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Review Article on Molecular Cardiology

Mitochondria and cardiovascular diseases—from pathophysiology 
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Abstract: Mitochondria are the source of cellular energy production and are present in different types 
of cells. However, their function is especially important for the heart due to the high demands in energy 
which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate 
metabolism and the optimal function is achieved through the balance between mitochondrial fusion and 
mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy 
which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of 
numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, 
cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species 
(ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac 
diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent 
among the studies. Eventually, the aim of future research is to design molecules which selectively target 
mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.

Keywords: Mitochondria; cardiovascular disease; oxidative stress; treatment 

Submitted Mar 30, 2018. Accepted for publication May 02, 2018.

doi: 10.21037/atm.2018.06.21

View this article at: http://dx.doi.org/10.21037/atm.2018.06.21

Introduction

Mitochondria are cellular organelles of maternal origin 
which are involved in energy production through the process 
of oxidative phosphorylation. Several organic substrates 
can be used in energy production, usually fatty acids and 

less commonly glucose (1). The origin of mitochondria 
is impressive since they are the consequence of bacterial 
endosymbiosis into the very early forms of eukaryotic cells (2). 
Moreover, mitochondria have their own DNA and a unique 
genetic code which differs from the nuclear DNA. However, 
the vast majority of mitochondrial proteins are produced 
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from the translation of nuclear DNA (3).
Mitochondria are not isolated organelles but form 

complex networks which are under strict control by two 
distinct processes. The first one is mitochondrial fusion, 
which forms long filamentous mitochondria, and the 
second one is mitochondrial fission, which generates 
small spherical mitochondria. Both processes depend on 
the metabolic needs of the cell (4). Proper mitochondrial 
function is associated with a balance between the two 
previous processes. Additionally, another source of 
mitochondrial quality control is the selective degradation 
of the dysfunctional organelles through autophagy which is 
defined as mitophagy (5). 

Mitochondria are the site of reactive oxygen species 
(ROS) generation during the enzymatic activity of electron 
transport chain (6). Uncontrolled production of ROS 
and impairment of mitochondrial dynamics result in 
mitochondrial dysfunction and ultrastructural changes 
of cellular lipids, proteins, enzymes and DNA which are 
the pathophysiologic background for the development 
of several cardiac diseases (7). Therefore, targeting of 
mitochondrial dysfunction is a crucial step in the treatment 
of a variety of cardiac diseases and several approaches 
have been tested in experimental and clinical studies with, 
however, controversial findings.

In this review article, we will discuss the role of 
mitochondria in the pathophysiology of atherosclerosis, 
ischemia-reperfusion (I/R) injury, hypertension, diabetes, 
cardiac hypertrophy and heart failure (HF) and discuss the 

potential therapeutic interventions against the development 
of cardiac diseases. 

Cardiac mitochondria: description of origin, 
function, network and biogenesis 

Mitochondria are highly present in cardiac cells due 
to the increased energy demands and are responsible 
for the daily production of approximately 6 kg of ATP 
through the process of oxidative phosphorylation (8)  
(Figure 1). Apart from energy production, mitochondria 
are involved in regulation of oxidative stress, cell survival 
and apoptotic death (9). It has been proved that in neonatal 
cardiac myocytes the main source of energy is obtained by 
glycolysis and glucose oxidation, and cardiac mitochondria 
exhibit great motility in the cytosol (10). On the other hand, 
in the adult heart the main source of energy is obtained by 
oxidation of fatty acids, and cardiac mitochondria exhibit 
reduced motility in the cytosol (11).

The origin of mitochondria and mitochondria-
related organelles was one of the greatest mysteries 
addressed by the biologists of 20th century. Initiating 
from the landmark paper of Sagan (2), today it is widely 
accepted that mitochondria originated due to bacterial 
endosymbiosis of the primitive forms of eukaryotic cells. 
The phylogenetic classification of mitochondria has been 
particularly challenging due to the loss of DNA at the 
expense of cell nucleus and the evolutionary pressure 
they were put under as compartments of eukaryotic  
cells (12). However, scientific evidence now concludes 
that ancestors of mitochondria were closely related to 
either Rhodospirillales (13) or Rickettsiales (14) which belong 
to proteobacteria. An even greater debate takes place 
regarding the time-lapse of mitochondria endosymbiosis 
and the complexity of the initial host of mitochondria. 
The existing theories argue that endosymbiosis took place 
either early, in a simple host, or later in an already complex 
eukaryote, based on the extent of gene transfer between 
mitochondria and the host cell (15,16). The answer of this 
question is still elusive. Regarding the reasons that led to 
endosymbiosis, two models exist which are based on the 
role of mitochondria in current cells as a source of energy 
production and ROS detoxification which is referred as 
“hydrogen hypothesis” and “oxygen scavenger hypothesis” 
respectively.

Mitochondrial DNA is a double-stranded, circular 
deoxyribonucleic acid with an approximate length of 
16.6 Kbp whose structure was deciphered in 1981 (17). 

Site of cellular energy 

production through 

oxidative phosphorylation

Consequence of bacterial 

endosymbiosis into 

primitive eukaryotes

Mitochondrial DNA has 

maternal origin

Majority of mitochondrial 

proteins  translated by 

nuclear genes

M
ito

ch
on

dr
ia

Figure 1 Important characteristics of mitochondria.
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During the evolutionary process significant fragments of 
mitochondrial DNA were transferred to nucleus where 
the vast majority of mitochondrial proteins are expressed. 
However, the remaining mitochondrial DNA still retains 
its utility and importance since it encodes 13 proteins 
which participate in the four complexes of oxidative 
phosphorylation, and a great number of proteins which 
are associated with mitochondrial function (18). It is 
critical to mention that human proteome presents distinct 
characteristics which are tissue specific and alterations are 
frequently correlated with certain diseases (19). Moreover, 
mitochondria encode their own tRNA and rRNA genes and 
genetic code is substantially different between mammalian 
mitochondria and nuclear sequences (20).

Mitochondria have a complex relationship with nucleus 
with both anterograde (from nucleus to mitochondria) 
and retrograde (from mitochondria to nucleus) signaling. 
Nucleus regulates mitochondrial dynamics as well as the 
expression of an important number of mitochondrial 
enzymes, mitochondrial DNA repair genes and mitochondrial 
proteins. Peroxisome proliferator-activated receptor (PPAR) 
gamma coactivator-1 (PGC-1α and PGC-1β) induces 
mitochondrial DNA replication and catalyzes mitochondrial 
biogenesis (21). Moreover, AMP kinase and Akt/mTOR 
signaling pathway regulate the processes of mitochondrial 
fission and degradation which will be discussed below, 
with AMP kinase as stimulator (22) and Akt/mTOR as  
inhibitor (23). Nevertheless, mitochondria regulate 
the expression of nuclear genes through changes in 
the cytoplasmic metabolites. NAD+/NADH ratio is 
directly dependent on mitochondrial activity. As a result, 
mitochondria control the NAD+-activated family of sirtuin 
(SIRT) proteins. Sirtuins act as histone deacetylases and 
epigenetically modify expression of nuclear genes (24). 
However, more studies are required to fully understand the 
complex pathways of cross-talking between mitochondria 
and nucleus.

Mitochondria are not isolated organelles but form large 

networks which regulate metabolism and involve two 
major processes; mitochondrial fusion, which forms long 
filamentous mitochondria, and mitochondrial fission, which 
generates small spherical mitochondria (25) (Figure 2). 
This order of organization has been studied extensively in 
heart muscle and its impairment is associated with a wide 
range of cardiovascular diseases (26). Several molecules are 
implicated in the regulation of these processes which aim 
at mitochondrial and cellular homeostasis; for example, 
an imbalance between fission and fusion results in the 
accumulation of non-functional organelles which produce 
excessive amounts of ROS (25). 

ROS induce membrane depolarization through the 
opening of anion channels which stimulate mitochondrial 
fission; also, mitochondrial fragmentation results in the 
release of cytochrome c in the cytoplasm which triggers 
cellular apoptosis and cell death (27). Mitochondrial 
fission is mediated through the cytosolic protein dynamin 
related protein 1 (DRP1) and its interaction with outer 
mitochondrial membrane receptors such as mitochondria 
fission factor (MIFF) and the proteins Fis1, Mid49 and 
Mid51. Specifically, polymers of DRP1 are formed 
around mitochondrial membranes which gradually 
shrink mitochondrial membranes till their complete  
separation (28). 

Mitochondrial fusion is mainly mediated through the 
inner mitochondrial membrane protein optic atrophy 
1 (OpA1) which preserves the membrane integrity and 
inhibits the formation of pores. It is part of the dynamin 
group of proteins which belong to the family of GTPases 
that are widely preserved across different species. After 
GTP hydrolysis, SNARE complexes are formed which 
pull the membranes together and result in the fusion of 
the organelles (29). Another set of proteins which co-
ordinate fusion are mitofusins 1 and 2. Although the 
exact mechanism of action is still unspecified, ablation of 
mitofusins results in mitochondrial fragmentation and may 
be the consequence of many cardiovascular diseases (30). 
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Figure 2 Mitochondrial biogenesis.
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Nonetheless, mitofusins increase membrane permeability 
which augments mitochondrial susceptibility to injury 
by ROS. An important feature of these proteins is their 
dependence on calcium; specifically, they are activated by 
calcium entry into cells mediated by ryanodine related 
receptors and IP3. This is especially important in the heart 
muscle since it links mitochondrial network with myocardial 
contraction (31).

Mitochondrial fission and fusion are also associated with 
programmed cell death. In fact, the pro-apoptotic proteins 
Bak and Bax stimulate protease OMA1 which results 
in the cleavage of OpA1 and stimulates mitochondrial  
fission (32). Moreover, mitochondrial fusion and fission are  
under control by the nucleus. Specifically, mitochondrial 
proteins which belong to SIRT family trigger the expression 
of FOXO3A transcription factor which upregulates PTEN-
induced kinase 1 (PINK-1) that promotes mitochondrial  
fission (33).

Last but not least, a unique finding in skeletal and 
heart muscles is the continuous inter-mitochondrial 
communication. It has been noted that “kissing junctions” 
exist between adjacent mitochondria which permit the 
exchange of proteins and ions (34). Moreover, nanotunnels 
are found between neighboring organelles which control 
mitochondrial response particularly during alterations in 
calcium dynamics (35). 

Mitochondrial  f i ss ion is  c losely related to the 
degradation of damaged mitochondria by autophagy in a 
process called mitophagy. The main protein implicated 
in mitophagy is the ubiquitin ligase protein parkin. In 
the case of mitochondrial damage, parkin translocates to 

mitochondrial membrane and induces the ubiquitination 
of mitochondrial proteins. As a result, the ubiquitinated 
mitochondrion gets in proximity to lysosomes where it 
gets engulfed and degraded (36). Mitophagy is one of the 
most effective strategies to remove damaged mitochondria 
and its impairment is frequently noted in the development 
of cardiovascular diseases. Mitophagy is a well-regulated 
process that is under the control of sympathetic nervous 
system, intracellular calcium dynamics and intracellular 
signaling pathways. Furthermore, heat shock protein 27  
(hsp 27) increases lysosomal activity and protects 
cardiomyocytes from the damaged mitochondria (37). 
Lastly, Yan et al. revealed that mitophagy is associated with 
overexpression of calcineurin which is linked to the opening 
of mPTP channel and stimulation of parkin-mediated 
autophagy (38).

Cardiac mitochondria and regulation of oxidative 
stress

Mitochondria are the powerhouse of the cell. Utilization 
of oxygen as the final recipient of electrons at the electron 
transport chain complexes (ETC), mainly I and III, renders 
mitochondria important mediators of ROS production. 
Mitochondria-derived ROS influence both mitochondrial 
dynamics  and cel l  adaptat ion to  oxidat ive  s tress  
(Figure 3). Specifically, increased oxygen consumption 
raises the amount of reduced ubiquinone and cytochrome 
c and stimulates ROS formation in a procedure termed as 
reverse ETC. Moreover, ischemia ceases the conversion of 
fumarate to malate and increases the formation of succinate 
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•	Stimulation of NOX 2 and NOX4 

(family of NADPH oxidases)
•	Improper expression of 

mitochondrial and nuclear proteins, 
mitochondrial DNA damage

•	Increased mitochondrial 
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•	Selectively downregulation 

of electron transport chain 
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catalase and superoxide 
dismutase 

Figure 3 The balance between oxidative stress and anti-oxidant actions.
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which is another donor of electrons (39). Complex I also 
creates ROS through utilization of NAD+ substrates and 
reduction of flavin mononucleotide (40). Recently, it has 
been indicated that complex II produces ROS through the 
opening of mPTP channel induced by cyclophilin D; more 
specifically, the influx of Ca2+ depolarizes mitochondrial 
membrane and forms reduced malate and fumarate which 
provoke cell dysfunction (41,42). Similarly, under ischemic 
conditions, ROS produced by complex III inhibit the 
opening of mPTP channel in comparison to those of 
complex I (43). Lastly, production of ROS induces changes 
in the structure of ETC complexes which accelerate a 
vicious cycle of ROS production (44).

Another important source of mitochondrial ROS is 
the NOX family of NADPH oxidase. Recently, Dalal 
et al. discovered that NOX4 localizes to mitochondria 
and provokes the opening of mPTP channel (45). 
Furthermore, the binding of angiotensin-II to vascular 
endothelium results in the expression of NOX2 which 
opens an ATP-dependent mitochondrial potassium channel 
(mitoKATP) that stimulates the function of reverse  
ETC (46). 

In addition, oxidative stress is associated with altered 
expression of mitochondrial and nuclear proteins. For 
instance, it has been demonstrated that oxidative stress 
increases the activity of COUP-TFII transcription 
factor which induces the expression of nuclear-encoded 
mitochondr ia l  enzymes ,  favor ing  mitochondr ia l 
fragmentation (47).  Similarly,  ROS downregulate 
the activity of ETC complexes and decrease oxygen 
consumption in patients with metabolic syndrome which 
results in left ventricular hypertrophy and HF (48). Lastly, 
ROS provoke structural changes in mitochondrial proteins 
such as an imbalance between mitochondrial tyrosine 
kinase Src and phosphatase SPH2, which decreases tyrosine 
phosphorylation at the active region of many mitochondrial 
enzymes (49). 

ROS induce damage in mitochondrial DNA which is 
a key characteristic of several cardiac diseases. It has been 
demonstrated that guanine residues are prone to oxidation 
and formation of 7,8-dihydro-8-oxoguanine which result in 
mutations of mitochondrial DNA (7). Decreased expression 
of mitochondrial DNA repair enzymes has been reported, 
too. For example, the expression of DNA polymerase 
gamma, AP endonuclease, oxoguanine glycosylase (Ogg1) 
and uracil-DNA glycosylase was significantly reduced 
in an experimental model of sepsis in heart muscle (49). 
Moreover, in the case of hyperglycemia and diabetes 

excessive amounts of glucose induce a shift towards 
the pentose monophosphate shunt and hexosaminidase 
pathway. In the former, NADPH is produced and is utilized 
by mitochondrial NOX in order to generate ROS (50). In 
the latter, 8-Glc-N interacts directly with Ogg1 and forms 
8GlcNOgg, a dysfunctional enzyme which hinders the 
repair of mitochondrial DNA (51).

Furthermore, excessive production of mitochondrial 
ROS is linked to stimulation of ageing process and 
apoptosis. Aged cardiomyocytes display high levels 
of cytosolic p53 which adheres to parkin and inhibits 
translocation to mitochondria; consequently, ubiquitination 
is abolished and clearance of defective mitochondria 
through autophagy is impaired. Dysfunctional mitochondria 
produce less amounts of ATP and permit the leakage of 
cytochrome c to cytoplasm that triggers the cascade of  
apoptosis (52). Aged cells display impaired mitochondrial 
biogenesis which in turn accelerates ROS production (53). 
Additionally, aged cardiac cells have reduced gene 
expression of molecules implicated in fatty acid oxidation 
and Krebs cycle (54). Lastly, it is important to mention 
that excessive intracellular ROS stimulate inflammatory 
pathways such as leukocyte chemotaxis which enhance the 
ageing process (55).

On the other hand, cells have developed mechanisms to 
either decrease ROS production or neutralize their effects. 
Selective downregulation of the activity of ETC complexes 
prevents bursts of ROS production; specifically, Src kinase 
has been found to phosphorylate critical Ser/Thr residues 
of complex I enzymes which decrease ROS production 
by ETC complexes (56). Moreover, B-oxybutyrate 
dehydrogenase reduces oxidation of guanine in failing 
hearts; also, it has histone deacetylase inhibitor properties 
which increases the expression of anti-oxidant enzymes in 
the nucleus (57). 

Another critical step in the control of oxidative stress 
is the blockage of the opening of mPTP channel. It has 
been demonstrated that protein kinase D (PKD), which is 
regulated by phospholipase C, diacylglycerol and Rhoα, 
inhibits the translocation of cofilins to mitochondria 
that open mPTP under ischemic conditions (58). Hsp 
90 normally binds to cyclophilin D in the cytosol and 
prevents its degradation. However, it has been proved 
that HAX-1 antagonizes the binding of cyclophilin D to  
hsp 90; therefore, cyclophilin D is ubiquitinated and mPTP 
opening is blocked (42). 

It has been previously described that the clearance of 
the damaged mitochondria through autophagy ameliorates 
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mitochondrial function (59,60). On the one hand, macro-
autophagy involves ubiquitination and degradation of 
mitochondrial parkin protein. On the other hand, micro-
autophagy involves the fusion of phospholipids between 
mitochondrial and lysosomal membranes under the effects 
of 3-glycerol aldehyde phosphate dehydrogenase (GAPDH). 
It is noteworthy that micro-autophagy is independent of the 
inhibitory effects of PI3K/Akt/mTOR pathway (61). 

Finally, several cellular anti-oxidant enzymes protect 
against oxidative stress. Mitochondrial catalase (mCAT) in 
particular neutralizes the damage from hydrogen peroxide 
production. In an experimental model in mice it was found 
that overexpression of mCAT improved mitochondrial 
biogenesis and dysfunction (62). Superoxide dismutase 
(SOD-2) is another cellular free radical scavenger. Das  
et al. demonstrated that knock-out mice for SOD-2 
exhibited early onset of mitochondrial dysfunction and 
decreased cell survival (63). Proper function of the enzymes 
of mitochondrial DNA repair such as OGG1, AP ligase 
and type III endonuclease may increase the expression of 
mitochondrial proteins and improve energy production (64). 
For example, Pillai et al. demonstrated that the previous 
effects are mediated by activation of SIRT1 (7). In general, 
cardiac cells control the rate of mitochondrial biogenesis 
through SIRT1-dependent pathways which protect 
against oxidative stress and inhibit the intrinsic pathway of 
apoptosis (65). 

Cardiac mitochondria and endothelial function

Mitochondrial dysfunction affects endothelial cells since 
aged mitochondria produce large amounts of ROS and 
have decreased expression of antioxidant enzymes such as 
SOD-2 and thioredoxin reductase. Excessive ROS enhance 
the formation of peroxynitrite which impairs endothelial 
nitric oxide (NO) synthase and NO mediated dilatation 
(66,67). Therefore, mitochondrial ROS are linked to 
endothelial dysfunction and their targeting improves 
endothelial function (68). Moreover, stimulation of renin 
angiotensin system (RAS) induces hyperpolarization of 
inner mitochondrial membrane and cell death especially in 
cells with defective autophagy systems (69). Additionally, 
mitochondrial ROS inhibit smooth muscle cell relaxation of 
the perivascular adipose tissue and induce the formation of 
endothelial extracellular vesicles which contain the proteins 
parkin and MFR1 (70). 

In conclusion, proper mitochondrial function belongs 
to the most important compensatory mechanisms against 

vascular aging. Therefore, interventions which target 
calcium entry in mitochondria would prevent smooth 
muscle contraction and ameliorate arterial dilatation (71). 
However, the impact of mitochondrial ROS on endothelial 
function has to be studied intensively since overexpression 
of catalase, which is an important anti-oxidant enzyme, 
induces endothelial dysfunction in mice models (72). 

Mitochondrial function in coronary 
atherosclerosis

Atherosclerosis is a chronic inflammatory process and the 
most common substrate of coronary artery disease (CAD). 
CAD is the leading cause of death in the developed world 
and is characterized by acute or chronic ischemia due to 
insufficient myocardial oxygen supply (73). 

Mitochondria have an important role in the pathophysiology 
of atherosclerosis (Figure 4). Mitochondrial dysfunction 
results in excessive production of ROS which oxidize 
cellular proteins, lipids and DNA (74). Mitochondrial 
DNA is especially prone to oxidative damage since it lacks 
histones and has a minor capacity for repair; furthermore, 
mitochondrial DNA mutations trigger the induction of a 
vicious cycle of ROS production as mentioned in a previous 
section (75). For example, studies in apo-E deficient 
mice which lacked the anti-oxidant enzyme SOD-2 have 
demonstrated that excessive production of ROS damaged 
mitochondrial DNA and accelerated the progression of 
atherosclerosis and proliferation of vascular smooth muscle 
cells (VSMCs) (76). Moreover, a study in humans who 
underwent intravascular ultrasound characterization of 
coronary artery plaques indicated that mitochondrial DNA 
damage of leukocytes is associated with the existence of 
vulnerable plaques but not with plaque burden (77).

Oxidized LDL molecules (ox-LDL) are absorbed by 
macrophages which display scavenger receptors on their 
surface and form foam cells which are rich in lipids and 
cell debris (78). Foam cells release a number of pro-
inflammatory mediators such as adhesion molecules and 
circulating cytokines which attract inflammatory cells to 
the damaged vascular wall. These mediators stimulate the 
formation of neo-intima through hyperplasia, migration 
and proliferation of VSMCs (79). 

Moreover, atherosclerosis is characterized by increased 
apoptosis of VSMCs and vascular wall remodeling. Studies 
in cultures of human aortic endothelial cells indicate that 
ox-LDL or glycated ox-LDL decrease the expression of 
cellular anti-apoptotic proteins and stimulate mitochondrial 
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apoptotic pathways (80,81). Similarly, a study in human 
microvascular endothelial cells indicated that ox-LDL 
molecules increased the influx of cytosolic Ca2+ which in 
turn activated two mitochondrial pathways of apoptosis; the 
first one which involves the release of apoptosis inducing 
factor and the second one which is associated with the 
opening of mitochondrial mPTP channel (82). 

To sum up, mitochondrial dysfunction is responsible 
not only for the initiation but also the progression of 
the atherosclerotic vascular disease and is, therefore, an 
important target for the treatment of CAD.

Mitochondrial function in ischemia/reperfusion 
injury 

Ischemic heart disease is the leading cause of mortality 
and morbidity in the modern world and its most common 
clinical presentation is acute ischemia. Early and successful 
reperfusion is the key against acute myocardial ischemia and 
can be achieved either pharmaceutically or mechanically 
through surgical intervention or coronary artery stenting. 
However, reperfusion upon ischemia is associated with 
damage at the molecular level though complicated 
mechanisms and the phenomenon is described as “acute 
ischemia-reperfusion injury” (acute I/R) (78).

I/R injury consists one of the best experimental models 
to evaluate the effects of oxidative stress on cardiomyocytes 
(Figure 4). Prolonged ischemia results in the death of 
cardiac cells due to insufficient oxygen supply. However, it 
has been proved that cells around the area of the infarct are 
at risk of further, delayed damage upon reperfusion, when 
oxygen supply is replenished. It is really interesting that in 
both conditions ROS formation are the determinants of 
the final damage which is comprised by increased fibrosis, 
angiogenesis, and vascular remodeling (78).

During ischemia cardiomyocytes become hypoxic and 
deteriorate the function of mitochondrial respiratory 
chain enzymes; therefore, superoxide, hydrogen peroxide, 
peroxynitrite and hydroxyl radical are formed. Specifically, 
I/R injury impairs the function of mitochondrial complexes 
I and III and stimulates the generation of ROS by  
NADH (78). Decreased functional capacity of complex I 
function is linked to damaged mitochondrial cardiolipin 
which accelerates electron leakage and stimulates a vicious 
cycle of free radical generation (83). 

Another important source of ROS in the re-perfused 
myocardium are the two isoforms of monoamine oxidases 
(MAO), MAO-A and MAO-B which are located on the 
outer mitochondrial membrane. It has been demonstrated 
that during post-ischemic reperfusion the enhanced activity 

Figure 4 Mitochondria and pathophysiology of cardiac diseases.
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of MAO-A is responsible for the precipitation of hydrogen 
peroxide and the progression towards left ventricle 
hypertrophy and cardiac remodeling. Also, increased 
influx of mitochondrial iron stimulates the formation of 
more potent and deleterious hydroxyl radical groups from 
hydrogen peroxide (84). 

Additionally, Li et al. indicated that excessive production 
of ROS affects the balance among mitochondrial fission 
and fusion (85). Specifically, protein kinase C (PKC) 
phosphorylates critical substrates which are involved 
in the clearance of damaged mitochondria and inhibit 
the apoptosis of dysfunctional organelles (61). Also, 
myocardial I/R injury is associated with de-phosphorylation 
of Drp1 at serine 637 which in turn translocates to the 
outer mitochondrial membrane protein receptors Fis1, 
Mff or MIEFl and induces mitochondrial fission (86). 
ROS impair the function of mitofusins and OPA1 and 
decrease mitochondrial fusion (87). Moreover, reperfusion 
induces the opening of mPTP channel which stimulates 
the release of cytochrome c and apoptosis. In general, 
overproduction of ROS in I/R injury has been associated 
with the senescence and death of endothelial cells due to 
compromised telomere integrity which eventually favors 
cellular apoptosis (88).

Lastly, ROS damage mitochondrial DNA which is poor 
in mechanisms of repair and several studies have indicated 
that mitochondrial DNA of circulating leukocytes could be 
diagnostic of I/R injury (78). Interestingly, in a recent study 
in patients with acute coronary syndromes it was found that 
free circulating mitochondrial DNA in blood could predict 
cardiovascular mortality at 30 days (89).

In conclusion, I/R injury induces detrimental effects 
on cardiovascular system due to excessive ROS formation. 
It is important to mention that ROS production by two 
different phenomena might be beneficial for cardiovascular 
system. The first one is ischemic preconditioning and is 
defined as the production of sublethal amounts of ROS 
during short cycles of ischemia and reperfusion which 
results in cardio-protection. It was first identified in 
1986 by Murry et al. who exposed anesthetized, open-
chest dogs to four periods of 5-minute coronary artery 
occlusions followed by a 5-minute period of reperfusion 
before the onset of a 40-minute sustained occlusion of 
the coronary artery; interestingly, the infarct sizes were 
smaller in the intervention group in comparison to the 
control group (90). In general, the pathophysiological 
mechanism involves activation of PKC epsilon which 
stimulates mitochondrial KATP channels; then increased 

production of H2O2 exerts protective actions through 
blockage of mPTP channel (91). The second one is 
remote ischemic conditioning and was firstly described in 
1993 by Przyklenk et al. who revealed that brief episodes 
of ischemia in one vascular bed protect remote and virgin 
myocardium against damage from sustained coronary 
artery occlusion (92). The underlying mechanism is 
the synthesis of factors in a remote organ which induce 
protective actions in remote organs through complex 
neuro-humoral interactions as previously described for 
ischemic preconditioning (91). 

Mitochondrial function in hypertension

Hypertension is one of the most important risk factors for 
the development of CAD (93). Mitochondrial dysfunction 
in hypertension results in impaired energy production 
and deficient calcium homeostasis (82,94); moreover, the 
decreased activity of anti-oxidant enzymes and oxidative 
modification of cellular compartments is associated with 
damage in the heart, the brain, the kidneys and the vessels 
(79,95) (Figure 4).

To begin with, SIRT 3 is a histone deacetylase which 
depends on NAD+ activity and displays crucial anti-
oxidant properties. Interestingly, it has been found that 
the increased prevalence of hypertension in aged people is 
linked to impaired mitochondrial metabolism and reduction 
in the activity of SIRT3 protein. A study in humans 
indicated that the expression of SIRT3 is reduced by 40% 
at the age of 65 especially in sedentary adults in contrast 
to the higher levels which were found in trained subjects 
independently of age (96). Augmented levels of angiotensin-
II produced by RAS system are also associated with the 
down-regulation of SIRT3 gene expression (97).

Well-functioning mitochondrial anti-oxidant systems 
such as SOD-2 prevent the damage induced by excessive 
ROS formation in hypertension due to ageing or high-salt 
diet (98). However, mutations in mitochondrial tRNA result 
in the development of hypertension, hypercholesterolemia 
and hypomagnesemia especially in subjects of 30 years of age 
indicating the detrimental effects of environmental factors 
and ageing on mitochondrial anti-oxidant capacity (99). 

Activation of RAS system has an important role in 
the pathophysiology of hypertension. Interestingly, it 
has been demonstrated that angiotensin-II stimulates 
NADPH oxidase and acceleration of oxidative stress (100). 
Additionally, blood pressure levels regulate the production 
of ROS through the functions of mechano-sensitive 
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receptors (101). 
Furthermore, hypertension is associated with structural 

mitochondrial abnormalities which involve decreased 
mitochondrial mass, density and mitochondrial dwelling 
that result in impaired energy production and accelerated 
formation of ROS through instability of ETC complexes 
(102,103). Moreover, hypertension is linked to decreased 
functional capacity of complex-I system, and stimulation 
of of fibrosis and extracellular cell matrix expansion which 
further deteriorate myocardial contractility (104). Similarly, 
the raised expression of biomarkers of mitophagy promotes 
altered expression of calcium cycling proteins which 
result in interstitial fibrosis of left ventricle and diastolic 
dysfunction (105). 

Hypertension also affects mitochondrial biogenesis 
and dynamics which affect energy production (106). 
For instance, studies in hypertensive rats have indicated 
decreased mRNA expression of the fusion proteins 
mitofusin-1 and -2, and optic atrophy-1 which implicated 
in mitochondrial fragmentation and stimulation of oxidative 
stress (107). 

Moreover, oxidative stress provokes the expression of 
several pro-inflammatory molecules in several models 
of hypertension. Interleukin (IL)-1 and tumor necrosis 
factor (TNF)-α ,  for instance, which are important 
pro-inflammatory cytokines, decrease the function 
of  mitochondria l  a ldehyde dehydrogenase-2 and 
reduce membrane potential and ATP production in  
adipocytes (108,109). 

Finally, it has been demonstrated that hypertension 
is associated with the activation of apoptosis. Reduced 
express ion of  cardiol ipin,  which is  an important 
phospholipid for the balanced function of mitochondria, 
induces the release of cytochrome c to cytosol and triggers 
the pathway of apoptosis (110,111). Similarly, in a study 
in hypertensive rats it was revealed that activation of RAS 
system decreased the functions of complex-III system, 
ATP synthase, creatine kinase and it enhanced the release 
of cytochrome c and caspase-3 from the dysfunctional 
organelles (112). 

In conclusion, mitochondrial dysfunction is highly 
present in hypertension which indicates the importance of 
early therapeutic management based on the molecular level. 

Mitochondrial function in obesity, metabolic 
syndrome and diabetes 

Metabolic syndrome and diabetes mellitus (DM) belong to 

the most challenging medical problems of the 21st century. 
DM is a chronic disease which affects numerous people 
independently of age, race and sex and is characterized by 
hyperglycemia and altered lipid, protein and carbohydrate 
metabolism (113,114). The most common type of diabetes 
worldwide is type 2 DM which is attributed to deficient 
function of β-cell resulting in insulin resistance and 
deteriorated insulin secretion. Type 1 DM is attributed 
to autoimmune destruction of the β-cell and ends in total 
deficiency of insulin secretion (115). DM affects almost 
every tissue including vascular system, heart, retina, kidneys 
and peripheral nerves and several mechanisms have been 
implicated in the pathophysiology of the disease such as 
decreased physical activity, obesity, elevated free fatty 
acids, genetic factors, oxidative stress and mitochondrial 
dysfunction (116,117) (Figure 4). 

Mitochondria are the central organelles for ATP 
production through oxidative phosphorylation (116). Recent 
studies have indicated that impaired mitochondrial function 
is linked to altered glucose and fatty acid metabolism, lower 
ATP production in muscle cells, impaired insulin secretion 
from β-cells and stimulation of ROS production (118). 
In general, the mechanisms of mitochondrial dysfunction 
involve the decrease in mitochondrial content in tissues 
such as muscles, liver and adipose tissue, the absence 
or dysfunction of mitochondrial proteins and reduced 
mitochondrial biogenesis (119).

Beta oxidation is the main source of energy for 
the heart. However, excess delivery of fatty acids in 
diabetes and metabolic syndrome results in decreased 
oxygen utilization by mitochondria and uncoupling 
of ETC systems. Moreover, NADH triggers ROS 
generation and impaired expression of thioredoxin and  
glutathione (120). Also, decreased mitochondrial density 
and reduced production of mitochondrial proteins 
due to mitochondrial DNA mutations or deletions 
is evident (116,119,121). Additionally, alterations in 
lipid extent and metabolism and the impairment of 
oxidative phosphorylation increase the accumulation of 
diacylglycerols and ceramides which block insulin secretion 
and favor the progression to metabolic syndrome and type 
2 DM (119). Similarly, the impaired mitochondrial protein 
content activates stress related serine/threonine kinases 
which block glucose transport and favor the formation 
of fatty acids (122,123). Lastly, the excessive amounts 
of lipids target the downstreams of insulin receptor 
substrate (IRS 1-2) and Akt pathways resulting in insulin  
resistance (124).
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Furthermore, cumulative DNA damage is linked to the 
loss of telomeres which shortens the lifespan of β-cells 
and provokes insufficient insulin production (116,125). 
However, this damage is usually found in a rare kind of 
diabetes initially described as maternally inherited diabetes 
and deafness syndrome induced by A3243G mutation of 
mitochondrial DNA (126).

The unopposed production of ROS elicits decreased 
NO synthesis in diabetic hearts which leads in structural 
alterations of cardiac proteins that negatively affect cardiac 
muscle relaxation and diastolic dysfunction in diabetic 
mice (127). Moreover, evidence from human studies 
indicates that patients with type 2 DM display dysfunctional 
myocardial contractility due to mitochondrial dysfunction. 
Interestingly, this finding does not happen at the early 
stages of this metabolic disorder which is described as 
metabolically “healthy” obesity status (128). 

ROS alter mitochondrial dynamics and specifically 
increase mitochondrial fission and fragmentation at the 
expense of mitochondrial fusion (124). Little is known 
about the exact mechanisms but nuclear respiratory 
factors (NRF 1 and 2) are considered to play an important 
role (121). NRF1 and 2 regulate the expression of 
Tfam, a transcription factor of mitochondrial genome, 
and numerous other mitochondrial genes implicated 
in oxidative phosphorylation. Although NRFs and 
Tfam are necessary for mitochondrial biogenesis, Tfam 
knockout experimental studies have not yet linked 
Tfam and NRF disorders with the development of 
insulin resistance and metabolic syndrome despite the 
significant changes in mitochondria morphology and  
density (123). According to new studies, mitochondrial 
dysfunction and insulin resistance are linked to altered gene 
expression of PCG1 in muscle and liver tissues (129,130). 
Specifically, it has been demonstrated that downregulation 
of PGC1a leads to impaired mitochondrial biogenesis and 
the induction of insulin resistance (116). 

In conclusion, mitochondrial dysfunction is closely 
related to the pathophysiology of DM; therefore, targeting 
mitochondrial function belongs to the most prominent 
therapeutic interventions against the spectrum of metabolic 
disorders. 

Mitochondrial function in cardiac hypertrophy 
and HF 

HF is the result of numerous cardiac diseases and has 
a rapidly increasing prevalence due to the effectiveness 

is primary and secondary prevention of cardiovascular 
diseases (131,132). HF is a clinical syndrome and involves 
structural and/or functional cardiac abnormalities which 
end in reduced cardiac output and/or elevated intra-
cardiac pressures at rest or during stress (133,134). 
The initial response to increased cardiac workload is 
cardiac hypertrophy which is defined as the thickening 
of  ventr icular  wal l  and reduct ion in  ventr icular  
volume (135). Physiological heart hypertrophy is a normal 
mechanism of adaptation which may regress through the 
time such as in the athletes’ heart; however, pathological 
hypertrophy is attributed to divergent cardiac diseases and 
is characterized by an initial phase of compensation and 
the acute or chronic progression to decompensation (134). 
Interestingly, mitochondrial dysfunction is an object of 
intense investigation in order to understand this complex 
clinical syndrome and discover novel molecular therapeutic 
targets (136) (Figure 4). 

To begin with, PGC-1α is one of the most important 
regulators of mitochondrial biogenesis, as described above. 
PGC-1α co-activates NRF-1 and NRF-2 and increases the 
transcription of several mitochondrial DNA genes which 
participate in the respiratory chain (137). In normal cardiac 
hypertrophy, PGC-1α expression is enhanced and, as a 
result, mitochondrial DNA duplication is stimulated as well 
as fatty acid oxidation (137,138). Normal hypertrophy is 
also controlled by the pathways of PI3K and its downstream 
products Akt and GSK-3β which control cellular growth 
and preservation of heart function. In fact, there is evidence 
that the actions of Akt, despite being a component of PI3K 
pathway, differ from those of PI3K (138,139). 

However, pathologically hypertrophied hearts display 
a metabolic shift to increased utilization of glucose than 
fatty acid oxidation, which is a metabolic pattern of the 
fetal age (140-142). Specifically, Heather et al. measured the 
expression of proteins implicated in glucose and fatty acid 
metabolism in samples obtained by cardiac biopsies in 18 
patients with aortic stenosis. Their measurements showed 
a negative correlation between fatty acid translocase (FAT/
CD36) and glucose uptake membrane transporters (GLUT) 
such as GLUT 1 and 4 and a further decrease in other 
proteins involving β-oxidation, Krebs cycle and oxidative 
phosphorylation (ATP synthase and complex I of ETC). 
In fact, the higher the left ventricular mass index, the more 
downregulated were FAT/CD36 and complex I and the 
more upregulated was GLUT 4 (140). Similarly, expression 
of PGC-1α is reduced in pathologically hypertrophied 
hearts and occurs at the early stages of the disease (141,143). 
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Moreover, de las Fuentes et al. have also demonstrated a 
significant reduction in fatty acid metabolism in patients 
with hypertensive left ventricular hypertrophy which is 
linked to higher left ventricular mass and lower myocardial 
contractility (142). In general, the reverse of the energy 
production to the previously described pattern of fetal 
life is responsible for the deficits in energy production 
of pathologic cardiac hypertrophy since glycolysis 
produces less amount of ATP than β-oxidation of fatty  
acids (142,144,145).

Excessive ROS production and impaired function of the 
anti-oxidant systems are associated with the development 
of cardiac hypertrophy, remodeling and HF (146,147). In 
a model of PGC-1α knockout mice it was demonstrated 
that the expression of anti-oxidant enzymes such as 
mitochondrial Cu/Zn-SOD1, SOD-2 and peroxisomal 
catalase were notably decreased (148). Similarly, in a model 
of experimental myocardial infarction in rats it was observed 
a significant increase in the formation of hydroxyl radicals 
and reduced copies of mitochondrial DNA and transcripts 
of I, III and IV complexes (149). Lower activity or defects 
in mitochondrial complexes I, III, IV, V in dogs, rats and 
human frozen-thawed cardiac-muscle samples have been 
demonstrated too (149,150).

Another important feature of HF is the development 
of fibrosis and cardiac remodeling. Several mediators 
are implicated in this process such as angiotensin-
II, norepinephrine, β-adrenergic agonists, TNF-α, 
endothelin-I as well as mechanical forces which activate 
PKC, MAPK, PI3K, JNK and nuclear factor kappa 
beta (NF-κB) (147). Additionally, stimulation of matrix 
metalloproteases (MMP) via the pathway of NF-κB is 
implicated in the degradation of extracellular cell matrix, 
cell proliferation and apoptosis which leads to remodeling 
and fibrosis (151,152). For example, in a model of pacing-
induced supraventricular tachycardia in pigs it was 
demonstrated that MMP 1, 2 and 3 induce left ventricle 
dysfunction and dilation of left ventricle at 7 days (153). 

Mitochondrial dysfunction in HF also induces impaired 
mitochondrial biogenesis. Studies in both human and 
rat models of HF have indicated small and fragmented 
mitochondria and lower levels of OPA1 implying 
the participation of mitochondrial fission in cardiac  
remodeling (154). Similarly, calcium overload stimulates 
mitochondrial fission and formation of fragmented 
mitochondria (155). Moreover, defective mitophagy in 
HF impairs myocardial function since damaged and non-
functional mitochondria are important sources of ROS (41). 

For example, in an experimental model of parkin knockout 
Drosophila, it was indicated that blockage of mitophagy 
increased the number of dysfunctional mitochondria in 
heart tubes which resulted in the development of dilated 
cardiomyopathy (156).

Lastly, it is important to note that systolic and diastolic 
dysfunction of the failing myocardium is provoked by the 
detrimental effects of ROS on sarcomeric and excitation-
contraction coupling proteins. For instance, oxidative 
modification of thiol groups of critical cysteine residues 
result in inhibition of L-type calcium channel and Ca2+ 
ATPase in the sarcoplasmic reticulum which reduces the 
rate of contractility. Other vulnerable sarcomeric proteins 
are myosin light chain-2, myosin light polypeptide-3, alpha-
actin, troponin T, actin, desmin and tropomyosin (157,158). 

In conclusion, normal cardiac hypertrophy is a totally 
different phenotype from pathologic cardiac hypertrophy 
based on the molecular level. Subsequently, further research 
on mitochondrial function in HF is crucial due to the 
central role of mitochondria in energy production.

Mitochondrial dysfunction: therapeutic 
implications

It is undeniable that the breakthroughs in primary and 
secondary prevention of cardiovascular disease have 
improved the lives of million people worldwide. The 
aim of current research is to develop novel therapeutic 
molecules which target mitochondrial function and 
excessive ROS production implicated in the progression 
of atherosclerosis, I/R injury, DM, hypertension and  
HF (159). Several therapeutic strategies have been examined 
such as dietary changes, exercise and medications which 
target the mechanisms of oxidative stress, inflammation, 
cardiac hypertrophy, fibrosis and apoptosis with, however, 
controversial results (160-162) (Figure 5).

To begin with, certain dietary interventions have been 
tested in both animal and human models. For example, 
the administration of 2 gr L-carnitine daily had a survival 
benefit in patients with HF (163). Similarly, in patients 
with mild diastolic HF the consumption of 9 g L-carnitine 
per day for a period of 3 months resulted in improvement 
of diastolic dysfunction (164). Also, in a model of 
experimental hypertension the administration of L-carnitine 
improved cardiac remodeling through decreased ROS  
production (165).

Polyphenols such as flavolons, theaflavin and epicatechin 
are chemical compounds present in a variety of natural 
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sources such as red wine, green tea, olive oil and dark 
chocolate (166). Polyphenols have important anti-
oxidant actions against several chronic diseases including 
cardiovascular disease (167,168). For example, quercetin 
decreases the levels of superoxide and increases urinary 
excretion of nitrate, endothelial NO synthase activity 
and heme oxygenase-1 protein which has anti-oxidant  
actions (169). Moreover, polyphenols of olive oil and 
red wine reduce intracellular ROS levels (170) whereas 
epicatechin of green tea lowers the expression of pro-
inflammatory molecules (171). 

Vitamins C and E are popular anti-oxidant molecules 
and have beneficial actions against a large group of 
chronic diseases (172). Large clinical trials have exhibited 
disappointing results against mitochondrial dysfunction. 
Possibly, mitochondria absorb only a small percent of these 
anti-oxidants or there are unknown interactions with other 
therapeutic, regimens unspecified pro-oxidant actions 
or genetic variability response among the subjects which 
explain these inconsistent findings (173-177).

On the other hand, several studies have examined the role 
of co-enzyme Q10 (CoQ10) in animal and human trials. 
CoQ10 is present in the inner mitochondrial membrane and 
is important for the production of ATP; also, it possesses 
anti-thrombotic and anti-oxidant actions and improves 
hypertension and hyperglycemia (178). Administration of 
CoQ10 in hypertensive rats improved endothelial function 
and decreased cardiac hypertrophy (179). Though, CoQ10 
does not increase mitochondrial DNA replication and does 
not hinder the degradation of mitochondrial cardiolipin 
(180-182). CoQ10 has been administrated in humans 

to alleviate muscle pain upon treatment of statins (183). 
Interestingly, it was found that supplementation of 100 mg 
daily CoQ10 for 30 days improved muscle pain in patients 
receiving statins (183). In short, CoQ10 is considered a 
safe option for the treatment of mitochondrial dysfunction 
in humans and can be administrated alone or along with 
other medications against hypertension and HF although 
its properties are not fully elucidated in ischemic heart  
disease (184).

Moreover, a current strategy is to administrate anti-
oxidant molecules which are conjugated to lipophilic 
molecules in order to selectively target mitochondria 
(185,186). For example, the recently developed MitoQ10 
improves endothelial NO bioavailability and blood 
pressure in a model of spontaneously hypertensive  
rats (179). Addition of MitoQ10 to treatment with losartan 
has revealed beneficial actions against target organ 
damage development in hypertension (187). Lastly, other 
synthetized molecules such as EUK-8 and EUK-134 mimic 
endogenous inorganic SOD activity and have displayed 
direct mitochondrial anti-oxidant actions against I/R  
injury (188).

Regular physical activity has beneficial actions on 
cardiovascular system (189). Aerobic exercise increases 
the production of NO, lowers the levels of superoxide and 
hydrogen peroxide and improves endogenous enzymatic 
anti-oxidant systems (190,191). Also, it reduces systolic and 
diastolic blood pressure in hypertensive subjects, whereas 
isometric exercise affects only systolic blood pressure 
(192,193). Nevertheless, the exact mechanisms of exercise 
on mitochondrial function are not yet elucidated. 

Figure 5 Therapeutic interventions against mitochondrial dysfunction.
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Another therapeutic target is stimulation of NAD+ 
biosynthetic pathway which increases protein deacetylation 
through SIRT (194). Treatment with the NAD+ precursor 
NMN has indicated normalization of NAD+/NADH ratio 
and protection against diet- or age-induced diabetes (195). 
Moreover, in animal studies of hypertension it has been 
demonstrated that activation of SIRT-1-PGC1α signaling 
by resveratrol improves mitochondrial biogenesis (196). 
Similarly, in animal models of diabetes resveratrol hindered 
the progression to diabetic cardiomyopathy (197).

Excess ive fatty  acid oxidat ion is  l inked to the 
development of several metabolic disorders such as obesity 
and DM. Therefore, it seems reasonable that decreased 
uptake and utilization of fatty acids could be beneficial. For 
example, exercise, calorie restriction and weight loss such 
as that achieved through bariatric surgery improve insulin 
sensitivity and mitochondrial function (198,199). Moreover, 
inhibition of CD36 (which mediates lipid uptake through 
plasma membrane) decreases mitochondrial oxidative stress 
in animal models; however, targeting of CD36 has not 
been tested in humans due to the pleiotropic functions of 
this receptor in humans (200). Lastly, ligands of PPARα 
have been used in order to stimulate the impaired fatty 
acid metabolism in HF; however, their efficacy has to be 
evaluated (160).

Apart from the above agents, widely prescribed 
medications have demonstrated beneficial actions against 
mitochondrial dysfunction. For instance, carvedilol, which 
belongs to β-blockers, has indicated anti-oxidant and anti-
apoptotic properties in patients with HF (201). 

Targets of RAS system activation such as ACE inhibitors 
and angiotensin receptor-II blockers improve mitochondrial 
dysfunction; for instance, captopril increased mitochondrial 
biogenesis in an experimental study in dogs (202-204). Also, 
treatment with losartan and amlodipine reduced blood 
pressure in spontaneously hypertensive rats whereas only 
losartan restored mitochondrial dysfunction and kidney 
damage through preservation of glutathione and SOD 
activity (204).

Statins apart from inhibition of endogenous cholesterol 
synthesis display important pleiotropic effects (205-207).  
Specifically, they decrease oxidative stress in various 
tissues targeting mitochondrial function (208). Parihar  
et al. indicated that the administration of atorvastatin and 
simvastatin in rats reduced the activity of mitochondrial NO 
synthase, cytochrome c release and lipid peroxidation (209). 

Thiazolideniones are oral antidiabetic drugs against type 
2 DM that improve insulin resistance through activation 

of PPARγ, which is implicated in the transcription of genes 
involved in glucose and lipid metabolism (210). Studies 
in animals have indicated that rosiglitazone reduces lipid 
oxidation and hinders the development of atherosclerosis 
through upregulation of PPARγ (211). 

Metformin, the first line therapy for patients with 
type 2 DM, has exhibited several beneficial actions on 
cardiovascular system (212). Recent studies point that 
metformin reduces mitochondrial ROS production, 
enhances the activity of anti-oxidant enzymes and decreases 
inflammation attributed to I/R injury (213). 

Recent research has shed light to the role of micro-
RNAs (miR) which are involved in transcription of cellular 
genes that either promote or prevent the development of 
disease (214-216). Interestingly, a study in rats indicated 
that overexpression of miR145 is linked to improved 
cardiac function and decreased infarct size post myocardial 
infarction; also, low levels of miR145 were confirmed  
in vitro in hypoxia-treated cardiomyocytes. Moreover, 
miR145 targets PDCD4 gene which is involved in the 
apoptotic pathway and it seems that mimics of this 
agent could be used in the treatment of myocardial  
infarction (217).

Edaravone is a novel free radical scavenger. Edaravone 
reduced pressure overload-induced left ventricular 
hypertrophy in mice through inhibition of Ask1 and its 
downstream kinases (218). Also, it diminished perivascular 
and intermuscular  f ibrosis  and improved cardiac 
hypertrophy even when treatment was initiated after the 
onset of cardiac hypertrophy (219).

Elamipretide (SS-31) is  a  novel ,  water-soluble 
tetrapeptide which enhances mitochondrial energy 
production. Elamipretide binds selectively to cardiolipin 
and preserves the structure of mitochondrial cristae and the 
function of oxidative phosphorylation (220). Interestingly, 
in a study in dogs with advanced HF Elamipretide improved 
left ventricular function and enlargement, plasma natriuretic 
peptides and biomarkers of inflammation through decreased 
ROS formation (221). Moreover, in a randomized, placebo-
controlled trial in humans with HF and reduced ejection 
fraction it ameliorated left ventricular end-diastolic and 
end-systolic volume (222). Lastly, in a study in rats it 
improved mitochondrial oxidative stress mediated by 
angiotensin-II through inhibition of p38 MAPK pathway 
and hindered cardiac remodeling and inflammation post 
myocardial infarction (223). 

In conclusion, several medications have been tested for 
the therapy of mitochondrial dysfunction with controversial 
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results so far. Novel therapeutic strategies involve the 
design of molecules which target specific pathways of 
mitochondrial function.

Conclusions

Mitochondria are cellular organelles which produce energy 
through oxidative phosphorylation and their function 
is crucial for the heart due to the high energy demands. 
Mitochondrial dynamics consist of a balance between 
mitochondrial fusion and mitochondrial fission which 
controls energy production. On the other hand, mitophagy 
is an important mechanism of removal of the dysfunctional 
organelles. Several cardiac diseases such as atherosclerosis, 
ischemia-reperfusion injury, hypertension, diabetes 
and heart failure are linked to improper mitochondrial 
function and excessive production of ROS which damage 
cellular lipids, proteins, enzymes and DNA. Mitochondrial 
dysfunction is also associated with apoptosis which 
accelerates cardiovascular damage. Numerous therapeutic 
interventions against mitochondrial dysfunction have been 
tested in both animal and human models and research in 
this field is constantly advancing.
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