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Editorial

Selecting high-risk individuals for lung cancer screening; the use 
of risk prediction models vs. simplified eligibility criteria
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In 2011 the US National Lung Cancer Screening Trial 
(NLST) showed a 20% reduction in lung-cancer mortality 
among long-term heavy smokers screened by low-dose 
spiral computed tomography (LDCT) compared to 
standard X-ray diagnostics (1), and the US Prevention 
Services Task Force (USPSTF) recommends lung cancer 
screening for all individuals who meet the original NLST 
eligibility criteria of being 55 to 80 years of age, having 
smoked 30 or more pack years, and not having quit 
smoking more than 15 years ago. In Europe, among seven 
European lung cancer screening trials, jointly including 
less than 38,000 participants (2) vs. more than 53,000 in 
the NLST alone, preliminary results from four studies so 
far did not provide definitive confirmation of a mortality 
reduction (3-5), but individually these trials were small and 
lacked statistical power. A final evaluation of the effects on 
lung cancer mortality in at least three further European 
trials, including the larger Dutch-Belgian NELSON study 
(n=7,915 in the screening arm) (6), is expected within the 
next 1–2 years, as well as a pooled analysis of the European 
trials. As in the NLST, the eligibility criteria for the 
European trials were based on age and a simplified index of 
past cumulative smoking exposure, plus time since quitting 
for former smokers. The criteria, however, differed from 
those in the NLST in terms of specific age range, minimum 
lifetime smoking duration, cumulative smoking exposure 
(pack years), and maximum time since smoking cessation 

(7,8) and the criteria varied also across the European trials 
themselves. 

At start of the trials, a major motivation for focusing 
screening on individuals meeting these eligibility criteria 
was cost. The vast majority of lung cancer cases occur 
among long-term smokers and at a more advanced age, and 
focusing on high-risk individuals allows drastic reduction 
in the number of individuals needed to be screened to 
identify one case, while still capturing the majority of 
individuals who develop lung cancer. A further motivation 
for focusing on high-risk individuals is that it enriches the 
screened population with participants who may have a 
benefit from screening (i.e., those who will actually have 
a screen-detectable lung cancer) while avoiding possible 
harms to individuals who are unlikely to have a lung tumor. 
The NLST and the various European trials have now 
provided extensive documentation not only of the potential 
benefit of screening, in form of mortality reduction and life 
years that may be gained by early lung cancer detection, 
but also of the possible harms. One major type of harm 
is false-positive diagnoses. In NLST and other trials, 
depending on the diagnostic criteria (e.g., nodule size) 
and procedures used for further diagnostic work-up, up 
to 25% of participants were classified as having suspicious 
nodules necessitating follow-up examinations, associated 
with psychologic stress and additional radiation exposure 
during diagnostic verification. Smaller but still significant 
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proportions of screening participants underwent more 
invasive examinations (bronchoscopy, biopsy, surgery), with 
substantial risks of complications, before being definitively 
classified with false-positive diagnoses (2). Another 
possible harm is over-diagnosis: the detection of tumors 
that, either because of unaggressive biologic behavior or 
because of a person’s limited life expectancy, would not 
present symptomatically during this person’s lifetime in the 
absence of screening. Although harder to estimate than the 
occurrences of false-positive diagnoses, modeling suggests 
that screening according to the USPSTF guidelines may 
result in about one over-diagnosis for three cancer deaths 
avoided (9). It is assumed that, by focusing screening on 
a high-risk population, the ratio of true-positive case 
detection to false-positive diagnoses and over-diagnosis will 
be generally improved. 

Accumulating evidence on both benefits and harms 
of lung cancer screening has stimulated research on the 
question for whom lung screening may work best, in view 
of optimizing net clinical benefit. Epidemiologic models 
for estimating individualized lung cancer risk (incidence, 
mortality) have been developed that, besides a more 
detailed modeling of risks in relation to age, account for 
more detailed smoking history in terms of lifetime duration, 
intensity and ages at start and quitting, while including 
also further risk predictors such as pre-existing lung 
diseases (COPD, pneumonia), family history of cancer or 
occupational exposures to asbestos, allergies and respiratory 
function tests (10). Models have been developed mostly, 
though not exclusively, within the context of prospective 
cohort studies, which have the advantage that besides fitting 
models for optimal risk discrimination they also allow 
models to be directly fitted to absolute disease risks. Major 
models developed in the context of prospective studies 
include a model by Bach and colleagues (11) developed 
within CARET trial, a two-stage clonal expansion model 
(TSCE) developed within the Nurses’ Health Study and 
Health Professionals’ Follow-up Studies (12), and a model 
within the Prostate, Lung, Colon and Ovarian cancer 
trial cohort (PLCOm2012) (13), and further models were 
developed within the European EPIC cohort (14) and in the 
UK Biobank (15). Other models were based on case-control 
data for the development of a relative risk discrimination 
score, using population incidence data from local cancer 
registries to calculate an appropriate risk model intercept 
for calibrated estimates of individuals’ absolute risks; this 
includes a model developed by Spitz et al. (16), in context 
of a large US case-control study, and by Cassidy et al., 

developed in context of the Liverpool Lung Project (LLP 
model) (17). 

For lung cancer prediction models to be useful in 
actual screening context, they need to provide sufficiently 
strong discrimination between individuals with high vs. 
low likelihood of being diagnosed with lung cancer in 
the following years. Also, in view of selecting a defined 
risk threshold for screening eligibility, models need to be 
well-calibrated in terms of absolute risk estimation. Both 
qualities—discrimination and calibration—should hold not 
only within specific cohorts or population contexts in which 
models were originally developed, but should also translate 
robustly to new screening settings in other populations. 
Within a given study cohort, statistical re-sampling methods 
such as bootstrapping may help adjust for model over-fitting 
and over-optimism in estimated diagnostic discrimination 
characteristics; however, such methods do not adjust 
for variability in unspecified risk determinants that may 
cause variation in discrimination capacity or absolute risk 
calibration across different population settings. Thus, to 
gain confidence that models will function properly in new 
populations, it is important that they be externally validated 
in independent population data sets. For validation of 
absolute risk estimates, external validation of risk prediction 
models is best performed within prospective population-
based study cohorts or screening trials. 

In PLoS Medicine, Ten Haaf and colleagues (18) recently 
reported on a comprehensive validation of seven different 
prediction models for lung cancer incidence, and two 
models for lung cancer mortality, using data of the control 
and intervention arms of NLST (>53,000 participants; 
1,925 lung cancer cases between study entry and 6 years of 
follow-up) and of the PLCO trial (>80,000 ever-smoking 
participants; 1,463 lung cancer cases) to examine the 
performances of each model for prediction of individuals 
diagnosed with, or dying from, lung cancer within the first 
6 years of prospective follow-up. For all models tested, the 
discrimination was substantially better in the PLCO (AUCs 
ranging from 0.74 to 0.81) than in the NLST datasets 
(AUCs ranging from 0.61 to 0.73)—a difference that can 
be explained by the greater heterogeneity in risk factor 
profiles in the PLCO cohorts (individuals not selected 
by smoking history) compared to the NLST (individuals 
with a history of heavy smoking only). ROC curve analyses 
showed best overall predictive discrimination performance 
for the PLCOm2012, Bach and TSCE (incidence) models, 
with AUC >0.77 in PLCO and >0.68 in NLST. Comparing 
the predictive performance of lung cancer risk prediction 
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models with that of the NLST eligibility criteria, in the 
PLCO data the models generally provided better sensitivity 
than the NLST criteria, at equal specificity. For the 
PLCOm2012 model, these latter findings confirm findings 
from earlier re-analyses of NLST and PLCO data by 
Tammemägi et al. (13). Regarding the estimation of absolute 
lung cancer incidence or mortality, models showed generally 
satisfactory calibration in terms of predicted numbers of 
cancer cases relative to the numbers actually observed. 

Further to analyses of discrimination capacity (area 
under the ROC curve; sensitivity at given specificity) and 
overall model calibration, a useful approach to evaluating 
the performance of risk stratification criteria and models is 
decision curve analysis. Central to decision curve analysis 
is the concept of a risk threshold above which an individual 
may expect to have a greater benefit than possible harm (19). 
Here, the net benefit (NB) is defined as 

NB = (TP – FP × weighting factor)/(number of individuals 
assessed for screening eligibility) [1]

where TP is the count of true positives (i.e., persons 
identified as eligible for screening and who are indeed 
developing clinically manifest lung cancer), and FP is the 
count of false positives (i.e., persons classified as eligible 
for screening but not developing clinical lung cancer 
during their lifetime and hence merely at risk of possible 
harms). The weighting factor represents the relative weight 
of possible harms that false-positives may experience, as 
compared to the weight of expected benefits for the true 
positives, and can be directly related to an absolute risk 
threshold for screening eligibility:

weighting factor = risk threshold/(1-risk threshold) [2]

If the actual screening method and any additional diagnostic 
work-up have high efficacy and only minimal adverse 
effects, and if in addition early detection brings a meaningful 
survival benefit, the risk threshold for participation in a 
screening program can be set at a low level. As an example, 
if the expected clinical benefit of screening participation 
for a person actually developing lung cancer is weighted 
(considered “worth”) 48 times the average harm incurred 
by a screening participant free of lung cancer, the minimum 
risk prediction threshold for screening eligibility should be 
set at 2%. By contrast, low diagnostic accuracy of screening 
and diagnostic follow-up investigations, a low likelihood 
that early tumor detection will bring a meaningful survival 
benefit, or a relatively high frequency or seriousness of 

harms occurring among screening participants free of lung 
cancer, all translate into higher risk threshold for screening 
eligibility. Decision curves visualize the theoretical NB over 
a range of risk thresholds, allowing one to discern whether 
and at which risk thresholds a model can be clinically useful. 
Performing such analyses, ten Haaf and colleagues found 
that prediction models (especially, PLCOm2012, Bach, TSCE) 
outperformed the NLST eligibility criteria, with a positive 
NB over a substantial range of absolute risk thresholds. 

Using the data of a smaller cohort—the German 
component of European EPIC study (20,700 ever smokers; 
92 incident cases of lung cancer within the first 5 years 
of follow-up)—we recently performed a similar external 
validation of risk models, comparing the performances of 
four risk models (PLCOm2012, Bach, LLP and Spitz) with the 
eligibility criteria used in NLST or in the various European 
screening trials. Our findings were very similar to those 
by ten Haaf et al. All four models showed good predictive 
discrimination with AUC estimates between 0.78 and 0.81, 
similar to ten Haaf’s estimates within the PLCO data sets. 
In addition, all but the Spitz model provided well-calibrated 
risk estimates (ratio of predicted to observed incident case 
numbers close to 1.0 vs. 3.75 for the Spitz model). The 
PLCOm2012 model, in particular, showed systematically 
better predictive sensitivity for future lung cancer 
occurrences than the eligibility criteria of NLST or of the 
European trials. Finally, as in the analyses by ten Haaf and 
colleagues, decision curve analyses documented a uniformly 
greater NB for the PLCOm2012, Bach and LLP models as 
compared to any of trial eligibility criteria, with positive NB 
estimates over a broad range of risk thresholds. The much 
inferior performance of the Spitz model in decision curve 
analyses was largely explained by gross miscalibration of its 
absolute risk estimates with regard to actual observations in 
the German EPIC cohort.

Given the accumulating evidence that lung cancer 
risk prediction models such as PLCOm2012, TSCE or the 
Bach model provide good diagnostic discrimination and 
well-calibrated absolute risk estimates, and that they may 
outperform simpler trial eligibility criteria based on age and 
pack-years of smoking, a central question is, what absolute 
risk threshold should be used to select individuals for lung 
cancer screening. From a perspective of decision analysis, 
as described above, the risk threshold is directly related 
to the relative weighting factor of long-term expected 
benefits to the possible harms of a diagnostic or any other 
medical procedure. In context of screening, NB may be best 
defined by the expected gain in life years for participants 
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who are indeed developing a detectable tumor bound to 
become clinically manifest, minus the potential harms for 
participants who in reality are not developing clinically 
manifest lung cancer but who may suffer from consequences 
of false-positive screening diagnosis or over-diagnosis. The 
information of such long-term benefits and harms generally 
is not available in the prospective studies (non-trial data) that 
have been used for risk model development or validation. 
However, information on overall benefits vs. harms as 
observed in prospective screening trials could be integrated 
into simulation models for estimation of the expected NB at 
different eligibility (lung cancer risk) prediction thresholds. 
Doing so would require several assumptions. One is that 
the benefits and harms of screening primarily depend 
on an individual’s lung cancer risk, independently of the 
combination of determinants underlying the model (20). A 
second is that the relative (weighted) balance between actual 
benefits (e.g., life years gained) and harms (frequency and 
seriousness of consequences to false positive diagnosis, over-
diagnosis) will be invariant to the selected risk threshold 
chosen as eligibility criterion for screening. The question 
is whether these assumptions truly hold. Conceivably, the 
risk threshold may be related not only to an individual’s 
probability of actually developing lung cancer, but also 
clinical and molecular characteristics of tumors and a 
patient’s probability of survival. Likewise, the level of risk 
threshold chosen may also be related to numbers and sub-
categories of false-positive diagnoses (e.g., with or without 
need for biopsies or surgery) or the likelihood of a cancer 
patient being over-diagnosed (e.g., in view of overall 
residual life expectancy). 

In conclusion, evidence is accumulating that the selection 
of individuals for lung cancer screening using individual 
risk prediction may be superior to using selection criteria 
based on age and pack-years alone. Studies on the external 
validation indicate that existing risk prediction models such 
as PLCOm2012, Bach and TSCE may have good general 
performance in terms of discrimination and absolute risk 
calibration. Validation of PLCOm2012 and other models in 
still further prospective cohort settings may help dissipate 
remaining concerns about the generalizability of model 
calibration, even though population based cohort studies 
will never perfectly represent all possible populations to 
be screened. Finally, more detailed analysis of existing 
screening trial data should assess possible relationships of 
individuals’ predicted risks as screening eligibility thresholds 
with actual observations of observed clinical benefits 
and harms, and their weighted balance, upon screening 

participation. 
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