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Abstract: One of the primary goals in this era of precision medicine is to understand the biology of 
human diseases and their treatment, such that each individual patient receives the best possible treatment 
for their disease based on their genetic and environmental exposures. One way to work towards achieving 
this goal is to identify the environmental exposures and genetic variants that are relevant to each disease 
in question, as well as the complex interplay between genes and environment. Genome-wide association 
studies (GWAS) have allowed for a greater understanding of the genetic component of many complex 
traits. However, these genetic effects are largely small and thus, our ability to use these GWAS finding for 
precision medicine is limited. As more and more GWAS have been performed, rather than focusing only on 
common single nucleotide polymorphisms (SNPs) and additive genetic models, many researchers have begun 
to explore alternative heritable components of complex traits including rare variants, structural variants, 
epigenetics, and genetic interactions. While genetic interactions are a plausible reality that could explain 
some of the heritabliy that has not yet been identified, especially when one considers the identification 
of genetic interactions in model organisms as well as our understanding of biological complexity, still 
there are significant challenges and considerations in identifying these genetic interactions. Broadly, these 
can be summarized in three categories: abundance of methods, practical considerations, and biological 
interpretation. In this review, we will discuss these important elements in the search for genetic interactions 
along with some potential solutions. While genetic interactions are theoretically understood to be important 
for complex human disease, the body of evidence is still building to support this component of the underlying 
genetic architecture of complex human traits. Our hope is that more sophisticated modeling approaches 
and more robust computational techniques will enable the community to identify these important genetic 
interactions and improve our ability to implement precision medicine in the future. 
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Introduction

Most rare Mendelian genetic disorders, such as cystic 
fibrosis, are influenced by the effects of a single gene. 
However, common complex diseases, such as Alzheimer’s 
disease, breast cancer, or diabetes, are known to be 
influenced by more than one gene. Understanding the 

etiologic architecture of complex traits has remained a 
nearly insurmountable challenge for decades. Genome-
wide association studies (GWAS) are an unbiased survey of 
common single nucleotide polymorphisms (SNPs) across 
the human genome, assayed by one of the commercial 
SNP platforms and tested one by one for association with a 
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phenotype or trait of interest. GWAS have been successful 
for some traits/phenotypes with the identification of new 
disease susceptibility genes (1,2), while other diseases have 
been less successful through GWAS (3,4), which may point 
to a problem of “missing heritability” (5-7).

The search for the “missing heritability” of complex 
traits has led many to the path of genetic interactions, 
as these are a likely source of some of the underlying 
heritability (5,8). The idea of genetic interactions between 
loci, or epistasis, is not new, dating back to Bateson in  
1909 (9). The most compelling recent evidence comes from 
studies in model organisms where there is both biological 
and statistical evidence for epistasis (10-12). Here, there is 
statistically significant evidence of an association between 
the epistatic loci and the trait of interest AND there is 
evidence that the genes biologically interact in a protein-
protein, protein-DNA, protein-RNA, or similar type 
of interaction (10,11). These model organism studies 
provide evidence that epistasis detected via statistical and 
computational techniques may be relevant biologically for 
these organisms. We and others (13) propose that if these 
genetic interactions are important for model systems, they 
are similarly important for humans.

Although the concept has been extensively studied and 
accepted in model systems, the importance of epistasis 
in humans has continued to be a matter of debate. Based 
on recent research, epistasis is not merely a theoretical 
argument, and we have seen that complex interactions 
(such as interactions between genes that affect the trait 
of interest through multiplicative, or non-linear, or non-
additive, interactions) have been identified as a component 
of complex phenotypes such as lipid profiles, sporadic 
ALS, multiple sclerosis, and cataracts to name a few 
(14-19). Some of these were identified in smaller scale 
candidate gene studies, but many are emerging from 
Genome-Wide Association Interaction Studies (GWAIS). 
These examples of epistasis in complex traits support the 
evidence seen in model systems. Furthermore, even once 
considered “simple” Mendelian disorders such as retinitis  
pigmentosa (20), Hirschsprung disease (21), juvenile-
onset glaucoma (22), familial amyloid polyneuropathy (23) 
and cystic fibrosis (24), are now documented examples of 
epistasis where modifier genes have been identified which 
affect the disease phenotype. Thus, even these simple 
genetic diseases are complex and include epistasis, or 
genetic interaction, components. 

When beginning a new study to discover and analyze 
the loci involved in a given complex phenotype, one goal 

is to select the most powerful, robust analysis methods for 
the problem at hand. Unfortunately, this process is not as 
simple as one would hope. For various reasons, including 
the heterogeneity of the underlying models that we are 
trying to identify, differential correlation patterns between 
SNPs, different allele frequencies, and other modeling 
assumptions, it is the case that there is not one, single best 
tool to use for all analyses. In fact, many different tools have 
been developed, each with strengths and weaknesses, and 
optimality for certain types of problems. Thus, rather than 
trying to make a recommendation for which tool is “best” or 
“optimal” for the identifying important genetic associations 
for complex disease in a GWAIS analysis, our goal is to (I) 
create a general awareness of some of the specific issues that 
are important in the context of GWAIS projects and (II) to 
provide pointers or suggestions towards possible solutions so 
that we might increase the clinical and public health utility 
of the findings of these studies. We first explain the topics 
that investigators should consider when selecting the most 
appropriate tool for a given study. However, a thorough 
review of all of the available tools is out of the scope of this 
review; instead we refer readers to the following additional 
reviews of specific methods (25-29). In the following 
sections, we discuss the topics for consideration divided into 
three broad categories: abundance of methods, practical 
considerations, and biological interpretation. The ultimate 
utility of our monumental investment in data generation 
will depend largely on the development of innovative 
analytical strategies and study designs that allow for the 
identification of complex genetic effects, like epistasis (or 
genetic interactions).

Abundance of methods: finding the tree in the 
forest, but how?

The lack of a consensus in good common practice in 
GWAIS and clear criteria for performance assessment as 
well as the lack of realistic synthetic data to rigorously 
evaluate the strengths and weaknesses of several competing 
epistasis detection methods has left the researcher 
interested in GWAIS with a feeling of not being able to 
see the “trees from the forest”. Moreover, the adoption of 
different definitions of family-wise error, false positives 
or power, and/or variations in how to compute them, 
complicates assessments about the relative efficiency of the 
different competing methodologies. It is important when 
comparing methods for GWAIS to identify and understand 
their core components other than those parts involving 
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data preparation, pre-selection of interesting interactions, 
and multiple testing correction. Sometimes these parts 
cannot be disentangled due to the nature of the approach 
itself or due to the fact that the software source code is 
inaccessible. However, in some cases, the core of several 
different methods may be identical; therefore, it would not 
be useful to run both methods and compare results and 
be more confident in overlapping resultant models. If the 
core components of the methods are the same, this is not 
increased evidence of signal, this is merely what is expected. 
In addition, too much attention is given to a general 
simplified picture of epistasis and not the detailed structure 
it involves. The complexity of the human biological 
system requires the consideration of complex scenarios in 
simulation studies, minimally involving higher-order (>2 
SNP) interactions, as well as interacting pathways (possibly 
modified by non-genetic exposures), differential patterns 
of short- and long-distance relationships between SNPs, 
varying patterns of genetic architecture, and missingness, as 
well as trait or genetic heterogeneity. Most of the simulation 
studies to evaluate novel genetic interaction methods use 
subsets of the above complexities and custom-tailored, 
overly simplified synthetic data. We believe that all of 
these factors may explain the limited number of replicated 
findings in epistasis research, as well as the poor results 
on biological a posteriori validation of identified epistasis 
signals. 

Despite these challenges, the opportunities for 
identifying important interaction models that explain or 
predict disease susceptibility are immense. Dimensionality 
reduction strategies are extremely powerful. When the 
appropriate assumptions are met, ample power is achieved 
through having a substantial sample size, and a robust 
analysis tool is implemented, interaction models can be 
identified. There continue to be more and more examples 
of epistasis models identified in many complex traits; which 
emphasizes the importance of considering GWAIS going 
forward. 

Over the past 10 years, several reviews, opinion and 
perspective papers have emerged (25,29-33), discussing the 
advantages and limitations of epistasis studies. Nowadays, 
it is often mandatory to supplement GWAS analysis with 
some notes about potential interactions between identified 
predisposing loci or within a particular genomic region. 
It is therefore not surprising that an increasing number of 
sophisticated analysis methods have entered the scene, a 
process that will last for several years to come. This comes 
with a caveat: clear guidelines are needed to use these 

methods in a correct way, in the appropriate context, and 
with a full understanding of what they are able to tell us and 
what they are not. 

We argue that an optimized use of existing methods, as 
well as the creation of novel methods that better integrate 
the complexities involved in biological epistasis, are needed 
in order to make significant and clinically relevant progress 
and to better understand how the genetic structure and 
its biological mechanisms may relate to complex traits. A 
number of such approaches have been developed or are 
underway. 

The abundance of methodological possibilities, 
developed to tackle the problem of epistasis identification 
in human genetics, does not make it easy to make an 
educated decision without going over the details of the 
method and empirical data supporting their utility. Some 
practical guidelines that generally apply to most methods 
will be offered further in this Review. On the positive side, 
the abundance of possibilities allows for the exploration 
of the vast modeling space of interactions, including 
parametric and non-parametric statistical methods as well 
as machine learning and data mining techniques, using a 
variety of routes. Each of them is likely to lead to different 
solutions due to the different representations of the same 
phenomenon, and thus caution is needed when prioritizing 
epistasis findings that are consistent across different 
analytic approaches. This is well-acknowledged within a 
classical regression framework: if one uses forward, stepwise 
regression, and backward elimination regression on the 
same dataset, the resulting models may be very different 
due to the path taken to construct them (29,34-36).

While all of the analytic approaches have their different 
strengths and weaknesses, there are underlying challenges 
that are shared amongst many or even all of the approaches. 
At the very heart of working with genetic interactions is the 
concept that appropriate modeling tools must be available 
to maximize our ability to develop models of complex 
traits. Additionally, due to the technological advances 
in genotyping and sequencing, we need to join forces to 
develop new methodologies to perform variable selection 
to extract the DNA variants associated with our trait of 
interest from the millions of available SNPs. Reviewing 
the extensive challenges in variable-selection and providing 
guidelines on which modeling tool has optimal performance 
are out of the scope of this review and have been covered 
in other review papers such as Fan and Lv (37). Instead, 
we will now draw attention to additional concerns when 
performing large-scale genetic interaction analyses, and 
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will provide suggestions for scientists and analysts on 
how to address these in the future. Figure 1 demonstrates 
these concerns that are discussed below from each step of 
detecting epistatic interactions in the form of a flowchart. 

Practical considerations

Here, we list a number of important practical considerations 
which describe part of the challenge the scientific 
community has experienced when faced with exploring 
epistasis. Different choices made for each of these may lead 
to widely varying epistasis results (38). 
	 Computational complexity issues arise when scaling 

up from studies investigating small genomic regions 
to studies covering the entire genome. The number 
of combinations of interacting SNPs is reasonable 
when studies evaluated 100 SNPs from candidate 
genes. But now that GWAS assays include 1 million 
SNPs or more, the number of combinations to test 
has exploded. 

	 There is also a major concern with sample size. This 
is often referred to as the “small n big p” problem 
(n: number of subjects; p: number of variables/
genetic markers); this issue may give rise to curse of 
dimensionality problems (39). 

	 Questions about how to develop the statistical 
model of epistasis remain. Parametric model mis-
specification is a major concern, especially in 
the presence of high-dimensional confounders. 

Parametric model mis-specification occurs when the 
model being used makes certain assumptions (such as 
dominant inheritance or additive effects), and if the 
data violate those assumptions, then the model does 
not effectively capture the effects in the data. 

	 How can we best exploit short-distance [i.e., linkage 
disequilibrium (LD)] or long-distance associations 
between genetic markers in epistasis studies? These 
patterns of LD should be able to enhance our ability 
to identify epistasis models, but thus far has not been 
capitalized on to the fullest extent.

	 Multiple testing correction has been a huge focus of 
research in biostatistics applications in general, and 
in GWAS in particular, but more work is needed to 
optimize these in the context of epistasis screening 
(e.g., when hierarchically building 2-order, …, 
k-order interaction models). 

Given the large amount of available data, the field 
has seen a shift from purely parametric (e.g., multiple 
regression) to semi-parametric interaction models (e.g., 
estimating interactions without modeling main effects) or 
“data mining” types of strategies [e.g., MDR (40) or MB-
MDR (41,42)] and the exploitation of multiple different 
methods and statistical tools to combine their strengths. 
These shifts are exciting and have begun to lead to the 
identification of epistasis that replicates across studies (43). 
However, careful and thorough analyses are essential to 
detect and model these epistasis effects. In the following 
sections, we describe important areas of consideration when 

Sample size

# Variables

Parametric/ 

nonparametric

LD short/long 

distance

Computational 

complexity

Data preparation

Confounders or 

covariates

Phenotype/s

Replication

Correction 

multiple testing

Meta-analysis

Data

Selection 

of Tool
Perform 

analysis

Figure 1 Flowchart describing the process of testing for epistatic interactions and challenges necessary to address at each step. A number of 
important considerations and decisions come into play when performing an epistasis analysis. This flowchart provides an overview of these 
steps.
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embarking on a GWAIS.

Checking assumptions 

Most statistical methods have assumptions of some sort 
that should be considered prior to analysis. Failure to 
evaluate assumptions can lead to false positive associations 
or false negative associations. Statistical analyses are 
based on modeling strategies, each of which make certain 
assumptions about the data. For example, in a Student’s 
t-test, the assumptions include: (I) normal distribution of 
the dependent variable, (II) homogeneity of variance, and 
(III) independence of the samples. If the samples violate 
one or more of these assumptions, methods such as paired 
t-test or Wilcoxon rank sum test must be implemented as 
an alternative. 

Whether the aim is to model genetic interactions or 
to explicitly test for them, the validity of model or test 
assumptions needs to be verified. Especially when data 
mining approaches are adopted this step in the data analysis 
flow is often forgotten. This can be explained by the fact 
that these methods are often termed non-parametric, and 
thus “model-free”. Parametric methods tend to have very 
specific model assumptions, which lead to our ability to 
determine statistical significance under such assumptions. In 
a non-parametric test, we often have fewer assumptions to 
evaluate, but also differences in how statistical significance 
is determined. For example, with a t-test, a P value can 
be assigned based on a table from a statistics textbook. 
However, if we run a non-parametric test, such as MDR, 
there is no P value table in the back of any textbook. 
Thus, care has to be given to what non-parametric means 
in the light of a particular analysis method. For instance, 
both MDR and MB-MDR are usually referred to as non-
parametric approaches, but the term non-parametric 
here refers to these methods making no assumptions 
about genetic modes of inheritance. MB-MDR involves 
association testing, which may be either non-parametric 
(e.g., based on ranks) or parametric (i.e., relying on data 
distributional properties which may or may not be valid). 

Complex analyses often rely on resampling-based 
methodologies to assess significance rather than on 
theoretical (often large-sample) reference distributions. 
Thus significance assessment and multiple testing correction 
methods may rely on assumptions that in principle need 
to be verified. In particular, both MDR and MB-MDR 
adopt permutation-based resampling methods to obtain 
empirical distributions of the relevant test statistic under 

a null hypothesis by rearranging trait labels of observed 
data records and recalculating test statistics accordingly. 
These resampling strategies can be tricky when studies are 
using hierarchical or sequential testing of models. Here, 
the process includes a first phase that tests a set of models; 
models that pass some threshold proceed to the next stage 
of analysis, and so on. Performing a permutation test of 
this process and creating the appropriate null distribution 
can be quite complicated. Apart from issues related to 
hierarchical or sequential testing of multiple models (e.g., 
2-order, 3-order, …, k-order interaction models in MDR) 
and correctly describing “null” for a test statistic’s null 
distribution, applicability of the “exchangeability” premise 
or the assumption of “subset pivotality” may need to be 
checked. Subset pivotality refers to an assumption made 
about the exchangeability of matrices (44). Permutation-
based step-down MaxT algorithms (45) do take into 
account the joint distribution of epistasis test statistics 
for significance assessment and are less conservative than 
Bonferroni correction, but need the subset pivotality 
(exchangeability) property in order to guarantee strong 
control of family-wise error rate (FWER). FWER considers 
not just the multiple tests with respect to one set of 
variables, but the tests over all combinations of variables and 
models. It was suggested in Mahachie John et al. (2013) (46) 
that this may be a problem for epistasis screening; a problem 
that may become even more pronounced in the presence of 
increased LD between markers (such as in whole genome 
sequencing data) and rare variants (47). Indeed, these 
particular data characteristics may induce quite different 
joint distributions of test statistics for different selections 
of equally sized joint hypotheses throughout the genome, 
making them non-exchangeable. The issue can be overcome 
by adopting a gene-centric analysis (48).

Selection of the tool 

Several criteria are used to classify existing methodologies 
in epistasis studies, such as those based on whether (I) 
the strategy is exploratory in nature or not, (II) whether 
modeling or testing is the primary aim, (III) the epistasis 
effect is tested indirectly or directly, (IV) the approach is 
parametric or non-parametric in nature, (V) the strategy 
uses exhaustive search algorithms or takes a reduced set of 
input-data, that may be derived from prior expert knowledge 
or some filtering approach (49). These classification criteria 
show the diversity of available epistasis detection methods 
and approaches and indicate the complexities involved when 
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trying to compare them (30). 
The regression framework has long been, and still is, one 

of the most commonly used frameworks when modeling 
the effects of two susceptibility loci influencing disease 
status, allowing the easy inclusion of a main effect for each  
locus  (50) .  After  the rea l izat ion of  the HapMap  
project (51), there was a growing interest in haplotype 
analyses for GWAS, and the regression framework may also 
be used to model individual effects from multiple genetic 
markers that are putatively in LD with a susceptibility 
locus, allowing an effect to be studied for each marker 
haplotype that occurs (52,53). However this interest rapidly 
cooled down, mainly due to the limited additional power 
advantages it could offer to multiple regression based 
approaches (54). In addition, the increased computational 
burden haplotype construction itself would involve, despite 
the fact that haplotype-based methods for GWAS naturally 
account for correlations between markers in close proximity. 
The continuing popularity of parametric modeling (i.e., 
regression analyses) is somewhat surprising, given the 
several disadvantages it exhibits (55), such as the inclusion 
of that many parameters in a model (high-order interaction) 
which, in combination with small data sets may lead to 
overfitting (50); correlated predictors may further degrade 
the models and may lead to harmful multicollinearity; 
(nearly) empty cells (multi-locus genotype combinations 
with little or no data) require special parameterization; 
and the significance of the interaction parameters in fully 
saturated models largely depends on the underlying genetic 
model, allele frequency and multiple testing correction  
used (56). 

Each of the aforementioned aspects may differentially 
impact the performance of an epistasis analysis method, 
where performance is usually assessed via power and 
notions of false positives on simulated data that may or 
may not well represent reasonable biological mechanisms. 
Here, power should be defined as the probability of 
detecting a statistically significant signal, given a particular 
epistasis model. The goal in most studies is to have maximal 
statistical power possible so that all true associations can 
be identified. In effect, some authors use “specific” power 
to indicate the probability to identify the causal interactive 
pair(s) and nothing else (no false positive SNPs). Others 
rather use the more general concept of “sensitivity” rather 
than “statistical power”. Different forms of sensitivity may 
apply depending on what is being tested for, against which 
alternative. For instance, Grady et al. (2011) (57) use “exact 
sensitivity” to refer to the simultaneous detection of the 

functional pair of markers in 2-locus epistasis studies versus 
“signal sensitivity”, which may refer to any sensitivity which 
is not exact. This means that while the method detected 
the correct 2-locus model, it may have also included one or 
more additional SNPs which are actually false positives. In 
contrast, false positive rate is defined as the probability that 
an error is made, either under a global null hypothesis of 
no association between genetic markers and trait or under 
the alternative of a particular epistasis model. Type I errors 
assess the probability of making at least one false-positive 
inference under the null hypothesis, but depending on the 
stated null, several Type I error definitions may apply within 
the same application. The goal is to use a method which 
has a low false positive rate (does not detect too many SNPs 
that are not truly associated). Using different performance 
criteria obviously further complicates making comparisons 
between several methodologies and clearly there is a need 
for a consensus and correct usage of them in simulation 
studies. When evaluating simulation studies, a researcher 
can determine if they are more focused on power, type I 
error, or both. Is it most important to find all of the true 
signals, and it is okay to also detect a few false positive 
signals? Is it most important to find only true signals and 
no false positives - even if you may miss some true signals? 
These considerations will allow an investigator to balance 
power and type I error and select the appropriate tool for 
their project.

Notably, some methodologies generate a ranking 
of results without a threshold above which results are 
“significant”. For instance, Random Forests or Conditional 
Inference Forests (58,59) provide variable importance scores 
for input variables or pairs of input variables, but generally 
no statistical significance is assigned to these scores. User 
dependent thresholds complicate the comparison of power 
and false positive rates with methodologies that do generate 
a fixed threshold or rule of significance assignment. In 
addition, there are numerous ways for genetic interactions 
to manifest themselves in tree-based models. Currently 
adopted criteria such as “two variables should appear on the 
same branch” are not sufficient proof for interaction. This 
concept has been explained in more detail in (60) and can 
be seen in Figures 1 and 2 of (60).

While methods are often selected on the basis of easy-
to-access software availability or required IT-infrastructure 
to run the software, we believe that selecting the most 
appropriate method(s) for epistasis detection for particular 
biomedical data should be driven by characteristics 
of the “core component” of the epistasis detection 
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approach; that is, the part of the method not related to 
data preparation, variable selection or multiple testing. 
The body, or core component, of an approach is defined 
as the primary statistical or computational model that is 
developed, assumptions made, optimization strategies 
implemented, and how results are provided and interpreted. 
Unfortunately, far too often, the source code of the related 
software tool does not allow manipulations to get to the 
core of the method, or the essential programming expertise 
is not available in the lab, or researchers having generated 
the initial software code have moved on and are no longer 
available to provide help. This issue has been discussed 
by others such as (61). In what follows, we discuss why 
it is important to align methodologies with respect to 
data preparation, variable selection, and multiple testing 
handling, so as to be able to better evaluate the relative 
performance of different epistasis detection methods.

Data preparation

Because of the computational complexity, big n small 
P, and multiple testing issues mentioned earlier, most 
epistasis methods employ some type of filtering method 
prior to analysis so that the computation time and number 
of tests are reduced. Several methods to pre-filter data 
in preparation for subsequent epistasis analysis exist and 
although the theoretical properties of these are fairly 
well understood in machine learning or bioinformatics 
communities, the potential of using biological knowledge 
to assist the filtering has re-opened the debate about the 
best ways to filter in the context of epistasis screening and 
whether we should do so in the first place (62). Many filter 

techniques assess the relevance of features by looking only 
at the intrinsic properties of the data (63,64). In most cases 
a feature relevance score is calculated, and low-scoring 
features are removed. Wrapper techniques involve a search 
procedure in the space of possible feature subsets, and an 
evaluation of specific subsets of features. The evaluation 
of a specific subset of features is obtained by training and 
testing a specific classification model. Embedded techniques 
involve a search in the combined space of feature subsets 
and hypotheses. Hence, the search for an optimal subset of 
features is built into the classifier construction, reviewed by 
Saeys et al. (2007) (65). 

Some of the specific strategies being applied to 
prepare the data and make these analyses feasible can be 
categorized into two-stage approaches and space-pruning 
approaches. In two-stage approaches, SNPs are filtered 
through the use of an initial screen, to then move on 
to the second stage analysis. This can be done through 
single-locus GWAS (main effect) testing and only those 
SNPs that are statistically significant based on some P 
value threshold move on to the epistasis testing in stage 2, 
as performed in Sha et al. (66). Two-stage analysis can also 
be done through filtering based on biological knowledge 
including pathways, networks, and protein-protein 
interactions (49,67,68). There are also many methods 
developed for space-pruning; this includes strategies to 
reduce the search space using computationally efficient 
approach such as FastANOVA (69) or TEAM (70). When 
screening and testing involve two separate steps, and these 
steps are not independent, then proper accounting should 
be made for this dependence, in order to avoid overly 
optimistic test results. 

Additive-Additive Additive-Dominant Non-parametric (XOR) 

Figure 2 Examples of genetic models represented as penetrance functions. Genetic interaction models can be represented as penetrance 
functions based on many different types of underlying genetic models. Three examples are shown here. The value in each box indicates the 
penetrance, or the probability of disease given that genotype combination. The value, x, can be any value such that the resulting penetrance 
value is between 0 and 1. 
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Aligning the correct method for multiple testing

Several multiple testing methods exist, each of which have 
been evaluated at length via theoretical simulation studies 
in biostatistics settings. Interestingly, especially for small-
scaled genetic association studies, family-wise type I error 
control still is often implemented as a Bonferroni correction, 
despite it being too conservative as it does not account for 
the correlation among multiple SNP pairs and may lead to 
an increase in type II errors. Type I error is the probability 
of identifying a SNP that is not truly associated (false 
positive). Type II error is the probability of missing a true 
association signal (lack of power—false negative). Balancing 
type I and type II error is a critically important aspect to the 
multiple testing approach selected. If one is more concerned 
with identifying as many potential associations as possible, 
even if some are false, they will have a lower type II error, 
but higher type I error. If a researcher does not want to be 
wrong and identify anything that is a false positive, they 
will have a low type I error, and a higher type II error. 
This also means that they will have lower power and may 
miss true association signals. There are strong motivations 
that would determine which is the appropriate balance 
for a given study; but it is a very individualized decision. 
Alternatively, genome-wide correction procedures focus 
on controlling the percentage of statistical significant tests 
that are false positives [false discovery rate (FDR) (71)] or 
on the false positive report probability (72), which refers to 
the posterior probability that a null hypothesis is true, given 
a statistic at least as extreme as the one observed, but are 
hardly used in genome-wide epistasis screening. Approaches 
such as the permutation-based step-down maxT adjustment 
of Westfall and Young (45) or adaptions using sample-based 
approximations, implemented MB-MDR (73), unifies the 
advantages of test significance assessment via resampling-
based null distributions for test statistics, with an adequate 
control of type I error when multiple tests are performed. A 
discussion about the utility of a selection of multiple testing 
procedures in GWAIS applications falls outside the scope 
of this work. For more information, see Steen et al. (30), 
amongst others. 

Characterizing and comparing the body or core components 

Our ongoing work to incorporate features of MB-MDR 
in BOOST (in particular, integrating MB-MDR’s ways to 
handle missing data, covariate correction, score association 
testing, etc., with BOOST methodology) in a new umbrella 

tool called EpiShell (http://bio3.giga.ulg.ac.be/index.php/
software/), highlights the benefits of evaluating methods 
on the basis of their “core” components in order to better 
understand the relative merits of each method (unpublished 
data). Methods that are conceptually quite different 
(for instance parametric and non-parametric methods) 
may actually give quite similar performances when they 
are properly “aligned”. We have also performed some 
simulations to characterize the performance of different 
methods and attempted to integrate them in PLATO (74). 
PLATO is the Platform for Analysis, Translation, and 
Organization of large scale data. It is a complementary 
analysis tool to PLINK, using the same file formats 
and some similar commands. However, PLATO has 
many analysis methods for epistasis, gene-environment 
interactions, and phenome-wide association study 
(PheWAS) analysis (74). Strategies like these will optimally 
allow for the best use of multiple analytic strategies.

Biological interpretation

Correction for confounding factors and covariates

When disease prevalence and genetic exposures differ 
among populations, spurious results may arise when testing 
the association between disease outcome and the genetic 
exposure of interest. To what extent genetic interactions 
exhibit different architectures between populations is 
largely unknown, making it uncertain how to best account 
for population substructure in GWAIS. Also, correcting 
for population stratification is relatively easy in a regression 
context (e.g., adding principal components as additional 
covariates to the association model), but it is far less 
obvious for certain dimensionality reduction or pattern 
recognition methods. In the context of dimensionality 
reduction or non-parametric data mining methods, only 
a limited number of groups have addressed the issue of 
adjusting for lower-order genetic effects during epistasis 
screening. This is understandable when the emphasis is 
on identifying a global signal from multiple loci, ignoring 
whether the joint signal is mainly explained by the highest 
possible order interaction or lower-order effects. Here the 
focus is on using a composite null hypothesis, where both 
main effects and interaction effects are tested jointly. This 
is an approach that has been seen to be rather efficient 
in gene-environment interaction studies when a locus is 
expected to only have residual marginal effects conditional 
on other factors tested for interaction (75). The quest for 
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gene-gene interaction signals, above and beyond lower-
order interactions or main effects, implies a shift towards 
the parametric paradigm or an integration of parametric 
or semi-parametric ideas in intrinsic non-parametric data 
mining approaches. Consequently, this shift comes with 
a cost of checking the validity of additional assumptions 
related to the approach. Results from a study performed 
by Mahachie John et al. (42) confirmed highly increased 
type I errors (i.e., false epistasis findings in data with main 
effects but no interaction effects) when main effects were 
not taken into account or when they were not properly 
accounted for. For instance, MB-MDR’s type I error and 
false positive rates are under control when there is no 
additional main effect on the trait or when adjustment is 
made under a genotype model (i.e., biallelic genetic markers 
are coded as variables with 3 factor levels), but the latter 
also depends on the strategy used for adjustment. To attain 
sufficient power, these authors point out that adjusting for 
the main effects in the two genetic markers that are under 
investigation for epistasis using a genotype coding scheme 
as part of MB-MDR screening is the most appropriate 
strategy. Clearly, when higher-order interactions are 
envisaged, the previously mentioned disadvantages of 
parametric modeling will outweigh the advantages of using 
a semi-parametric correction instead. To our knowledge, 
the latter has not been considered in combination with non-
parametric data mining methods for epistasis to condition 
on lower-order effects. This would be feasible though, 
given that there does not seem to be a power advantage of 
correcting for genetic markers other than those included in 
the higher-order interaction in the absence of LD between  
markers (42). Obviously, a detailed investigation of the 
effects of LD and long-distance correlations between 
markers on epistasis screening results may lead to quite 
different conclusions, and such an investigation is work in 
progress and has been discussed for MDR previously (57). 

Replication

The gold standard in genetic epidemiology for accepting 
genetic association results is replication (76). In this context, 
for a SNP to replicate in a GWAS, we must observe 
the same SNP associated in two or more independent 
datasets drawn from the same population, ideally with the 
same study design, and with the same direction of effect. 
Replication is one strategy to minimize type I errors, as 
if we observe the same finding in multiple independent 

datasets, we can be more confident that the finding is real. 
Replication is typically seen as confirmation of results from 
the discovery set in an independent dataset. It differs from 
validation in subtle but important ways. First, validation 
refers to the concept that we observe the same SNP-
phenotype association in two or more datasets collected in 
different populations (77). These different populations can 
be the result of different ethnic or ancestry backgrounds, 
different phenotype definitions, or different sample 
strategies. This is also known as an external cross-validation 
design (77). Although the necessity of replication and 
validation analysis and the procedures to carry them out is 
no longer under debate for GWAS, how to consider these 
types of analyses in GWAIS contexts may be regarded to be 
trivial but is—in our opinion—largely under-examined. 

Genome-wide SNP genotyping platforms consist 
predominantly of tagSNPs from across the genome. 
Most of these SNPs are not causal and have no functional 
consequences. When two or more tagSNPs are combined 
in a genetic interaction model, is it reasonable to assume 
that the same combination of tagSNPs interacts in an 
independent dataset? We postulate that due to variation in 
allele frequency and underlying LD patterns between two 
datasets, it is highly unlikely that the same combination 
of tagSNPs would be associated in the same statistical 
model across both datasets. Rather, we would expect that 
the combination of underlying signals that those SNPs are 
tagging would replicate across datasets than the tagSNPs 
themselves. We have observed this in simulation studies (57). 
Also, when aligning two independent datasets by imputing 
missing markers, one SNP in a SNP-pair may be imputed 
in one dataset, whereas it is actually observed in another 
dataset. So even when the same SNP pair is highlighted 
in a significant genetic interaction in this setting, can we 
really talk about “replication”? Hence, it is necessary to 
expand the definition of replication and validation to better 
accommodate the aforementioned scenarios and to better 
consider the reality of the data we are working with, which 
are indirect association signals due to LD or signals that 
would never have emerged without data imputation. One 
such expansion considers gene-based replication instead of 
SNP-based replication (78,79), and is often the only feasible 
approach when evidences from different heterogeneous 
published studies need to be combined. Other more refined 
expansions may be thought of, that may better reflect a 
more detailed gene structure and function. 

Leaving aside for the moment what replication means 
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or should mean in the context of GWAIS even for the 
currently so-called replicated genetic interactions, it is 
unclear to what extent a potentially false positive model has 
been replicated due to the adopted methodological strategy 
itself or whether the replication of epistasis is not solely 
attributed to main effects (such as HLA effects) not properly 
accounted for. Clearly, effects such as those arising from the 
HLA region will be strong in whatever independent data 
are analyzed (80,81). 

Meta-analysis 

As described earlier, the goal is to identify associations that 
exist in multiple independent datasets as a way to rule out 
false positive findings. One strategy is to replicate or validate 
those findings. An alternative strategy is meta-analysis. 
Like replication and validation analysis, meta-analysis is 
also an approach to look for confirmation of signals, but 
with a very different analytic approach: however, it may 
establish statistical significance of genetic interaction studies 
with conflicting results. It looks to combine signals across 
multiple smaller datasets to increase statistical power and/
or to develop more precise estimates of effect magnitudes. 
In addition, meta-analysis allows us to explicitly investigate 
study heterogeneity and to analyze datasets that on their 
own would not give statistically significant results due to 
too small sample sizes. Hence, the meta-analysis framework 
is particularly relevant for GWAIS. In the context of 
GWA studies, meta-analysis has mostly been applied to 
single SNP analysis of a given phenotype, although more 
advanced meta-analysis strategies also account for genome-
wide multiple testing and population stratification issues 
(82,83). Alternatively, the Principal Components based 
meta-analysis approach proposed by Wang et al. 2012 (84) 
to deal with the ineffectiveness of double genomic control 
while accounting for population stratification in meta-
studies, assumes the availability of per-study datasets. In 
‘double genomic control’, genomic control is calculated in 
each study separately to generate the corrected P values and 
then also once again in the meta-analysis. Even with the 
original data of different centers being available for GWAIS 
analysis, genetic interaction signals may reveal themselves 
in different multi-locus patterns depending on the nature 
of the data (see also the previous section on replication, and 
the suggestion that gene-gene interactions may be modeled 
in a variety of ways, such as additive-additive, additive-
dominant, or non-parametric, to name a few [shown in 
Figure 2 and more in (85-87)].

Future directions for success

We have examined some of the thought processes around 
the abundance of tools available, practical considerations 
for GWAIS (including checking assumptions and selection 
of analytic tools), as well as biological interpretation 
(including replication and meta-analysis). These are a few 
of the issues facing the community as we explore genome-
wide datasets to elucidate genetic interaction signals that 
we expect to detect. For each of these topics, there are 
specific points to consider, selections to make to design 
a study, and conclusions that can be drawn based on 
these decisions. We have provided important points to 
consider, but unfortunately not strict recommendations. As 
mentioned throughout the review, many choices made for 
GWAIS with respect to analytic tool, replication, and meta-
analysis strategy, will be study-specific. The appropriate 
tool and replication strategy for one study may not be 
the right choice for a different study. In addition, the 
continued development of new methods and evaluation and 
comparison of methods is critical to move the field forward. 
Method comparisons require data simulation studies 
where the simulated data are challenging and complicated, 
much like natural biological data. Fortunately, tools for 
data simulation also continue to be developed and evolve 
including GAMETES (88) and SELAM (89), both of which 
were developed explicitly for simulating epistasis. We are 
optimistic that both the simulation approaches and analysis 
approaches will continue to improve as we learn and 
understand more about the complexity of human disease 
biology.

While the simulation aspect of genetic interactions is 
important, specifically developing representative datasets 
and designing appropriate in silico protocols, we also need 
to better align in silico approaches with experimental work. 
In most current studies, experimental work is integrated 
into genetic interactions as either prior knowledge or as 
a posteriori confirmation of results. However, to truly 
take advantage of the experimental techniques along with 
the computational techniques, we should surpass these 
simple uses of experimental information. Strategies to 
fully integrate experimental and computational work, as 
well as the community acceptance of the integration of 
these two very different worlds into collaborative projects, 
will facilitate our detection and understanding of genetic 
interactions in the future. 

An overarching goal for this review is to point out the 
challenges in the search for genetic interactions, along 
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with some thought provoking perspectives, to provide 
context that may explain why successful genetic interactions 
from GWAIS have been lagging behind single SNP 
associations from GWAS. The challenges facing GWAIS 
are considerably greater than those for standard GWAS 
(one SNP association at a time). However, the potential 
for uncovering more of the underlying heritability of 
complex traits, and improving our understanding of genetic 
architecture is considerable. Thus, the efforts being spent 
by many researchers in the community to improve our 
ability to detect genetic interaction signals are critical.
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