and Orthotropic liver transplantation 

Table 1 Adapted table resuming the BCLC staging system for hepatocellular carcionoma classification and treatment strategy (Bruix, 
Hepatology 2011)
Features Definition Treatment

Single HCC nodule <2 cm Very early stage Resection, liver transplantation, RadioFrequency

Single or 3 nodules <3 cm Early stage Liver transplantation, radiofrequency

Multinodular Intermediate TACE

Vascular portal invasion Advanced stage Sorafenib

Critical conditions End stage Symptomatic therapy
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(OLT) achieve excellent results in BCLC 0 and A patients. 
Resection is the treatment of choice in non-cirrhotic 
patients where major resections are well tolerated. However, 
liver function impairment limits the feasibility of resection 
in cirrhotics if aiming at minimal morbidity and mortality. 
The best results in liver resection are obtained in solitary 
HCC. Multinodularity is correlated with recurrence and 
worse patient survival (59-62). Therefore, in multinodular 
HCC meeting the Milan criteria, OLT is a preferable 
option. In fact, the best results in liver transplantation are 
obtained applying the so-called Milan criteria (solitary ≤5 cm  
or if multiple, a maximum of 3 nodules ≤3 cm, without 
vascular invasion or extrahepatic spread). Meeting these 
criteria, the 5-year survival exceeds 70%, with recurrence 
ranging from 5% to 15% (63,64).

If OLT is not available, resection can still be considered 
in selected cases and optimally within prospective cohort 
investigations. However, since there are a growing number 
of publications reporting excellent results for early tumors 
treated with percutaneous ablation (65,66) or Transarterial 
chemoembolization (TACE) (65), with a lower rate of 
complications than with surgical resection, patients with 
multinodular HCC not suitable for OLT may be equally 
well served by percutaneous ablation or chemoembolization. 
To date, the optimal candidates for TACE are patients 
with preserved liver function (Child-Pugh A), without 
extrahepatic spread or vascular invasion (BCLC B). These 
patients have an estimated median survival of 16 months 
without treatment, while TACE expands this to >24 months 
(67,68). In contrast, performing TACE in patients with 
deteriorated liver function may lead to severe complications 
and death due to liver failure (69). 

In very early tumors (≤2 cm), whose probability of 
dissemination is very low, and in which the probability of 
complete response with a safe margin with radiofrequency 
ablation (RFA) is high (90-100%), it is likely that resection 
and RFA are similar in terms of outcome. Thus, as stated 
recently, resection will not offer better survival than ablation 
in BCLC 0 patients and RFA would become the first-line 
option, leaving surgery for those patients with treatment 
failure. 

Differently from the others, patients with advanced 
HCC fitting into BCLC C (extrahepatic dissemination 
or vascular invasion, or mild tumor-related symptoms, 
preserved liver function) have a median survival of about 
6-8 months. Until recently there was no effective treatment 
for these patients. Neither chemotherapy, nor agents such 
as antiandrogens, antiestrogens or interferon induced any 

survival benefit (70). The growing knowledge in the field 
of molecular pathways involved in hepatocarcinogenesis led 
to the development of multiple molecules targeted to block 
those pathways (71). Currently, the multikinase inhibitor 
Sorafenib represents the drug that is recognized effective 
for the treatment of advanced HCC in human. Sorafenib 
has antiangiogenic and antiproliferative effects and has been 
shown to improve survival patients with advanced HCC 
compared with placebo (72). As observed in the SHARP trial, 
median survival for the placebo arm was 7.9 months, whereas 
it was 10.7 months for the group of patients treated with 
sorafenib [HR (sorafenib/placebo): 0.69 (95% CI: 0.55-0.88)]. 
This increase in survival was obtained without a significant 
radiological response, but with a significant difference in time 
to progression between the placebo and sorafenib groups that 
was 2.8 and 5.5 months respectively with a HR (sorafenib/
placebo) of 0.58 (95% CI: 0.45-0.74). In the trials where 
the evidence was provided, treatment was maintained until 
symptomatic progression and not just until tumor progression 
as per radiology. Hence, in clinical practice, treatment might 
be maintained until symptomatic progression unless there are 
second-line options to be offered.

Future perspectives

Role of stem/progenitor cells in HCC

Over the years, it has been well established that both 
hepatocytes and cholangiocytes are capable of repopulating 
liver tissue following injury (73). Therefore, the concept 
of stem/progenitor cell existence in the liver did not gain 
much recognition until the past decade. Furthermore, 
growing evidence also demonstrated that the capacity to 
sustain tumor formation and growth resides in a small 
proportion of cancer stem cells (CSCs) (74,75). Subsequent 
identification of CSCs in a number of tissues including 
brain (76-78), prostate (79), breast (80), myeloid (81), 
gastric (82), colon (83,84), and lung (85), has reinforced the 
notion that stem cells might also exist in the liver. In the 
early studies, embryonic stem cells from murine embryos 
were shown to differentiate into functional hepatocytes 
in vitro (86,87). It was later shown that murine as well as 
human bone marrow-derived mesenchymal stem cells 
could differentiate into hepatocytes both in vitro and in vivo 
(88,89). Studies of bone marrow transplant recipients have 
shown that these cells could home to liver and differentiate 
into normal hepatocytes (90). One of the most common 
liver stem cells is the oval cell (91). Oval cells express 
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markers common to hepatocytes and cholangiocytes, 
suggesting that they are bipotential.  In fact, they 
differentiate into hepatocytes and cholangiocytes in vitro 
under the appropriate culture conditions (92). In diseases 
such as alcoholic liver disease and HCV infection, oval cell 
numbers increase and correlate with the severity of the 
disease (93). Several groups have isolated liver progenitor 
cell lines using oval cells from choline-deficient diet-fed 
rats (92), c-met transgenic mice (93), p53 null mice (94), 
and murine embryonic liver cells (95). Successful isolation 
of oval cells and establishment of liver progenitor cell lines 
from human liver tumors (96) and isolation of CSCs from 
human cell lines have been reported (97). The presence of 
CSCs and successful isolation of oval cells from cancerous 
tissue suggests that stem/progenitor cells play a key role 
in tumor formation. Recently, a novel cell type, the liver-
derived progenitor cell, was also discovered and was isolated 
from healthy, uninjured rat livers (98). Further studies with 
these progenitor cells may provide insight to understand the 
molecular events that regulate cellular differentiation of the 
liver and those that lead to tumor progression.

Role of MicroRNAs in HCC

Identification of small, noncoding RNAs in the early 1990s 
has led to the development of a new research area (99). 
Several different classes of noncoding RNAs have been 
discovered in mammalian cells. These include small 
interfering RNAs (100), small nucleolar RNAs (101), and 
microRNAs (miRNAs) (102). miRNA complexes bind to 
imperfect complementary sequences in the 3'untranslated 
region of target mRNAs and negatively regulate gene 
expression either through mRNA degradation or 
translational inhibition (102,103). Recent studies have 
demonstrated that alterations in miRNA genes lead to 
tumor formation, and several miRNAs that regulate either 
the tumor suppression or promote tumor formation have 
been identified (104). For example, down-regulation of 
miR-15 and miR-16 results in overexpression of bcl2, 
cdk6, and cdc27, whereas overexpression of miR-21 
causes suppression of PTEN and TPN1 (105). Several 
miRNAs that regulate the tumor suppressor p53 and p53-
responsive genes have also been identified. Among these, 
miR-34 regulates p53 function in cell cycle arrest, cellular 
senescence, and apoptosis (106).

Thus miRNA expression profiles serve as signatures to 
determine not only the stages of a cancer but also a potential 
therapeutic strategy (107). The most abundant miRNA 

currently known in the liver, miR-122, is involved in cellular 
stress response, hepatocarcinogenesis, and inhibition of HCV 
replication [reviewed by Girard et al. (108)]. Therefore it has 
been suggested that downregulation of miR-122 could be a 
potential biomarker for liver cancers (109).

Other studies in literature, by examining microarray 
profile, found that miR-21 is highly overexpressed in 
HCC and cell lines. Inhibition of miR-21 in cultured 
HCC cells is able to increase the expression of the PTEN 
tumor suppressor and to decrease tumor cell proliferation, 
migration, and invasion; in contrast, enhanced miR-21 
expression shows the opposite effect. These data reveal 
a correlation among miR-21 and PTEN, suggesting a 
direct involvement of miR-21 in carcionegensis (110). 
Further comparison of miRNA expression profile in the 
HCC tumors with patient’s survival time showed that a 
set of 19 miRNAs, involved in biological processes such 
as cell division, mitosis, and G1-S transition, significantly 
correlated with disease outcome (111). Based on these data, 
it could be easily stated that miRNAs may be useful to 
screen patients with cancer and identify those with a high 
likelihood of developing metastases/reoccurrence.

Conclusions

Animal models represent essential tools in cancer research, 
since they allow scientists to reproduce genetic, pathological 
or environmental abnormalities thought to be important 
for cancer development. Over the last few years, a number 
of rodent models have been developed allowing to study 
the different aspects of liver cancer. The cooperation of 
basic and clinical research has been able to promote an 
important development in the field of liver cancer, leading 
to the definition of the best diagnostic and therapeutic 
approach, as provided and elegantly resumed in the BCLC 
staging system. In many cases it is difficult to determine to 
what extent mouse models reproduce features observed in 
corresponding human conditions, but they could certainly 
provide a useful and unique approach in understanding 
novel pathways, unknown mechanisms and potential 
effective therapies for clinical use. Thus, future research 
and the use of novel tools and pathways may lead to the 
development of new drugs able to better interfere with the 
process of HCC development.
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