
Page 1 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Big-data Clinical Trial Column

Opening the black box of neural networks: methods for
interpreting neural network models in clinical applications

Zhongheng Zhang1, Marcus W. Beck2, David A. Winkler3,4,5,6, Bin Huang7, Wilbert Sibanda8, Hemant
Goyal9; written on behalf of AME Big-Data Clinical Trial Collaborative Group

1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Southern

California Coastal Water Research Project, Costa Mesa, CA, USA; 3Monash Institute of Pharmaceutical Sciences, Monash University, Parkville,

Victoria, Australia; 4Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; 5School of Chemical and Physical

Sciences, Flinders University, Bedford Park, South Australia, Australia; 6School of Pharmacy, University of Nottingham, Nottingham NG7 2RD,

UK; 7Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 8School of Nursing &

Public, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 9Department of Internal Medicine, Mercer University,

School of Medicine, Macon, GA, USA

Correspondence to: Zhongheng Zhang. No. 3, East Qingchun Road, Hangzhou 310016, China. Email: zh_zhang1984@zju.edu.cn.

Abstract: Artificial neural networks (ANNs) are powerful tools for data analysis and are particularly
suitable for modeling relationships between variables for best prediction of an outcome. While these models
can be used to answer many important research questions, their utility has been critically limited because the
interpretation of the “black box” model is difficult. Clinical investigators usually employ ANN models to
predict the clinical outcomes or to make a diagnosis; the model however is difficult to interpret for clinicians.
To address this important shortcoming of neural network modeling methods, we describe several methods
to help subject-matter audiences (e.g., clinicians, medical policy makers) understand neural network models.
Garson’s algorithm describes the relative magnitude of the importance of a descriptor (predictor) in its
connection with outcome variables by dissecting the model weights. The Lek’s profile method explores the
relationship of the outcome variable and a predictor of interest, while holding other predictors at constant
values (e.g., minimum, 20th quartile, maximum). While Lek’s profile was developed specifically for neural
networks, partial dependence plot is a more generic version that visualize the relationship between an
outcome and one or two predictors. Finally, the local interpretable model-agnostic explanations (LIME)
method can show the predictions of any classification or regression, by approximating it locally with an
interpretable model. R code for the implementations of these methods is shown by using example data fitted
with a standard, feed-forward neural network model. We offer codes and step-by-step description on how to
use these tools to facilitate better understanding of ANN.

Keywords: Artificial neural networks (ANNs); Garson’s algorithm; Lek’s profile; partial dependence; local

interpretable model-agnostic explanations (LIME); model interpretation

Submitted Apr 20, 2018. Accepted for publication May 13, 2018.

doi: 10.21037/atm.2018.05.32

View this article at: http://dx.doi.org/10.21037/atm.2018.05.32

Introduction

Artificial intelligence (AI) methods, especially those based
on machine learning methods, are rapidly becoming
essential for analysis of complex clinical and other data,
and for decision support in the clinic (1-4). Artificial

neural networks (ANNs) are highly parameterized, non-
linear models with sets of processing units called neurons
that can be used to approximate the relationship between
input and output signals of a complex system (5). While
ANNs can be used as powerful predicting tools compared
to more conventional models (e.g., linear regression), they

216

Zhang et al. Opening the black box of ANNs

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Page 2 of 11

are also criticized as ‘black boxes’. Compared to linear
methods, ANN models are very difficult to interpret and it
is challenging to identify which descriptors (predictors) are
the most important and how they are related to the property
being modeled. The hyper-parameterized structure of
neural networks creates complex functions from the input
that can approximate observed outcomes with minimal
error (6). As such ANNs can approximate any continuous
function, as postulated by the Universal Approximation
Theorem, but the immediate structures of a fitted model do
not provide insights into the relative importance, underlying
relationships, structures of the predictors or covariates with
the modelled outcomes.

As an example, neural networks can be used to predict
clinical deterioration in adult hematologic malignancy
patients (7). The input is a set of predictors P (diastolic
blood pressures, heart rate, white blood cell count, etc.) and
the output is an outcome O (ICU transfer, cardiac arrest,
discharge). The neural network model finds a mathematical
function f (P) =O, where f can be arbitrarily complex,
and might change according to the sample of the study
population. The black box issue is that the approximation
given by the neural network will not provide insight into the
form of f as there is often no simple relationship between
the network weights and the property being modeled.
Even the analysis of the relevance of input variables is
challenging (8), and neural networks do not generate a
statistically identifiable (deterministic) model. For a given
training dataset and network topology, there can be multiple
neural networks with different weights that generate very
similar predictions of the modeled property, complicating
understanding of the ANN and relevant predictors. In
contrast, a generalized regression model is an example
of the “non-black box models”, generating interpretable
models with reproducible regression coefficients and
a closed form function f where the importance of each
predictor is explicitly and clinically interpretable.

Recognizing the issue, many methods have been developed
to help subject-matter audiences to understand the underlying
functions of ANN. This article provides an overview of
several of the most common algorithms and illustrates how
they perform using examples. The R statistical programming
language (version 3.4.3) is used in the following examples.

Working example

An artificial data set that mimics a clinical situation was
generated for the examples.

> set.seed(123)

> n<-500

> age <- round(rnorm(n,70,15))

> gender<-sample(c("male",'female'),

size=n,replace = T,

prob = c(0.6,0.4))

> lac <- round(abs(rnorm(n,4.5,2)),1)

> type <- sample(c("surgery","emergency",

"medical"),

size=n,replace = T,

prob = c(0.3,0.4,0.3))

> vaso <- sample(c("No",'Yes'),

size=n,replace = T,

prob = c(0.7,0.3))

> wbc <- round(abs(rnorm(n,10,5)),1)

> crp <- round(abs(rnorm(n,150,80)),1)

> library(dummies)

> beta0=-30; betaMed=0.3

> betaSur=-3; betaAge=0.3

> betaLac=2; betaVaso=3

> betaGender=-0.1; betaWbc=-0.2

> betaCrp=0.05

> linpred <- cbind(1, dummy(type)[, -1],age,

lac,dummy(vaso)[,-1],

dummy(gender)[,-1],wbc,crp) %*%

c(beta0,betaMed,betaSur,betaAge,betaLac,

betaVaso,betaGender,betaWbc,betaCrp)

> pi <- exp(linpred) / (1 + exp(linpred))

> mort <- rbinom(n=n, size=1, prob=pi)

> dt <- data.frame(age,gender,lac,

type,vaso,wbc,crp,mort)

The above code generates seven predictors (descriptors):
age, gender, lactate (lac) type of patients type (type), use
of vasopressor (vaso), white blood cell count (wbc), and
C-reactive protein (crp). The mortality (mort) is binary
clinical outcome variable which takes two values 0 for alive
and 1 for deceased. The relationship between mort and
predictors are built under the logistic regression model
framework. However, we will build a neural network model
in the following example.

Fitting a neural network model

There are several types of machine learning methods that

Annals of Translational Medicine, Vol 6, No 11 June 2018 Page 3 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

could be used to generate models but we use a neural
network model in our examples. Several packages are
available in R to develop an ANN. The nnet package (version
7.3-12) is widely used and can fit a single-hidden-layer
neural network (9). The caret (Classification And Regression
Training) package (version 6.0-78) contains a set of tools for
building machine learning models in R (10).

> library(caret)

> set.seed(123)

> mod<-train(factor(mort)~age+

gender+lac+type+vaso+

wbc+crp, method = "nnet",

data = dt, verbose = FALSE,

trControl=trainControl(method='cv',

verboseIter=FALSE),

tuneGrid=expand.grid(.size=c(5,10,15),

.decay=c(0,0.001,0.01,0.1)))

> modcont<-train(factor(mort)~age+

lac+wbc,

method = "nnet",

data = dt, verbose = FALSE,

trControl=trainControl(method='cv',

verboseIter=FALSE),

tuneGrid=expand.grid(.size=c(5,10,15),

.decay=c(0,0.001,0.01,0.1)))

The above code fits two neural network models. The
first one model mod is fit with the train() function using
all seven predictors. In the model, cross validation is used
to select the best model by tuning the parameters size and
decay. In general, the size parameter defines the number
of hidden nodes in the network, which are essentially free
parameters that allow flexibility in the model fit between
input and output layers. Increasing the number of hidden
nodes increases the flexibility of the model but at the risk
of over-fitting. The decay parameter is more abstract, in
that it controls the rate of decay for changing the weights
as used by the back-propagation fitting algorithm. This
also affects how regular or irregular the weights can be
relative to each other—with potential for over-fitting and/
or increasing non-linearity in the fit. In the example, the
number of hidden units (size parameter) is chosen from 5,
10 and 15, and the decay parameter is chosen from 0, 0.001,
0.01, and 0.1, depending on which model has the best
accuracy. More details of how the train() function works

with neural network model can be found at http://topepo.
github.io/caret/ . The second model, modcont, contains only
continuous variables as the predictors including age, lac
and wbc.

Variable importance using Garson’s algorithm

The weights connecting neurons in an ANN are partially
analogous to the coefficients in a generalized linear
model. The combined effects of the weights on the
model predictions represent the relative importance
of predictors in their associations with the outcome
variable. However, there are many weights connecting one
predictor to the outcome in an ANN. The large number
of adjustable weights in an ANN makes it very flexible
in modeling nonlinear effects but imposes challenges
for the interpretation. Garson proposed that the relative
importance of a predictor can be determined by dissecting
the model weights (11,12). All connections between each
predictor of interest and the outcome are identified.
Pooling and scaling all weights specific to a predictor
generates a single value ranging from 0 to 1 that reflects
relative predictor importance. The relative importance can
be computed in R with the NeuralNetTools (version 1.5.1)
package (13).

> library(NeuralNetTools)

> round(garson(mod,bar_plot = FALSE),3)

rel_imp

age 0.165

gendermale 0.064

lac 0.170

typemedical 0.027

typesurgery 0.239

vasoYes 0.136

wbc 0.136

crp 0.064

The relative importance of each predictor is shown in the
above output. The results suggest that surgery type is the
most important predictor of mortality outcome, followed
by lactate (lac) and age. The relative importance of each
predictor can be plotted by setting the bar_plot argument to
TRUE (the default setting in the garson() function).

> garson(mod)

Zhang et al. Opening the black box of ANNs

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Page 4 of 11

Figure 1 displays the relative importance of each
predictor. The garson() function returns a ggplot object (14),
and the default aesthetics can be further modified with the
following code.

> library(ggplot2)

> cols <- rainbow(8)

> garson(mod) +

scale_y_continuous('Rel. Importance',

limits = c(0, 0.25)) +

scale_fill_gradientn(colours = cols) +

scale_colour_gradientn(colours = cols)

Figure 2 shows how the plot aesthetics can be changed

from the default output of the garson() function. Furthermore,
the neural network model can also be visualized with the
plotnet() function.

> plotnet(mod_in = mod)

Figure 3 is a diagram of the neural network architecture.
The black lines indicate positive weights and grey lines
indicate negative weights. Line thickness is in proportion
to the relative magnitude of each weight. The first layer
receives the input variables (I1 through I8) and each is
connected to all nodes in the hidden layer (H1 through
H5). The output layer (O1) is connected to all hidden
layer nodes. Bias nodes provide a function that is similar
to the intercept term in a linear model and are shown as
connections to the hidden and output layers in the plot.

Sensitivity analysis using the Lek’s profile
method

The Lek’s profile method can be used to explore the
relationship between the outcome variable and a predictor
of interest, while holding other predictors in a set of
constant values (e.g., minimum, 20th quantile, maximum)
(15,16). The relationship between an outcome and a
predictor might differ given the context of the other
predictors (i.e., the presence of an interaction) and the
sensitivities may vary at different points of the surface given
the ability of the model to describe nonlinear relationships.
In essence, the method generates a partial derivative of the
response with respect to each descriptor and can provide
insight into these complex relationships described by

age

gendermale

lac

typemedical

typesurgery

vasoYes

wbc

crp

O1 factor

B1 B2

H1

H2

H3

H4

H5

I1

I2

I3

I4

I5

I6

I6

I8

0.25

0.20

0.15

0.10

0.05

0.00

Im
po

rt
an

ce

typemedical gendermale crp vasoYes wbc lac typesurgeryage

Figure 1 Relative importance of each predictor using Garson’s
algorithm as implemented in the NeuralNetTools package for R.
Surgery type is the most important variable, followed by lac, age
and WBC.

0.25

0.20

0.15

0.10

0.05

0.00

typemedical gendermale crp vasoYes wbc age lac typesurgery

R
el

. I
m

po
rt

an
ce

Figure 2 Modifications of the relative importance plot using the
ggplot system. The colors, axis labels and limits can be modified.

Figure 3 Neural network interpretation diagram. The black lines
indicate positive weights and grey lines indicate negative weights.
Line thickness is in proportion to relative magnitude of each
weight.

Annals of Translational Medicine, Vol 6, No 11 June 2018 Page 5 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

the model. The Lek’s profile method is only applicable
to models with continuous explanatory variables, so the
modcont model is used for illustration.

> lekprofile(mod_in = modcont) +

ylab("Mort. likelihood")

Figure 4 shows output from Lek’s profile method using
the lekfrofile() function in the NeuralNetTools package.
By holding other predictors at their minima, at 20th, 40th,
60th, 80th quantiles, and at their maximum (6 groups in the
figure), the relationships between the outcome probability
and predictor of interest varies widely for the variable wbc.

If there are categorical (discrete) variables in a given
dataset, the following code can be used to look at the model
response across the range of values for one explanatory
variable at a time. The final plot was created using facets for
selected levels of the discrete explanatory variables. You can
specify which continuous explanatory variable to evaluate
with the varex object and you can change the quantile at
which the other explanatory variables are held constant
using the quant object.

> library(tidyverse)

variable to evaluate,

> varex <- 'age'

#quantile for holding other variable constant

> quant <- 0.5 #median value

variables to predict

> xvals <- dt %>%

select(-mort) %>%

as.list %>%

enframe %>%

mutate(value = pmap(list(name, value),

function(name, value){

if(name == varex){

x <- range(value, na.rm = T)

x <- seq(x[1], x[2], length = 100)

} else {

if(is.numeric(value)){

x <- quantile(value, quant)

} else {

x <- levels(value)

}

}

return(x)

})) %>%

deframe %>%

cross_df

get predictions

> prds <- predict(mod, newdata = xvals,

type = "prob") %>%

data.frame(prds = .) %>%

bind_cols(xvals)

> ggplot(prds, aes_string(x = varex,

y = 'prds.1', colour = 'vaso')) +

facet_wrap(gender ~ type) +

scale_y_continuous('Mort likelihood') +

geom_line()

The %>% operator is read as “and then”, and is piping
an object forward into a function or call expression (17).
Figure 5 shows Lek’s profile method for the predictor age
at all combinations of other discrete variables. There are
2×2×3=12 curves, e.g., there are 2 levels for gender, 3 levels
for type and 2 levels for vaso. Continuous variables are held
at their median, generating only 1 level.

Partial dependence plot

Partial dependence of an outcome variable on a predictor of

Figure 4 Lek’s profile method for continuous predictors. By
holding other predictors at constant values of their minimum, 20th,
40th, 60th, 80th quantiles and the maximum (6 groups in the figure),
the relationships between outcome probability and predictors of
interest can be shown.

1.00

0.75

0.50

0.25

0.00

M
or

t.
lik

el
ih

oo
d

age lac wbc

Groups
1
2
3
4
5
6

Explanatory
0 3 6 9 0 5 10 15 20 2550 75 100

factor

Zhang et al. Opening the black box of ANNs

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Page 6 of 11

interest can be calculated as follows (18):
(I) Suppose there are k observations, and i ∊ {1,2,3,...,k}.

The variable of interest is denoted as x1 , with
distinct values of {x11,x12,...,x1k}. The original values
of x1 in the training dataset are replaced with the
constant x1i.

(II) Compute the predicted values of an outcome
variable from the modified training dataset.

(III) The average prediction for x1 is computed as 1()if x .
(IV) The partial dependence plot is to plot the pairs

1 1 1{ , ()}i ix f x for i ={1,2,3,...,k}.
The plot for a single predictor can be created with the

pdp package (version 0.6.0) (18).

> library(pdp)

> library("viridisLite")

> partial(mod,plot=T,pred.var="age")

The above code loads and attaches the pdp and viridisLite
packages to the R workspace. The viridisLite package
(version 0.3.0) helps to design color maps which are
perfectly uniform, both in regular form and also when

converted to black-and-white. The package is also designed
to aid perception by readers with the most common form
of color blindness. The output in Figure 6 shows the
relationship between age and yhat. The response variable is
shown in logit scale.

> mod %>%

partial(pred.var = "age") %>%

plotPartial(smooth = TRUE, lwd = 2,

ylab = expression(f(wbc)))

The plotPartial() function is used to display a more
detailed partial plot. It operates on objects returned by the
partial() function and provides many options to modify
the plot. The above example shows how to add a LOESS
smooth line to the plot (Figure 7).

The pdp package can also be used to plot the response
variable and two predictors as a 2-D or 3-D plot.
Fortunately, the pdp package makes this work easy.

> pd <-partial(mod, pred.var = c("wbc","age"))

Age

50 75 100 50 75 100 50 75 100

female
emergency

female
medical

female
surgery

Vaso
No

Yes

male
emergency

male
medical

male
surgery

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

M
or

t l
ik

el
ih

oo
d

Figure 5 Lek’s profile method for the predictor age at all combinations of other discrete variables. There are 2×2×3=12 curves, e.g., there
are 2 levels for gender, 3 levels for type and 2 levels for vaso. Continuous variables are held at their mean, generating only 1 level.

Annals of Translational Medicine, Vol 6, No 11 June 2018 Page 7 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

> rwb <- colorRampPalette(c("red", "white", "blue"))

> pdp1<-plotPartial(pd,contour = TRUE, col.regions = rwb)

> pdp2 <- plotPartial(pd, levelplot = FALSE,

zlab = "f()", drape = TRUE,

colorkey = TRUE,

screen = list(z = -20, x = -60))

> grid.arrange(pdp1, pdp2, ncol = 2)

To invest igate the s imultaneous e f fect of two

predictors on the predicted outcome, the pred .var
argument in the partial() function takes a 2-element
string vector indicating the names of the predictors of
interest. In the second line, the colorRampPalette()
function interpolates a set of given colors to create new
color palettes. The first plot, pdp1, is a 2-D contour
plot that was created by setting the contour argument to
TRUE. The second plot, pdp2, is a 3-D surface plot that
is created by setting the levelplot argument to FALSE.
Finally, the grid.arrange() function combines the two
plots into a single image (Figure 8) arranged in a 1×2
matrix (19).

However, the above figures display the outcome variable
on a linear scale, which is not interpretable for most subject-
matter audiences. The probability of the outcome can be
displayed by specifying a function for the transformation
from logit space to a probability.

> pred.prob <- function(object, newdata) {

pred <- predict(object, newdata, type="prob")

prob.mort <- pred[,2]

mean(prob.mort)

}

There are two arguments for the pred.prob() function.
The first argument is the object that receives the trained
ANN. The second argument is newdata as an optional set
of data to predict. If newdata is not specified, the original
dataset is used for prediction. The type argument in
the predict() function can be either “raw” or “prob”. In
this case, “prob” is used to return class probability. The
following code plots the partial dependence plots and
combines them into one using grid.arrange().

> pdp.age <- partial(mod,

pred.var = "age",

pred.fun = pred.prob,

plot = TRUE)

> pdp.crp <- partial(mod,

pred.var = "crp", pred.fun = pred.prob,

plot = TRUE)

> pdp.age.crp <- partial(mod, pred.var = c("age", "crp"),

pred.fun = pred.prob, plot = TRUE)

> grid.arrange(pdp.age, pdp.crp, pdp.age.crp, ncol = 3)

It is noted that the y-axis is now on a probability scale
(Figure 9).

1

0

–1

–2

–3

40 60 80 100 120

age

yh
at

Figure 6 Partial dependence plot showing the relationship
between age and yhat.

1

0

–1

–2

–3

40 60 80 100 120
age

f (
w

bc
)

Figure 7 Advanced setting for partial dependence plot with the
plotPartial() function. A LOESS smooth line was added.

Zhang et al. Opening the black box of ANNs

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Page 8 of 11

Local interpretable model-agnostic explanations
(LIME)

LIME can be used to explain the predictions of any
classifications or regressions, by approximating it locally
with an interpretable model (20). The “agnostic” descriptor
suggests that the tool can be used to provide insight into
a process that “is not known or cannot be known”, which
is especially relevant to the “black box” characteristics of
a neural network model. Essentially, LIME can be used
to interpret complex models by providing a qualitative
link between the input variables and the response. This is
accomplished by dissecting and locally approximating the
larger model with simpler models, such as linear or decision
tree models, that are conceptually easier to understand and
interpret. The lime package (0.4.0) is used to perform the
LIME algorithm (21).

> library(lime)

> explanation<-lime(dt,mod)

> exp<-explain(dt[8:11,], explanation,

n_labels = 1, n_features = 7)

The lime() function is the core function of the package.
The first argument is the training data, which is the dt
dataset used to create the models in the above examples.
The second argument is the neural network model mod
that need to be explained. The lime() function returns an
explainer object that is passed to the explain() function.
The explain() function takes new observations (e.g.,
patients 8 to 11 in the example data) along with the
explainer object and returns a matrix with prediction
explanations, one observation per row. The returned
explanations can then be visualized with several plot

f()

5 10 15 20
wbc

wbc

100

80

60

40

ag
e

age

1

0

–1

–2

–3

1

0

–1

–2

–3

Figure 8 Partial dependence plot for the relationship between two predictors and the outcome. Two-dimensional contour and 3-D plots are
shown.

1.0

0.8

0.6

0.4

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.9

0.8

0.7

0.6

0.5

300

200

100

yh
at

yh
at

cr
p

age crp age

40 60 80 100 120 40 60 80 1000 100 200 300 400

Figure 9 Partial dependence plot with the mortality outcome variable in probability scale.

Annals of Translational Medicine, Vol 6, No 11 June 2018 Page 9 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

functions provided by the lime package.

> plot_explanations(exp)

The plot_explanations() function draws a facetted
heatmap-style visualization of all case-feature combinations
(Figure 10). The case numbers are shown in the horizontal
axis and categorized features are displayed in the vertical
axis. There are two types of outcome events for mortality,
denoted as 0 and 1 in the right and left panels, respectively.
Cases 8 and 9 are survivors (mort =0) and cases 10 and 11
are non-survivors (mort =1). Feature weights are shown
with the colors. Positive (green) weights suggest a feature is
supporting the outcome, and negative (red) weights suggest
a feature is contradicting the outcome. In the example,
age younger than 61 is shown in green for survivors (left
panel) and negatively associated with mortality. In contrast,
use of vasopressor (vaso = yes) is red in the left panel and
green in the right panel, and is a risk factor for death.
This plot is important for the understanding of how the
ANN makes predictions. Clearly, Clinicians reserve their

own judgements in decision making, but the interpreted
neural network models that predict patient outcomes (e.g.,
patient very likely to die because he/she is very old and uses
vasopressors) can be critically important supporting element
of the overall decision process.

> plot_features(exp, ncol = 2)

Finally, the supporting and contradicting features to
make a mortality prediction can be plotted for each patient
with the plot_features() function. The function requires
only the explanation output and number of columns as
input arguments. The feature plot is shown in Figure 11.

Discussion

Due to their “black-box” nature, many machine learning
methods suffer from the limitation of providing meaningful
interpretations that can enhance understanding in subject-
matter research. This article reviewed and demonstrated
several methods to help clinicians understand neural
network models of important patient parameters and

Figure 10 Facetted heatmap-style visualization of all case-feature combinations for four selected patients. The case numbers are shown in
the horizontal axis and categorized features are shown in the vertical axis.

age <= 61

61 < age <= 70

80 < age

3.18 < lac <= 4.50

4.50 < lac <= 5.80

type = emergency

type = medical

type = surgery

vaso = No

vaso = Yes

wbc <= 6.7

9.8 < wbc <= 13.3

crp <= 95.5

95.5 < crp <= 148.5

148.5 < crp <= 204.2

gender = male

lac <= 3.18

Fe
at

ur
e 0.3

0.2

0.1

0.0

–0.1

Feature
weight

8 9 10 11 8 9 10 11

0 1

Case

Zhang et al. Opening the black box of ANNs

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Page 10 of 11

outcomes. One or several of the illustrated methods will be
suitable for essentially any type of clinical outcome model.
Applicability of interpretation algorithms may be somewhat
case dependent. The methods suggested in this review can
be applied to ANN, random forest and many other black-
box types of methods. The step-by-step instructions and R
code provided herein offer an approach for researchers to
open the black-box by providing visual presentations and
clear interpretations of the analysis results.

This work has a few limitations. First, the recommended
methods only present the predicted means, but not the
corresponding level of uncertainty. Second, we focus
on reviewing useful tools to facilitate interpretation of
the results. The technical details related to the model
evaluation, and cross-validation, and techniques to avoid
overfitting were not discussed. At last, prediction models
are fundamentally different from explanatory models. The
interpretation of the results obtained from a prediction
model reflects the association between the predictor and the
outcome after adjustment of other covariates included in the
same model. It may not directly offer causal interpretation.

Acknowledgements

Funding: Z Zhang received funding from the Public Welfare
Research Project of Zhejiang Province (LGF18H150005)
and Scientific Research Project of Zhejiang Education
Commission (Y201737841).

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1. Smalley E. AI-powered drug discovery captures pharma
interest. Nat Biotechnol 2017;35:604-5.

2. Hamet P, Tremblay J. Artificial intelligence in medicine.
Metab Clin Exp 2017;69S:S36-S40.

3. Ryu JY, Kim HU, Lee SY. Deep learning improves
prediction of drug-drug and drug-food interactions. Proc
Natl Acad Sci USA 2018;115:E4304-11.

Figure 11 Feature plot produced by the plot_features() function from the lime package for R. There are four labels at the top of each
subplot. The case indicates the number of patients, label is the observed value of the outcome, probability is the predicted probability of the
label, and explanation fit measures the quality of the model used for the explanation. Features denoted with green color are supporting
features for an outcome label and the length of the bar is proportional to the weight of a feature.

Annals of Translational Medicine, Vol 6, No 11 June 2018 Page 11 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(11):216atm.amegroups.com

Cite this article as: Zhang Z, Beck MW, Winkler DA, Huang
B, Sibanda W, Goyal H; written on behalf of AME Big-Data
Clinical Trial Collaborative Group. Opening the black box
of neural networks: methods for interpreting neural network
models in clinical applications. Ann Transl Med 2018;6(11):216.
doi: 10.21037/atm.2018.05.32

4. Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction
by domain-transform manifold learning. Nature
2018;555:487-92.

5. Stefaniak B, Cholewiński W, Tarkowska A. Algorithms
of Artificial Neural Networks - Practical application
in medical science. Polski Merkuriusz Lekarski
2005;19:819-22.

6. Hornik K. Approximation capabilities of multilayer
feedforward networks. Neural Networks 1991;4:251-7.

7. Hu SB, Wong DJL, Correa A, et al. Prediction of
Clinical Deterioration in Hospitalized Adult Patients
with Hematologic Malignancies Using a Neural Network
Model. PLoS One 2016;11:e0161401.

8. May R, Dandy G, Maier H. Review of Input Variable
Selection Methods for Artificial Neural Networks. In:
Artificial Neural Networks - Methodological Advances and
Biomedical Applications. InTech, 2011.

9. Venables WN, Ripley BD. Modern Applied Statistics
with S [Internet]. Forth. Springer, 2002. Available online:
http://www.stats.ox.ac.uk/pub/MASS4

10. Kuhn M. caret: Classification and Regression Training.
Available online: https://CRAN.R-project.org/
package=caret. 2017.

11. Garson GD. Interpreting neural network connection
weights. Artificial Intelligence Expert 1991;6:46-51.

12. Goh ATC. Back-propagation neural networks for
modeling complex systems. Artificial Intelligence in
Engineering 1995;9:143-51.

13. Beck M. NeuralNetTools: Visualization and Analysis Tools
for Neural Networks. Available online: https://CRAN.
R-project.org/package=magrittr. 2018.

14. Wickham H. ggplot2: Elegant Graphics for Data Analysis.
Springer International Publishing, 2016.

15. Lek S, Delacoste M, Baran P, et al. Application of neural
networks to modelling nonlinear relationships in ecology.
Ecological Modelling 1996;90:39-52.

16. Gevrey M, Dimopoulos I, Lek S. Review and comparison
of methods to study the contribution of variables in
artificial neural network models. Ecological Modelling
2003;160:249-64.

17. Bache SM, Wickham H. magrittr: A Forward-Pipe
Operator for R. Available online: https://CRAN.R-project.
org/package=magrittr. 2014.

18. Greenwell BM. pdp: An R Package for Constructing
Partial Dependence Plots. The R Journal 2017;9:421-36.

19. Auguie B. gridExtra: Miscellaneous Functions for “Grid”
Graphics. Available online: https://CRAN.R-project.org/
package=gridExtra. 2017.

20. Ribeiro M, Singh S, Guestrin C. “Why Should I Trust
You?”: Explaining the Predictions of Any Classifier.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2016:97-101.

21. Pedersen TL, Benesty M. lime: Local Interpretable
Model-Agnostic Explanations. Available online: https://
CRAN.R-project.org/package=lime. 2018.

