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Abstract: Wilson disease (WD) is a complex condition due to copper accumulation mainly in the liver 
and brain. The genetic base of WD is represented by pathogenic mutations of the copper-transporting gene 
ATP7B with consequent lack of copper excretion through the biliary tract. ATP7B is the only gene so far 
identified and known to be responsible for the development of the disease. Our understanding of the disease 
has been evolving as functional studies have associated specific disease-causing mutations with specific 
copper-transporter impairments. The most frequent variant in patients of European descent is the H1069Q 
missense mutation and it has been associated with protein misfolding, aberrant phosphorylation of the 
P-domain, and altered ATP binding orientation and affinity. Conversely, there is much less understanding 
of the relation between the genotype and the clinical manifestations of WD. WD is characterized by a 
highly varied and unpredictable presentation with different combined hepatic, neurological, and psychiatric 
symptoms. Several studies have attempted to correlate genotype and phenotype but the most recent 
evidences on larger populations failed to identify a relation between genotype and clinical presentations. 
Given that so far also modifier genes have not shown convincing association with WD, there is growing 
interest to identify epigenetic mechanisms of gene expression regulation as underlying the onset and 
progression of WD phenotype. Evidence from animal models indicated changes in methionine metabolism 
regulation with possible effects on DNA methylation. Mouse models of WD have indicated transcript level 
changes of genes related to DNA methylation in fetal and adult livers. And finally, evidence is accumulating 
regarding DNA methylation changes in patients with WD. It is unexplored how ATP7B genetic mutations 
combine with epigenetic changes to affect the phenotype. In conclusion, WD is a genetic disease with a 
complex regulation of its phenotype that includes molecular genetics and epigenetic mechanisms.
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ATP7B gene, protein structure and function

Wilson disease (WD) is considered a monogenic autosomal 
recessive disease and ATP7B is the only gene that has 
been identified as causative of this condition. Disease-
causing mutations affecting the ATP7B gene are associated 
with lack of biliary copper excretion and its consequent 
accumulation in the hepatocytes. The ATP7B gene encodes 

for a transmembrane P-type cation copper transporter 
ATPase and can be affected by homozygous or compound 
heterozygous mutations, meaning that each gene allele 
presents a different mutation. The gene is located on 
human chromosome 13q14, it contains 20 introns and 
21 exons, and almost 800 mutations have been described 
according to the Human Gene Mutation Database (accessed 
January 2019) (1-3). Not all mutations are causative of  
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copper accumulation. The clinical phenotype and the 
relation between ATP7B gene mutations with the extent 
of the copper transporter function impairment are not 
predictable (4). Therefore, even the most advanced 
technologies for genetic diagnosis, including next 
generation sequencing, still require evidence of abnormal 
copper metabolism parameters for the definite clinical 
diagnosis of WD (5). There have been reports of pseudo-
dominant inheritance where the disease presents in 2 or 
more consecutive generations within one family (6,7). 
Rarely, one individual can present with three mutations. 
Cases of segmental uniparental disomy, occurring when 
both copies of a single chromosome are inherited from one 
parent, have been described (8).

The ATP7B gene is highly expressed in the liver but the 
protein is also detected in the brain, kidney, lung, intestinal 
epithelial cells, placenta, and mammary glands (9). The gene 
encodes for a 1465-aminoacid protein which is synthetized 
in the endoplasmic reticulum and is expressed in the trans-
Golgi network (10). The ATP7B protein belongs to class 
1B (PIB) P-type ATPase superfamily, responsible for 
actively exporting copper and other heavy metal ions from 
the cytoplasm of cells. These highly conserved structure 
proteins present a phosphatase domain (A-domain), a 
phosphorylation domain (P-domain), a nucleotide-binding 
domain (N-domain), and M-domains, which includes eight 
transmembrane ion channels. The copper transport through 
the membrane is an active complex mechanism which is 
ATP-dependent and functionally affected by the gene 
mutations. Many of the described mutations map at the 
N-domain, potentially impairing the transporter function 
by interfering with the ATP binding (11,12).

ATP7B gene mutations and population 
prevalence

More than 50% of the described mutations are single-
nucleotide missense and nonsense, whereas the remaining 
are insertions/deletions and splice site mutations. The 
missense mutation His1069Gln on exon 14 is the most 
prevalent in patients of Central and Eastern European 
descent (13). However, its prevalence varies greatly 
according to the geographic area. The allele frequency is the 
highest in Poland, Latvia, Former East Germany, Bulgaria, 
and Czeck Republic ranging from 72% to 57% (14-18). 
The mutation is also the one with highest prevalence in 
North America with about 40% allele frequency (19). A 
study on a large group of Polish patients with WD using 

whole-exome sequencing, confirmed the high prevalence of 
the H1069Q mutation and identified other low-prevalence 
mutations (20). Another described mutation in Central and 
Eastern Europe is the G710S on exon 8, having a prevalence 
of 6.4% in Austria (21). In United Kingdom, the most 
frequent mutation is the H1069Q but with a prevalence 
of 19%, much lower compared to other European  
countries (8). The second most common identified 
mutation in UK is the Met769Val with a frequency of 
6% (8). Patients from continental Italy present a lower 
prevalence of the H1069Q mutation (17.5%) and other 
mutations (p.Val845fs and p.Met769fs) are described with 
a prevalence lower than 10% (22). Spain represents an 
exception compared to other European countries with 
a high frequency of the missense mutation M645R on 
exon 6 (23). A study on French patients with WD also 
identified the M645R as highly prevalent with a carrier 
frequency of 1.8% (5). Regions where consanguinity is 
highly prevalent, present different patterns of mutations 
distribution. Sardinia has a high prevalence (60%) of the 
deletion c.-441_-427del15 in the ATP7B gene promoter 
region (24) and Canary Island has a 64% allele frequency 
of the p.Leu708Pro (25). In Costa Rica, patients present 
with a high prevalence (61%) of the N1270S mutation (19),  
also described in Italian and Turkish populations (26,27). 
In China, Japan, and Korea the prevalent mutation is 
the missense R778L on exon 8 with an allele frequency 
ranging from 45% to 12% (28-31). In Japan, the 2871delC 
and 2874delC are also described (32). This variant is 
associated with replacement of arginine with leucine in 
the transmembrane domain. India is a vast country with 
high ethnic diversity and different prevalence of ATP7B 
mutations has been described according to the geographic 
localization. As pointed out by Gomes et al, the p.Cys271 
mutation appears to be the most frequent mutation in the 
Indian sub-continent (33,34) even though it has not been 
described in the north of the country.

ATP7B mutations, copper transporter function, 
and genotype-phenotype correlation

Whereas the pathogenesis of WD is known to be rooted 
in copper accumulation and ATP7B copper transporter 
impaired function, it is much less clear if and how ATP7B 
mutations influence the phenotype. At the molecular level, 
previous studies have shown a relationship between the 
type of gene mutation and the extent of copper transporter 
functional impairment. A study has characterized in vitro 
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and in silico the activity changes induced by the H1069Q 
mutation showing that its main consequences are protein 
misfolding, aberrant phosphorylation of the P-domain, and 
altered ATP binding orientation and affinity (35). Another 
study using immunogold electron microscopy to explore the 
intracellular localization of ATP7B in liver tissue from WD 
patients homozygous for the H1069Q mutation, identified 
an aberrant localization of the mutated protein in the 
endoplasmic reticulum whereas the non-mutated ATP7B 
was in the trans-Golgi network (36). An extensive in vitro 
study assessed the catalytic and transport activity as well 
as the intracellular localization of 28 ATP7B variants. The 
selected variants, including the H1069Q, were all known to 
be associated with clinical manifestations. Various mutations 
were associated with different functional impairments but 
notably variants domain-localization was not the cause 
of the same type or extent of dysfunction (37). Common 
missense mutations tend to impair ATP7B stability and are 
associated with its reduced levels (38,39). In addition, several 
mutations impair only partially ATP7B function with some 
residual ATP binding and copper transporter activity (36).  
There is evidence that certain ATP7B polymorphisms 
may interact with metabolic factors, specifically copper 
availability, with effects on the copper transporter activity 
itself. In particular, the Arg875 causes lack of copper 
transporter activity but in response to elevated copper, 
the trafficking activity was restored along with the copper 
delivery (40). A study on 59 patients with WD found that 
protein-truncating mutations were associated with lower 
serum ceruloplasmin oxidase activity compared to missense 
mutations (41). A study from India identified 28 ATP7B 
variants in 50 patients with WD and conducted in vitro 
functional analysis describing 5 new variants associated 
with protein misfolding (34). When transitioning from the 
molecular to the disease level, several studies embarked 
in the difficult task to identify a correlation between 
genotype and phenotype but the results have been non-
conclusive and affected by several challenges. First, most 
patients are compound heterozygous. Second, the clinical 
practice (for example, hepatology versus neurology) could 
have influenced the initial selection of cases and in some 
cases, liver or neurological signs or symptoms may have 
not been properly investigated or diagnosed. Third, most 
studies include a overall small number of cases, assessed and 
diagnosed with non-standardized criteria, often uniquely 
based on the single clinician experience. The most recent 
and relevant evidence of a limited role of the genotype on 
the phenotypic manifestations is provided by a European 

study on more than 1300 patients with WD, including 702 
children and 655 adults. Patients presented either hepatic 
or neurological manifestations and more than 50% of them 
had a liver biopsy-confirmed diagnosis. The described 
population included both acute liver failure and cirrhosis 
patients carrying a high allele frequency of the H1069Q 
mutation (46.9%) (42). The major finding of the study was 
the lack of correlation between ATP7B gene mutations and 
the phenotype. It should be mentioned that this study was 
preceded by multiple other smaller studies attempting to 
identify a genotype-phenotype correlation. In particular, 
the H1069Q mutation was associated more frequently 
with neurological phenotype in some studies (16,43). A 
Dutch study showed an association between homozygous 
H1069Q and neurological phenotype (44). A study on 58 
pediatric patients with WD affected by 34 different ATP7B 
mutations showed that nonsense and frameshift mutations 
were associated with lower serum ceruloplasmin and copper 
levels (45). Genotype-phenotype correlation studies in 126 
Bulgarian patients presenting a H1069Q allele frequency in 
78% of cases indicated an association between the mutation 
and hepatic presentation (46). Tarnacka et al. reported on 
148 Polish patients with a high H1069Q frequency and did 
not find any genotype-phenotype correlation (47).

Other interesting information can be derived from 
studies describing siblings and homozygous twins. Chabik 
et al. studied 73 unrelated Polish families including 73 
index cases and 95 siblings, presenting with a H1069Q 
allelic frequency of 77% (48). They found a high 
concordance rate of the initial clinical presentations, 
being 86% concordance for hepatic symptoms and 66% 
for neurological symptoms. However, there are also case 
reports of siblings and homozygous twins presenting 
discordant clinical presentations or different post liver 
transplant outcomes (49-51). A Japanese study in 11 families 
including 23 sibilings diagnosed with WD described 
that 5 families had identical phenotypes and 6 families 
different phenotypes (52). Interestingly, there is evidence 
of geographical clustering within regions with smaller or 
isolated communities with various levels of consanguinity 
and presenting phenotype homogeneity. Two large families 
in small mountain community in the region of Rucar in 
Romania were studied given the high prevalence of WD 
cases (53). Of the 50 screened living members, 5 individuals 
with clinical diagnosis of WD and 2 asymptomatic subjects 
presented the H1069Q/M769H mutations. Of note, there 
was a significant phenotypic concordance between all WD 
patients presenting neurological and psychiatric phenotype. 
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Patients presented mostly dysarthria and dysphagia as initial 
symptoms and had similar age of onset (17–20 years old). 
The authors concluded that their findings demonstrate 
the influence of both genetic and environmental factors 
on the phenotype (53). More than 70 members of a single 
Lebanese family were investigated for the c.2299insC and 
p.Ala1003Thr mutations. The clinical diagnosis of WD 
was confirmed in 9 subjects (54). The c-2299insC mutation 
was associated hepatic and the Ala1003Thr was associated 
with neurological phenotype. A study on 4 generations of 
an Italian family, showed a possible association between 
the homozygotic mutation T1288R and the hepatic  
phenotype (55). Different evidence comes from Gran 
Canaria, where the Leu708Pro mutation was highly 
prevalent, affecting 18 out of 24 patients with WD, 
including 12 homozygous  pat ients ,  4  compound 
heterozygous, and 2 with only one identified mutation (25).  
However, the phenotype was variable and included 
prevalently neurological manifestations but also hepatic 
involvement with no obvious association between 
the genotype and phenotype. Therefore, despite the 
methodological challenges, the evidence points to the 
presence of additional factors, other than gene mutations, 
affecting the clinical presentation. 

Modifier genes

A modifier gene has been defined as a gene that alters the 
expression of a gene at another locus or the phenotypic 
expression of another gene (56). It is plausible to 
hypothesize the presence of modifier genes influencing the 
varied WD phenotype. Several genes have been proposed 
as possible candidates for this role. Kluska et al. conducted 
whole-exome sequencing analysis on 248 patients with 
WD (20). The study identified two new possible variants in 
esterase D (ESD) and INO80 genes being associated with 
increased and reduced risk of neurological presentation, 
respectively. ESD, encoding for a polymorphic red cell 
enzyme, was previously linked to WD (57). INO80 has 
important transcription regulation functions through 
chromatin remodeling action (58). In addition, rare APOE 
and MBD6 variants were associated with lower risk of early 
onset WD (20). Other studies have previously associated 
APOE variants with WD (59), in one case with delayed 
neurological symptoms (60). However, other studies could 
not confirm the association (61,62). Interestingly, MBD6 
encodes for a protein belonging to the methyl-CpG-binding 
domain family. These proteins have central regulating 

function in epigenetic mechanisms, including the readout 
of DNA methylation (63). MBD6 interacts with the human 
deubiquitinase complex and reported to be a target of Oct4 
in stem cells derived from adipose tissue (64). Conversely, 
the analysis could not confirm any association between WD 
phenotypes and other previously proposed modifier genes 
allelic variants (20). Even though the study results may have 
been affected by the relatively small population or by the 
analysis methodologies, the results question the validity 
and clinical significance of previous findings on candidate 
modifier genes. 

A candidate modifier gene with mechanistic relevance 
is the patatin-like phospholipase domain-containing  
3 gene (PNPLA3). PNPLA3 rs738409 polymorphism has 
been associated with increased risk of nonalcoholic fatty 
liver disease development (65) and with hepatic steatosis in 
hepatitis B (66) and C (67). The protein presents various 
functions in lipids metabolism as it can both synthetize 
intracellular triglycerides and also has hydrolyzing activity 
against triglycerides (68,69). Therefore, mutations affecting 
its function could favor steatosis. A study on 98 male 
patients with WD showed that, on multivariate logistic 
regression, PNPLA3 was an independent variable associated 
with moderate/severe steatosis (70). MTHFR mutations 
are also potential genetic modifiers of WD. MTHFR 
encodes 5,10-methylenetetrahydrofolate reductase, an 
enzyme in methionine metabolism that affect homocysteine 
levels. Two polymorphisms in MTHFR were associated 
with WD expressivity. The MTHFR 667T allele was 
associated with hepatic phenotype and the MTHFR 1298C 
allele was associated with earlier WD presentation (71). 
This is interesting as it provides evidence that aberrant 
homocysteine and methionine metabolism may interact 
with copper accumulation in the pathogenesis of WD and 
provides a possible explanation for the variable expressivity 
of this monogenetic disease.

Other previously proposed modifier genes for WD 
include antioxidant 1 copper chaperone (ATOX) (72), 
copper metabolism domain-containing 1 (COMMD) 
(73-75), X-linked inhibitor of apoptosis (XIAP) (76), 
hemochromatosis gene (HFE) (77-79), human prion gene 
(PrP) (80), ATP7A (81), and divalent metal transporter1 
(DMT1) (81) but none was confirmed in additional or larger 
studies (Table 1). 

Introduction to epigenetics

The field of epigenetics, literally meaning “on top of 
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genetics”, lies at the critical intersection where nature meets 
nurture, allowing a static genome to adapt to a dynamic 
environment. Epigenetics can explain long-lived effects 
from in utero and early life environments on human disease 
susceptibility and resilience. The “Developmental Origins 
of Adult Disease” hypothesis (82) relies heavily of epigenetic 
mechanisms to explain how maternal in utero effects can 
influence risk for common diseases in adulthood, including 
obesity, cancer, cardiovascular disease, addiction, and other 
mental health disorders (83,84).

Epigenetic information is layered on top of the DNA 
sequence through covalent modifications to nucleotides 
or nucleosomes (85,86). The first layer of epigenetic 
information is DNA methylation. The majority of CpG 

(meaning cytosine preceding a guanine) dinucleotides 
in the human genome are methylated at the 5’ position 
of cytosine. In contrast,  CpGs are predominantly 
unmethylated when they are located in “CpG islands” at 
the promoters of approximately 70% of mammalian gene 
promoters. DNA methylation patterns are dynamically 
erased and reestablished each generation during the 
formation of the gametes, which occurs in utero in 
mammals (87). Implantation of the embryo is another 
critical time for genome-wide changes in DNA methylation 
patterns that can be modified by maternal environment. 
Adding to the complexity of DNA methylation dynamics, 
there are variations on 5-methylcytidine (mC), including 
5-hydroxymethylation (hmC), which is correlated with gene 

Table 1 Proposed modifier genes for Wilson disease

Proposed 
modifier gene

Studied  
population(s)

Publication 
year

Associated phenotype Results validation

APOE 121 WD patients (60) 2000 Epsilon3/3 was associated with delayed onset Results not confirmed by Gu  
et al. (61) and Kocabay et al. (62);

383 WD patients (59) 2012 Women with Epsilon4 have earlier onset of 
symptoms

Kluska et al. reduced risk of early 
onset WD (20)

COMMD1 63 WD patients (73) 2004 GAT/GAC heterozygous: 19% with hepatic 
presentation; 25% with neurological presentation

Results not confirmed by Weiss  
et al. (75) and Bost et al. (74)

PRNP 134 WD patients (80) 2006 M129V: similar prevalence compared to control; 
PRNP codon 129: later disease onset and later 
neurological presentation

No additional studies

ATOX1 63 WD patients (72) 2008 5'UTR-99 T>C: earlier onset of disease Results not confirmed by Bost  
et al. (74)

XIAP 98 WD patients (76) 2010 p.T470S and p.N340S: early disease onset No additional studies

HFE 32 WD patients (77) 2010 H63D mutation in 20% of cases, increased hepatic 
iron concentration

Results not confirmed by Erhardt 
et al. (78), and Pfeiffenberger  
et al. (79)

MTHFR 245 WD patients (71) 2011 C677T allele: hepatic onset; A1298: younger age at 
presentation

No additional studies

ATP7A 108 WD patients (81) 2014 No association with WD No additional studies

DMT1 108 WD patients (81) 2014 IVS4 C(+): in 83% of patients with WD; no 
association with phenotype

No additional studies

PNPLA3 98 WD patients (70) 2015 G allele associated with moderate/severe steatosis No additional studies

ESD 248 WD patients (20) 2018 Increased risk of neurological phenotype No additional studies

INO80 248 WD patients (20) 2018 Reduced risk of neurological phenotype No additional studies

APOE, Apolipoprotein E; COMMD1, copper metabolism domain-containing 1; PRPN, Prion Protein; ATOX1, human homologue antioxidant 
1 copper chaperone; XIAP, X-linked inhibitor of apoptosis protein; HFE, hemochromatosis; MTHFR, 5, 10-methylenetetrahydrofolate 
reductase; ATP7A, ATPase copper transporting alpha; DMT1, divalent metal transporter 1; PNPLA3, patatin-like phospholipase  
domain-containing 3 gene; ESD, esterase D; INO80, INO80 complex subunit; WD, Wilson disease.
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activity and demethylation (88). Furthermore, while CpG 
dinucleotides are the most methylated, the more abundant 
CpH (C preceding an A, T, or C) dinucleotides are 
methylated at low frequency in mature oocytes, embryonic 
stem cells, and postmitotic neurons. 

While DNA methylation has historically been considered 
to be a mechanism for silencing gene expression, the 
genome-wide view has demonstrated multiple complexities 
to that simple interpretation. 5-methycytosine at CpG sites 
at gene promoters is associated with gene repression. In 
contrast, a positive association with expression and CpG 
methylation is observed over gene bodies, particularly 
in pre-implantation embryonic tissues and placenta 
(87,89,90). Interpretation of CpH methylation is less clear, 
although it appears to mark genes that were active in earlier 
development that were later silenced (91,92). In these ways, 
the layer of DNA methylation can provide important clues 
about past, present, and future gene expression patterns.

In addition to DNA methylation, there are several 
other layers of epigenetic information. DNA in the 
nucleus is organized and assembled through the action of 
nucleosomes, which are octamers of pairs of four histone 
core subunits (H2A, H2B, H3, H4) and the H1 linker 
histone. All of the core histones have N- and C-terminal 
tails that are post-translationally modified by methylation, 
phosphorylation, ubiquitinylation, acetylation, to name a 
few (93). A large number of nuclear proteins in mammalian 
genomes are dedicated to the writing, reading, or erasing 
of these histone modifications collectively known as the 
“histone code”. Genome-wide, histone codes have been 
mapped for a large variety of human tissues, developmental 
stages, and cell types in order to functionally annotate 
the genome into promoters versus enhancers, active 
versus repressed versus “poised” genes, as well as inactive 
heterochromatin. Chromatin loops between enhancers-
promoter pairs, or groups of genes with a single “super-
enhancer” have also been mapped in specific cell types and 
tissues genome-wide (94). Lastly, noncoding RNAs are 
emerging as having a variety of functional roles in defining 
chromatin states and chromatin loop interactions between 
promoters and enhancers (95).

Integration of methionine metabolism with 
epigenetics and copper

There is a large variability in the expressivity of WD in 
terms of the age of onset, severity, response to treatment, 
and impacts to the liver versus brain. Analysis of hundreds 

different disease-causing mutations in WD have failed 
to find convincing evidence of genotype-phenotype 
correlations. Therefore, WD appears to be a genetic disease 
with clear environmental and epigenetic modifications 
that are likely due to the complex relationship between 
copper accumulation and methionine metabolism 
pathways (96). Methionine metabolism in liver and brain 
is an important pathway that regulates the supply of 
methyl groups required for modifications of proteins, 
DNA, and RNA through the availability of the universal 
methyl donor S-adenosylmethionine (SAM). Methionine 
adenosyltransferase utilizes ATP to convert methionine 
into SAM. S-adenosylhomocysteine hydrolase (AHCY) is 
a key enzyme regulating the amount of SAM available for 
methylation reactions, since it bidirectionally catalyzes the 
conversion of SAM to S-adenosylhomocysteine (SAH). 
Bethin et al. initially demonstrated that in toxic milk 
mouse livers AHCY has copper binding properties and the 
enzymes levels were reduced by 42% compared to mice 
with normal copper metabolism (97). Subsequent studies 
demonstrated that excess copper inhibits the activity of 
AHCY (98). AHCY inhibition leads to reduced SAM/
SAH ratios, inhibition of MAT, and impaired methylation 
reactions. Therefore, some of the variability of WD 
symptoms is likely to be due to wide-scale alterations in 
methyl donor supplies.

Studies on the toxic milk (tx-j) mouse model of WD are 
consistent with methionine metabolism alterations due to 
copper accumulation. Specifically, tx-j mice show reduced 
AHCY transcript and protein levels and elevated SAH 
and SAH/SAM ratios compared to wild-type mice (99).  
The methyl donor nutrient betaine counteracted the 
genetic effect, demonstrating further evidence that the tx-j 
phenotype could be modified by dietary methyl donors (99). 
Similar data in Long-Evans Cinnamon rats demonstrated 
a correlation between hepatic copper accumulation and 
reduced transcript levels of MAT and changes in methionine 
metabolism (100).

Integration of copper with mitochondrial 
oxidative stress and epigenetics

Another way that excess copper levels in WD may impact 
epigenetic layers is through the mitochondrial oxidative 
stress pathways. The intracellular levels of reactive oxygen 
species (ROS) increase as a byproduct from mitochondrial 
activity during normal cellular metabolism. While ROS 
are signal transduction molecules that are part of normal 
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metabolism, high levels of ROS can cause detrimental 
effects on multiple cell components, including DNA, 
lipids, proteins, membranes, and mitochondria. ROS and 
additional mitochondrial metabolites have a detrimental 
impact on epigenetic layers, including DNA methylation 
and histone modifications such as methylation and 
acetylation (101,102).

Exposure to non-physiological levels of trace elements 
such as copper contributes to mitochondrial dysfunction, 
including oxidative stress. Other trace metals with an 
observed epigenetic impact in mammalian tissues, include 
nickel and iron. Interestingly, iron acts as a cofactor for 
the TET family proteins that catalyze the oxidation of 
DNA methylation from methylated to hydroxymethylated 
cytosine, while nickel acts as an inhibitor of the same 
react ion (103) .  Furthermore,  n ickel ,  chromium, 
and arsenic appear to be mechanistically involved in 
alterations to histone post-translational modifications by 
altering actions of the enzymes or “writers” that modify  
them (104). Therefore, the impact on the epigenome from 
even mild alterations to metals may have both direct effects 
on epigenetic enzymes or indirect effects through the 
mitochondrial and oxidative stress pathways.

Evidence for epigenetic and methionine 
alterations in animal models of WD

Since alterations in methionine metabolism can directly 
affect methylation reactions to DNA and histone tails, the 
copper-induced alterations to methionine pathways can also 
adversely impact many downstream gene targets through 
epigenetics. The tx-j mouse model of WD supports 
epigenetic alterations in WD. An initial time-course study 
on tx-j mice livers from fetal life to adulthood, showed 
global DNA methylation starting at 20 weeks of age with a 
significant negative correlation with Dnmt3a and Dnmt3b 
transcript levels (105). Pooling data from 20 and 28 week 
old mice, global DNA methylation correlated negatively 
with hepatic copper concentration and with SAH levels 
and correlate positively with SAM/SAH ratio. Tx-j liver 
samples show reduced Dnmt3b transcript levels and global 
DNA methylation levels compared to wild-type that were 
able to be restored through betaine supplementation (105). 
In addition to methionine, mitochondrial pathways directly 
impacted by excess copper accumulation result in ROS and 
other metabolites that influence epigenetic control of gene 
expression throughout the genome (106).

Epigenetic mechanisms are especially important in 

utero, because this is a critical time when the instructions 
of the genome are being followed within the context of 
the maternal environment, diet, and metabolism. In WD, 
this is particularly evident in the tx-j mouse model, as 
choline supplementation to the diet of dams from 2 weeks 
during pregnancy to gestational day 17 resulted in a 17% 
increase in global DNA methylation levels in the liver (107).  
Maternal choline supplementation also prevented the 
transcriptional deficits in fetal tx-j liver for multiple genes 
related to cell growth and rescued reduced body weight 
phenotypes of tx-j mice (107). Interestingly, copper levels 
in fetal livers of tx-j mice are actually lower than wild-type, 
which is the opposite pattern of the copper accumulation 
in postnatal livers of tx-j mice. What the two stages have 
in common is deficits in copper transport due to Atp7b 
mutation, as well as alterations to DNA methylation 
observed in liver.

Recently, we have applied genome-wide approaches to 
identifying the genes impacted by epigenetic changes in fetal 
livers of tx-j mice, as well as the effect of maternal choline 
supplementation (108). Using a whole methylome approach 
called whole genome bisulfite sequencing, we identified 
six differentially methylated genes with genome-wide 
significance, including Atp7b itself, as well as genes involved 
in oxidative stress and thioredoxin, including Gpx4, Prdx2, 
and Hif1a. Importantly, we also demonstrated that maternal 
choline supplementation corrected the tx-j differential 
methylation patterns observed. Secondly, by performing 
genome-wide analyses of transcriptional differences in the 
tx-j liver, we were able to demonstrate several associations 
between methylation and transcriptional changes in tx-j 
liver with and without choline supplementation (108). 
Together these results provided genome-wide evidence for 
epigenetic alterations in the tx-j model of WD that could 
be corrected through maternal choline supplementation.

Evidence for epigenetic alterations in samples 
from patients with WD

Unlike mouse model studies of WD in which the 
genetics and dietary methyl donors can be controlled, 
human studies have been more challenging to assess the 
role of epigenetics. However, genome-wide methylome 
sequencing approaches have been recently utilized in 
order to gain important insights into epigenetic changes 
in human WD liver and blood. We utilized whole-genome 
bisulfite sequencing (WGBS) to identify differentially 
methylated regions that distinguished liver biopsies from 
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WD patients compared to both healthy and disease control 
subjects with other liver diseases. 18 regions at genome-
wide significance were identified, as well as thousands of 
others at lower confidence, that were able to discriminate a  
WD-specif ic  epigenomic s ignature.  WD-specif ic 
differentially methylated regions were enriched for liver-
specific enhancers and genes with functions in folate and 
lipid metabolism and acute inflammatory response.

We then sought to determine if blood samples from 
WD patients with hepatic versus neurologic symptoms 
could be distinguished by WGBS epigenomic signatures. 
While the differentially methylated regions identified were 
fewer than those identified in blood, there was a significant 
overlap (31% also in liver) with the >200 regions that 
distinguished WD blood DNA from healthy control or 
disease control samples. More importantly, differentially 
methylated regions in WD blood were identified that 
clearly discriminated those patients with hepatic versus 
neurologic symptoms in two different cohorts. These 
preliminary results suggest that epigenetic biomarkers in 
blood could be useful clinically in predicting the symptom 
and treatment types for early stage WD patients. To 
explore this possibility, we developed a classifier algorithm 
that predicted neurologic versus hepatic phenotypes in a 
separate cohort with 90% accuracy. Together these results 
suggest the potential clinical utility of mapping epigenetic 
alterations in WD human patients (109). 

Sex and epigenetic differences

WD clinical presentations can be different between males 
and females (110,111) and the potential explanation could 
be related to epigenetics mechanisms Acute liver failure 
presents as WD onset more frequently in females whereas 
the neurological phenotype tends to manifest more in male 
patients. The explanation for these differences has not been 
completely clarified but in general has been attributed to 
hormonal influences or differences in iron metabolism (112).  
Hormonal factors are most likely involved but it is also 
likely that epigenetics factors are contributing to sex 
differences. Methylome and transcriptome differences have 
been described in human liver and brains and are associated 
with metabolic differences (113). Our studies in tx-j mice 
showed that female mice presented higher hepatic copper 
concentration compared to male mice after treatment with 
copper chelator penicillamine and global hepatic DNA 
methylation was different between male and female mice 
after treatment with choline (106). Moreover, female mice 

showed changes of hepatic transcript levels of genes related 
to oxidative phosphorylation in response to choline and 
penicillamine treatments (106).

Conclusions and questions for future research

Disease-causing mutations affecting the ATP7B gene 
cause a wide variety of functional alterations of the copper 
transporter. Genetic mutations are ultimately responsible 
for copper accumulation but other factors affect the clinical 
presentation. The interactions between genetic mutations 
and epigenetic factors may be the explanation for the 
heterogeneous phenotypic presentation of WD.
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