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Abstract: Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung 
disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the 
main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to 
repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of 
the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental 
approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on 
chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-
through molecules, splicing defects repairing tools, CFTR “amplifiers”. 
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Introduction

Cystic fibrosis (CF), the most common life-threatening rare 
disease among Caucasians, is an autosomal recessive genetic 
disease occurring in approximately one in 3,000–4,000 live 
birth as based on neonatal screening (1). Although several 
organs are involved, manifestation of CF disease in the 
airway tract is the main cause of mortality and morbidity 
in these patients (2). From the first description of a disease 
of the exocrine pancreas associated with lung symptoms in 
1938 (3), survival of CF patients increased to a median age 
of 40 years, thanks to antibiotic therapies and correcting 
the intestinal malabsorption (4,5). After the identification 
of defective CF transmembrane conductance regulator 
(CFTR) gene, in 1989 (6-8), therapeutic approaches 
on the management of symptoms had a turning point 
which opened many hopes towards CFTR gene-targeted  

strategies (9), a field of investigation full of promises in 
steady progress. 

Role of CFTR protein 

CF disease is due to the defect of the CFTR gene located 
on chromosome 7 (6). CFTR gene encodes a protein 
encompassing the cellular membrane with two membrane-
spanning domains (MSD), each constituted by six alpha-
helices, two cytoplasmic domains, each binding one ATP 
molecule, termed nucleotide binding domains (NBD), a 
regulatory (R) domain with several consensus sequences 
for phosphorylation by protein kinase A (PKA) and 
protein kinase C (PKC). CFTR protein belongs to the 
family of ATP-binding cassette (ABC) transmembrane  
proteins (10). It is a chloride ion transporter localized at 
the apical membrane of several polarized epithelia (11,12), 
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although other small molecules seem to be transported 
by CFTR (13), including ATP (14-17). As a chloride 
transporter, CFTR plays a critical role in the hydration of 
the mucus at the surface of the airway tract (18). Moreover, 
it favors mucus tethering and detachment through 
alkalinization with bicarbonate (19,20). De-hydration of 
airway surface fluid is a critical feature in the onset of the 
neutrophil dominated inflammatory and infective milieu of 
CF airways, which begins in the early months of life (21). 
CFTR-mediated ion transport requires binding of ATP 
on NBFs and phosphorylation of the R domain by protein 
kinase A (22-25) and protein kinase C (26-28).

Lung disease in CF

Defective ion transport mediated by CFTR reduces 
airway surface liquid hydration, which impairs mucociliary 
clearance, one of the basic innate immune defense 
mechanism of the respiratory tract (18,21). CF lung disease 
is characterized by an exaggerated inflammatory response 
accompanied by a huge number of neutrophils in the lumen 
of bronchi (21). However, these neutrophils are unable to 
completely clear bacteria; thus, repeated infections, mainly 
by Haemophilus influenzae and Staphylococcus aureus, pave 
the way to a chronic settlement of Pseudomonas aeruginosa. 
In addition, neutrophils release proteases, mainly elastases, 
reactive oxygen species and neutrophil extracellular traps 
thus worsening respiratory function and progressive 
tissue destruction and ultimately leading to respiratory 
insufficiency, reduced quality and expectancy of life  
(21,29-34). Experiments performed in different model 
systems in vitro, ex vivo and in vivo animal models have 
not yet clarified whether recruitment of neutrophils in the 
bronchial lumen, precedes or follows bacterial infection 
(35-37). To combat respiratory insufficiency, CF patients 
are treated with antibiotics and anti-inflammatories and 
soon or later, they undergo lung transplantation, which 
provides a dramatic improvement in the quality of life and 
some extension of survival (38-40).

The CFTR gene mutations

The 250-kb gene, located in chromosome 7, is structured 
in 27 exons. An International Worldwide Consortium of 
laboratories of molecular genetics extensively analyzed 
sequence variants and to date, over 2,000 sequence 

variations have been reported, at least 200 of them being 
associated with the disease (see the Cystic Fibrosis Mutation 
Database of the Cystic Fibrosis Gene Analysis Consortium, 
www.genet.sickkids.on.ca/cftr/) (41,42). Deletion of the 
phenylalanine in position 508 of the polypeptide chain, 
known as Phe508del or F508del, is the most common 
CFTR mutation, affecting from 50% to 90% of the 
chromosomes of CF patients along different geographical  
areas (43). Besides F508del CFTR, most CF causing 
mutations are missense variants (42%), nonsense (10%), 
frameshift (15%), splicing (13%), in frame deletion/
insertion (2%) and promoter (0.5%) mutations (42,43). 

The molecular defects of CFTR protein

F508del CFTR mutation (8) leads to the synthesis of an 
immature, non-glycosylated protein unable to localize 
on the plasma membrane (44). In-depth studies on the 
consequences of the different mutations on CFTR protein 
have allowed to simplify functional defect mechanisms (45), 
now schematized into the six classes (2), as shown in  
Figure 1 and described as follows:

Class I—“No protein” 

These mutations affect protein synthesis, due to stop-
codon (nonsense) mutations in which the CFTR mRNA 
is degraded through a process termed nonsense-mediated 
decay. This class includes G542X mutation (common in 
Mediterranean coastal area), R1162X (common in North-
eastern Italy and Catalonia), W1282X (affecting about 40% 
chromosomes in Ashkenazi Jews).

Class II—“No traffic”

These mutations affect CFTR protein processing, due to 
protein misfolding, which is recognized by the endoplasmic 
reticulum (ER) quality control machinery leading to protein 
degradation. This class includes the most common F508del 
mutation, N1303K, R560T, A561E and R1066C.

Class III—“No function”

These mutations, also termed as “gating defect”, affect the 
activation of ion transport function, although CFTR is 
correctly glycosylated and located at the plasma membrane. 
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This class includes G551D mutation.

Class IV—“Less function”

These mutations reduce chloride ions transported through 
pore channel, due to mutations the arginine located in the 
MSDs, which are involved in the flow of chloride through 
the plasma membrane. This class includes R117H and 
R334W. 

Class V—“Less protein”

These mutations significantly reduce the amount of wild-
type CFTR protein at the plasma membrane, mainly due 
aberrant splicing of RNA, leading to a non-functional 
protein. This class includes 3849-10 kb C>T and  
3262-26A>G.

Class VI—“Less stable”

These mutations affect the stability and/or anchoring of 
CFTR protein at the plasma membrane. This class includes 
F508del CFTR rescued (rF508del) by correctors. 

Notably, many CFTR causing mutations are not classified 
in one of these six classes and in some cases, mutations 
present more than one class defect, e.g., F508del mutation 

has a processing defect (class II), a gating defect (class III) 
and a reduced stability at the plasma membrane after being 
rescued (class VI). Despite simplistic, this classification has 
focused research of novel drugs towards different protein 
defects thus allowing development of personalized medicine, 
i.e., specific treatments tailored on CF genotype (46). 

High throughput screening (HTS) in search of 
new CFTR protein targeted molecules

In search of CFTR modulators, large scale chemical libraries 
comprising thousands of compounds were tested. Initial 
challenge was to set up simple and rapid technological tools 
to study the effect of each molecule on chloride channel 
activity. In this respect, three different HTS assays have 
been developed, as reviewed and depicted in Figure 2 (50). 
Starting from the SPQ molecule, whose emission intensity 
is modulated by intracellular collisional quenching, other 
halide-sensitive fluorescent probes have been developed, 
such as MQAE, a membrane permeable dye retained inside 
the cells by cleavage of acetyl ester residues (47,51-53). A 
second assay, based on membrane depolarization dependent 
on chloride channels activation under proper experimental 
conditions has been set up. In this assay, membrane 
depolarization can be detected by measuring variations of 
fluorescence of membrane-potential sensitive dyes, due to 

Figure 1 The molecular defects of CFTR protein. Paradigmatic CF gene mutations are reported in association to the schematic 
representation of six classes of cellular and molecular defects of CFTR protein, as described in the text. CFTR, cystic fibrosis transmembrane 
conductance regulator; CF, cystic fibrosis.
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the quantum yield change upon different polarity of the 
cellular environment (54,55). We developed the membrane-
potential sensitive probe bis-oxonol to detect CFTR 
correction after transferring with viral vectors the wild type 
CF gene in CF bronchial epithelial cells (48). This assay 
was then accomplished by an HTS of more than 100,000 
compounds that lead to the discovery of the first two small 
molecules became drugs for CF patients: VX-770 and VX-
809 (56-58). A third tool, based on dynamic quenching 
of a yellow-fluorescent protein (YFP) made sensitive to 
intracellular chloride-ion concentration was set up (59) 
and further improved by mutations that render YFP very 
sensitive to chloride ion (49,60). F508del CFTR correctors 
and G551D CFTR potentiators were discovered by this 
assay (61-64). Interestingly, also a potent CFTR-specific 
inhibitor (65), currently used to inhibit CFTR function 
in vitro assays, was discovered and proposed to target the 
hyper-secretory diarrhea mediated by hyper-functional 
CFTR protein, induced by cholera toxin (65). 

The first molecules reaching the chemist’s 
bench 

CFTR correctors are the molecules able to rescue the 
class II defective CFTR, e.g., F508del CFTR and CFTR 
potentiators those activating the chloride transport in 

Class III gating-defective CFTR, e.g., G551D (2). This 
terminology allows to define the effect of each molecule and 
recalls the experimental conditions utilized in the screening. 
As a matter of fact, HTS for discovery correctors is 
performed in F508del CFTR expressing cells, incubated for 
24–48 hours with the testing molecules whereas HTS for 
potentiators is carried out in G551D CFTR expressing cells, 
acutely treated with such compounds (50). Firstly, CFTR 
modulators were identified by academic groups (61-65), 
however these molecules did not undergo a pharmaceutical 
development from preclinical to clinical trials. Importantly, 
the biotech company Vertex Pharmaceuticals published its 
first “CFTR corrector” VX-809 (Lumacaftor) (56,58) and 
its first “CFTR potentiator” VX-770 (Ivacaftor, trade name 
Kalydeco) (57), few years later. 

These molecules underwent a quick drug development 
passing from in vitro assays (56-58) directly to clinical trials 
in CF patients. Food and Drug Administration approved 
VX-770 in 2012 and VX-809 in 2015, for the treatment of 
CF patients carrying specific CFTR mutations. 

VX-770 has proven excellent efficacy in children over 
six years of age and adults with G551D mutation in at least 
one allele (66-68), as demonstrated by an average 10% 
increase of forced expiratory volume in 1 second (FEV1), 
decrease of pulmonary exacerbations, weight increase and 
normalization of sweat electrolytes (67), also patients with 
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Figure 2 Fluorescence-based assays for high-throughput screening of chemical libraries to detect functional CFTR protein. (A) Chloride-
sensitive fluorescent probes (SPQ, MQAE) undergoing collisional quenching upon interaction with chloride ion or other halides (e.g., 
iodide). Agonists activating efflux of chloride ion from inside to outside the cell reduce the quenching of the fluorescent probe (47); (B) 
membrane potential-sensitive fluorescent molecules partition from extracellular space to the plasma membrane as a function of chloride 
efflux-dependent depolarization. Partition of the probe inside the less polar plasma membrane dramatically increases quantum yield 
and consequently the emission of fluorescence (48); (C) yellow fluorescent protein (YFP) made sensitive to collisional quenching to 
halides reduces the emission of light as a function of entry of chloride or iodide inside the cell (49). CFTR, cystic fibrosis transmembrane 
conductance regulator.
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very low residual lung function (e.g., FEV1 <40%) (69,70) 
or carrying class III mutations other than G551D (71). 
Unfortunately, the advantages of this drug are limited to 
very few CF patients as G551D mutation is very rare (43,72). 

On the contrary, treatment with VX-809 in F508del 
CFTR  homozygous pat ients  did not  produce any 
improvement of FEV1 (73). These disappointed results 
led to development of VX-770 and VX-809 combined 
formulation, named Orkambi that was tested in CF patients 
homozygous for the F508del CFTR mutation, providing 
some benefits in lung function (74). These data were 
reproduced in a large international multicentric clinical 
trial showing a 2–3% increase of FEV1 in respect to placebo 
after 24 weeks of treatment with Orkambi (75), although 
benefits were less evident in compound heterozygous 
CF patients carrying F508del CFTR in one allele (76). 
Different investigations in vitro have been pursued in order 
to understand these clinical limitations. For instance, it 
has been found that VX-770 negatively interacts with the 
rescued F508del CFTR protein by VX-809, thus reducing 
plasma membrane stability (77,78). How this interaction 
translates in CF patients is presently debated (79,80).

Molecules for class I “No protein” defects

As mentioned above, class I mutations cause CFTR 
mRNA degradation through nonsense-mediated decay. 
Discovery of molecules able to read-through the premature 
stop codons for treating CF patients carrying class I 
mutations started after the observation that aminoglycoside 
antibiotics can correct this defect (81,82). In this respect, 
the aminoglycoside gentamycin, previously used for the 
treatment of bacterial infections (83-86) was investigated. 
In order to avoid toxicity of aminoglycosides, gentamycin 
was then replaced by the analogue ataluren, produced by 
PTC Therapeutics (87-89). Unfortunately, a long-term 
placebo-controlled double-blind phase 3 study showed 
no improvement in the primary endpoint FEV1 in CF 
patients, despite initial promising findings in several clinical 
trials (90). This led PTC Therapeutics discontinuing the 
development of ataluren in CF, leaving wide open the need 
of compounds targeting class I mutations (91). 

Molecules for class II “No traffic” defects

Several correctors to rescue the class II defective CFTR, 
e.g., F508del CFTR, have been discovered by different 

academic groups in the United States and Europe  
(64,92-115). However very few of them underwent 
p h a r m a c e u t i c a l  d e v e l o p m e n t .  T h u s ,  d i f f e r e n t 
pharmaceutical companies are investing their own resources 
in pre-clinical discovery of new correctors.

The encouraging advancements obtained with VX-
809 prompted Vertex Pharmaceuticals to explore new 
correctors, such as VX-661 (Tezacaftor) in association with 
VX-770 (116-118). F508del CFTR homozygous patients, 
treated with this combination ameliorated lung function 
(116-118). In addition to VX-809 and VX-661, several 
other correctors discovered by Vertex Pharmaceuticals (VX-
152, VX-440, VX-445, VX-659) and by other companies, 
such as Genzyme/Sanofi, Pfizer and Reata (FDL169, 
GLPG2222, PTI-428, PTI-801), entered in phase 1/2 
clinical trials (https://www.cff.org/Research/Developing-
New-Treatments/).

Molecules for class III “No function” defects

Treatment of F508del CFTR homozygous patients requires 
both correctors and potentiators to rescue the gating defect 
also present in F508del CFTR protein (119). 

Approval of VX-770 for CF patients with G551D 
mutation (56), is one of the major breakthroughs for CF 
cure (66-68). Nevertheless, negative interactions between 
VX-770 and VX-809 (77,78) prompted academic groups 
to search novel potentiators that do not present these 
limitations (120). In parallel, other companies launched 
phase 2 and phase 1 clinical trials on new potentiators 
(https ://www.cff .org/Research/Developing-New-
Treatments/). Very interestingly, dual-acting compounds, 
i.e., corrector and potentiator activity, may be a very 
appealing therapeutic perspective for CF treatment  
(see below).

Molecules for class IV “Less function” defects

T h i s  m u t a t e d  C F T R  p r o t e i n  d i s p l a y s  l o w  i o n 
conductance that could be repaired by increasing protein 
expression at the plasma membrane or potentiating its 
open state period. In this regard, clinical trials with VX-
770 (Ivacaftor, Kalydeco) in CF patients carrying the 
R117H mutation showed some benefit in lung function 
of adults with stable disease (121). This evidence supports 
further testing of potentiators in patients with CFTR 
class IV mutations.
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Molecules for class V “Less protein” defects

As detailed above, class V mutations reduce the expression 
of functional CFTR. As a consequence of abnormal splicing 
both aberrant and normal transcripts are produced. To 
repair this defect, increase CF gene transcription as well as 
CFTR correctors and potentiators could represent useful 
remedies (122). 

Molecules for class VI “Less stable” defects

Less stable CFTR protein needs to strengthen its anchoring 
at the plasma membrane. Importantly, rescued F508del 
CFTR protein by correctors displays increased turnover 
due to its removal by the peripheral quality control 
machinery and Disabled-2 (Dab2)-dependent ubiquitination  
(123-126), further worsened by P. aeruginosa chronic 
infection that decreases, the expression of critical proteins, 
such as Na+/H+ exchanger regulatory factor 1 (NHERF1)  
(127-129). Therefore, treatment of F508del CFTR 
homozygous patients should be addressed not only with 
correctors and potentiators but also with compounds stabilizing 
the rescued CFTR, by targeting both the CFTR anchoring 
proteins and the peripheral quality control machinery.

Dual-acting CFTR corrector and potentiator 
compounds

Consensus was reached that multiple defects of F508del 
CFTR protein should be addressed by combination of 
correctors and potentiators [for review see (130)]. In 
order to avoid negative side effects due to multiple drug 
interactions, compounds able to act at the same time 
both as correctors and potentiators, i.e., dual-acting 
compounds, have been proposed (131,132). Several dual-
acting compounds have been identified so far (99,103,104, 
133-135). In this regard, an interesting example has been 
given by 4,6,4'-trimethylangelicin (TMA) which besides 
correcting and potentiating CFTR activity displays anti-
inflammatory properties (99,134). TMA exerts its dual 
action by interacting directly with the MSD1 on F508del 
CFTR protein (136). 

The CFTR “amplifiers”

Beside the above mentioned molecular defects, F508del 
mutation produces a somewhat low amount of non-
glycosylated immature Band B CFTR (44). Transcriptional 

inducers such as 4-phenylbutirrate were found to repair 
CFTR function by increasing band B CFTR protein that 
could escape at least in part the quality control systems 
(137,138). Therefore, forcing the production of band 
B CFTR protein in association with CFTR correctors 
could improve the overall efficacy of treatment (139). 
In this respect, new class of compounds called “CFTR 
amplifiers” seem to provide promising results in vitro (140). 
In particular, PTI-428 has been tested in a phase 1 clinical 
trial in CF patients under sponsorship of Proteostasis 
Therapeutics (https://www.cff.org/Research/Developing-
New-Treatments/). An alternative approach is to inhibit 
the degradative pathway of CFTR mRNA intervening 
on the epigenetic down regulation of CFTR expression, 
e.g., by microRNA miR-145, which inhibits CFTR 
translation by degrading CFTR mRNA and blocking 
CFTR protein translation. MiR-145-specific cell permeable 
peptide-nucleic acid chimera relevantly increased CFTR  
protein (141). 

Effects of repairing mutated CFTR on lung 
infection and inflammation

It has been suggested that repairing of the ion transport 
defect by CFTR correctors and potentiators can by itself 
solve CF chronic lung infection and inflammation. In 
vitro evidence supports this idea as VX-809 abolished the 
exaggerated inflammatory pathways in F508del CFTR 
bronchial epithelial cells (142,143). A different F508del 
CFTR corrector, miglustat, was also found to have anti-
inflammatory effects in CF bronchial epithelial cells, 
although not directly related to correction of mutated 
CFTR (144). On the contrary, derivatives of the angular 
furocoumarin angelicin already proved as correctors of 
F508del CFTR protein (TMA analogues) showed that 
rescue and anti-inflammatory activity can coexist or be 
separated in the same molecule as a function of structural 
changes (145). These findings provide evidence that CFTR 
rescue per se is not enough to reduce excessive inflammation. 
Despite different results in vitro indicate that F508del 
CFTR rescue could per se repairs excessive inflammation 
(142,144), no evidence of reduced lung inflammation 
after VX-809 has been presented so far in CF patients. 
Moreover, CFTR restoration for all individuals with CF 
is challenging because approximately 2000 CFTR variants 
have been reported, most of them are rare (see the Cystic 
Fibrosis Mutation Database of the Cystic Fibrosis Gene 
Analysis Consortium, www.genet.sickkids.on.ca/cftr) and 
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personalized medicine approaches based on each individual’s 
genetic profile may not be sufficiently efficacious in patients 
with irreversible lung damage. Thus, it appears that both 
combinations of novel CFTR potentiators and correctors as 
well as newer compounds for conventional therapies, such 
as inhaled antibiotics and anti-inflammatory agents, remain 
a cornerstone of treatment for CF lung disease [for review 
see (146-149)]. 

Conclusions and open issues 

The ability to repair CF defect by using personalized 
medicine based on each patient’s genetic profile represents a 
new challenge for CF research community. Despite exciting 
advances, several issues still remain open: 

(I) As not all CFTR gene mutations have been 
classified within the six classes and many defects 
lack repairing molecules, the right drug for each 
CF patient is not available yet;

(II) In order to increase the amount of rescued 
F508del CFTR, more effective correctors are still 
needed as well as clear-cut biomarkers to evaluate 
their efficacy; 

(III) Considering that CF patients should be treated 
by combination of more drugs, the interaction 
between these drugs needs to be investigated in 
depth;

(IV) Different therapeutic response along different 
patients is emerging, therefore, clinical efficacy 
of a specific treatment in every patient should be 
predicted by novel tools; 

(V) Long-term safety of new drugs is still unknown;
(VI) It is still a matter of debate whether rescuing 

CFTR defect avoids infection and exaggerated 
inflammation occurring in CF patients, thus 
newer compounds for conventional therapies, 
such as antibiotics and anti-inflammatories will 
likely remain a cornerstone of treatment for CF 
lung disease; 

(VII) Many questions are still open on the role of other 
genes, besides the CFTR one, in modulating 
pulmonary phenotype.

All this considered, a good therapeutic strategy should be 
based on more than one option.
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