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Background: We investigated the effect of the walnut rolling training for two weeks on the hand function 
and corticospinal tract (CST) in normal subjects.
Methods: Seventeen right-handed normal subjects performed walnut rolling training with their non-
dominant (left) hand, with the right hand defined as the control side. The walnut rolling training was 
performed three times daily, for 30 minutes at a time, over two weeks. The Purdue Pegboard Test (PPT), 
tip pinch and grip strength (GS) were used evaluate the change of hand function, and diffusion tensor 
tractography (DTT) evaluated change of the CST and transcallosal fibers for the hand motor somatotopy.
Results: All of the clinical scores in terms of PPT, tip pinch and GS increased significantly in the post-
training (PPT: 16.59±1.09, tip pinch: 5.03±2.18, GS: 40.61±10.99) in the left hand compared with pre-
training (PPT: 14.94±1.36, tip pinch: 3.66±1.44, GS: 33.58±11.08) (P<0.05). By contrast, the clinical 
scores for the right hand did not differ significantly between pre- (PPT: 16.25±1.98, tip pinch: 5.75±2.26,  
GS: 37.58±14.61) and post-training (PPT: 16.97±1.67, tip pinch: 5.66±2.31, GS: 37.82±14.25). The fiber 
numbers (FN) of the right CST increased significantly in post-training DTT (2,123.05±529.07) compared 
with pre-training DTT (1,734.73±581.84) (P<0.05), whereas fractional anisotropy (FA) (pre-training: 
0.50±0.02, post-training: 0.51±0.01) did not change significantly. Neither FA nor FN of the left CST and 
transcallosal fibers changed significantly from pre- (FA: 0.44±0.02, FN: 1,871.15±636.36) to post-training 
DTTs (FA: 0.45±0.03, FN: 1,823.84±701.14).
Conclusions: We demonstrated improvement of hand function and facilitation of the contralateral CST 
by walnut rolling training in normal subjects. Our results suggest that walnut rolling training can be used for 
improvement of hand function and facilitation of the contralateral CST.
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Introduction

In-hand manipulation (IHM) ability is defined as the ability 
to move an object within a hand. It is necessary for activities 
of daily living, including tool use and handling small 

objects (1). Exner [1990] classified IHM into three skills: 
(I) translation: the ability to move an object from the finger 
to the palm and from the palm to the finger; (II) shift: the 
ability to move an object in a linear manner with the finger; 
and (III) rotation: the ability to turn an object around in 
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the pads of the fingers and thumb (simple rotation) or 
turning an object from end to end (complex rotation) (1). 
Hand rolling using a walnut or an iron ball is a kind of 
IHM training that has been popular for a long time among 
old people in northeastern Asia. Walnut rolling training is 
popular for old people to prevent dementia in Korea. A few 
studies have demonstrated the cortical activation by ball 
rotation task in hand, using functional MRI (2-4). Among 
the above studies, one study reported that the walnut 
rolling task was the most effective for cortical activation 
compared with wooden ball rolling and hand grasp-release 
movements (3). However, it is unclear whether the walnut 
rolling training has an effect on the function of the hand 
and related neural tract in the brain.

The corticospinal tract (CST) is a major neural tract 
for motor function in the human brain, especially for fine 
motor activity of the hand (5-7). Therefore, the CST is 
assumed to be easily influenced by walnut rolling training, 
and examination of the CST would be important for 
evaluation of the effect of walnut rolling training on the 
brain. The most widely used methods for evaluating the 
state of the CST include transcranial magnetic stimulation 
(TMS), functional magnetic resonance imaging (fMRI), 
and diffusion tensor imaging (DTI) with diffusion tensor 
tractography (DTT). Compared to TMS and fMRI, DTT, 
which is derived from DTI, has a unique advantage of 
visualization and quantitative evaluation of the CST (8,9). 
Therefore, DTT is commonly used to detect changes of the 
CST (10,11).

In this study, we hypothesized that walnut rolling training 
could improve hand function and facilitate the contralateral 
fiber number (FN) of CST. To test our hypothesis, we 
investigated the effect of the walnut rolling training for two 
weeks on the hand function and CST in normal subjects.

Methods

Subjects

Seventeen right-handed healthy normal subjects (8 males, 
9 females; mean age: 36.53±9.24 years, range: 25–55) were 
recruited according to the following criteria: (I) no brain 
lesion on conventional MRI [T1-weighted, T2-weighted, 
fluid attenuated inversion recovery (FLAIR), and T2-
weighted gradient recall echo (GRE) images]; (II) no history 
of psychiatric, neurological, or physical illness; (III) right 
handedness as confirmed by the Edinburgh Handedness 

Inventory (12). The subjects for this study provided signed, 
informed consent, and the study protocol was approved by 
our Institutional Review Board (Ethical Application Ref: 
YUMC-2017-06-020).

The walnut rolling training

Subjects performed the walnut rolling training with their 
non-dominant (left) hand. Subjects were allowed to pick 
two walnuts which suit best to their hand among walnuts 
with various sizes: the selected walnuts were 2.5 cm in 
diameter at most. They were asked to roll the walnut in 
the counterclockwise direction within their non-dominant 
hand. The walnut rolling training was performed with a 
steady speed (approximately 0.5 Hz) three times per day, for 
30 minutes at a time, over two weeks. To ensure that each 
participant complied with the rules dedicating 90 minutes 
per day to the training, a supervisor checked whether the 
walnut rolling training was performed during the specified 
time using video telephony (first training: am 8:00 to 8:30, 
second training: pm 1:00 to 1:30, and third training: pm 
5:00 to 5:30).

Clinical evaluation

The Purdue Pegboard Test (PPT), tip pinch and grip 
strength (GS) were used to evaluate hand function at pre- 
and post-walnut rolling training. To evaluate the PPT 
(Lafayette instruments, model-32020), the subjects were 
asked to place pegs in holes as quickly as possible; the score 
of the PPT is the number of pegs placed in holes within 
30 seconds (13-17). For the tip pinch (Jamar Hydraulic 
Pinch Gauge, model-J00111), the subjects were asked push 
with the tip of their index finger and hold the pinch gauge 
with thumb as forcefully as possible, the parameters of the 
pinch test indicates the strength of the pinch of thumb and 
index finger. Finally, for GS, the subjects were asked to sit 
on a chair in an upright position (hip joint flexed at 90° 
and shoulder joint in a neutral position, elbow fixed at 90° 
flexion, forearm in a neutral position, and wrist at 0° to 15° 
radial deviation), then to grasp the Jamar dynamometer 
(Jamar Hydraulic Hand Dynamometer, model-5030J1) with 
maximal strength (the score represents the GS of the hand). 
The reliability and validity of PPT (16), tip pinch (18)  
and GS (19) are well established. All of the clinical 
evaluations were performed three times and average values 
for each test were used in the statistical analysis.
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DTT

DTI data were acquired twice (pre- and post- walnut rolling 
training) using a 1.5 T Philips Gyroscan Intera system 
(Philips, Ltd, Best, The Netherlands) equipped with a 
Synergy-L Sensitivity Encoding (SENSE) head coil using a 
single-shot, spin-echo planar imaging pulse sequence. For 
each of the 32 non-collinear diffusion sensitizing gradients, 
60 contiguous slices were acquired parallel to the anterior 
commissure-posterior commissure line. Imaging parameters 
were as follows: acquisition matrix =96×96, reconstructed 
to matrix =192×192, field of view =240 mm × 240 mm,  
TR =10,398 ms, TE =72 ms, parallel imaging reduction factor 
(SENSE factor) =2, EPI factor =59 and b =1,000 s/mm2,  
NEX =1, thickness =2.5 mm.

Reconstruction of the CST
Fiber tracking was performed using the fiber assignment 
continuous tracking algorithm implemented within the DTI 
task card software (Philips Extended MR WorkSpace 2.6.3).  
Each DTI replication was intra-registered to the baseline 
“b0” images to correct for residual eddy-current image 
distortions and head motion effect, using a diffusion 
registration package (Philips Medical Systems). The CST 
was reconstructed using fibers passing through two regions 
of interest (ROIs) on the color map. The seed ROI was 
placed at the upper pons (portion of anterior blue color) 
on the color map with an axial image. The target ROI was 
placed at the mid pons (portion of anterior blue color) on 
the color map with an axial image. Termination criteria used 
for fiber tracking were fractional anisotropy (FA) <0.15, 
angle <27° (20).

Reconstruction of the transcallosal fiber for the hand 
motor somatotopy
Diffusion-weighted imaging data were analyzed using 
the Oxford Centre for Functional Magnetic Resonance 
Imaging of the Brain (FMRIB) Software Library (FSL; 
www.fmrib.ox.ac.uk/fsl). Affine multi-scale two-dimensional 
registration corrected the head motion effect and image 
distortion due to eddy current. Fiber tracking was 
performed using a probabilistic tractography method based 
on a multifiber model, and applied in the current study 
utilizing tractography routines implemented in FMRIB 
Diffusion (5,000 streamline samples, 0.5 mm step lengths, 
curvature thresholds =0.2). The transcallosal fiber (TCF) 
for the hand somatotopy of the primary motor cortex was 
identified by selection of fibers passing through both ROIs. 
Seed ROIs were placed on the precentral knob. A target 

ROI was placed on the CC on the color map (21). Out of 
5,000 samples generated from the seed voxel, results for 
contact were visualized at a threshold for the TCF for the 
hand motor somatotopy of 20 streamlined through each 
voxel for analysis. Values of FA and FN of the reconstructed 
CSTs and TCF for the hand motor somatotopy were 
measured.

Statistical analysis

Statistical analyses were performed using SPSS software 
(SPSS Inc. Released 2009. PASW Statistics for Windows, 
Version 18.0. Chicago: SPSS Inc.). The paired t-test was 
used for determination of differences in values of the DTT 
parameters (FA and FN) and scores of clinical evaluations 
(PPT, tip pinch, and GS). Pearson correlation coefficients 
were calculated to assess the strength of association between 
scores of clinical evaluations (PPT, tip pinch and GS) and 
DTT parameters of the CST and TCF. Null hypotheses of 
no difference were rejected if P values were less than 0.05.

Results

The clinical scores of PPT, tip pinch and GS are 
summarized in Table 1. The clinical scores of PPT, tip pinch 
and GS increased significantly following training in the left 
hand compared with pre-training (P<0.05). By contrast, the 
clinical scores for the right hand did not differ significantly 
between pre- and post-training (P>0.05).

DTT parameters for the right CST, left CST, and TCF 
for the hand motor somatotopy are revealed in Table 2. FN of 
the right CST increased significantly in post-training DTT 
compared with that of pre-training DTT (P<0.05) (Figure 1A),  
whereas FA did not change significantly (P>0.05). Both 
FA and FN of the left CST and TCF for the hand motor 
somatotopy did not change significantly between pre- and 
post-training DTTs (P>0.05) (Figure 1B,C).

Discussion

In the current study, we investigated the change of the hand 
function, and the CST and TCF in hand motor somatotopy 
resulting from two weeks’ walnut rolling training in  
17 normal subjects. We found the following results: (I) PPT, 
tip pinch, and GS increased in the training hand (the left 
hand) without change in the non-training hand (the right 
hand); and (II) the contralateral (right) CST that innervates 
the walnut rolling training side (the left hand) showed 
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increased FN without change of FA value. However, 
the ipsilateral (left) CST and TCF for the hand motor 
somatotopy did not change in FA and FN with the walnut 
rolling training.

In the clinical assessment for change of the hand 
function, PPT, tip pinch and GS increased in the training 
side (the left hand) by two week’s walnut rolling training. 
The increased scores of PPT might be explained by the 
nature of walnut rolling, which facilitates the fine motor 
ability of hand. It includes individual movements of the 
thumb and the remaining four fingers of flexion, extension, 
abduction, adduction, and opposition. These results suggest 
that training involving finger movements like walnut rolling 
are effective for improving fine motor ability of the hand. 
For tip pinch and GS, which represent forces of the fingers 
and hand, rotation and holding of the walnut during walnut 
rolling appeared to contribute to increase these forces. Our 
results with regard to the change of hand function agree 
with studies that found a close association between the CST 
and fine motor ability and gross power of the hand (22-30).

In DTT parameters on pre- and post-training DTTs, 
only FN of the right CST that innervate the training (left) 

hand without change of FA value and in other neural tracts 
(the left CST and TCF for the hand motor somatotopy). 
FN of the CST indicates the existing FN of the CST 
(31,32). By contrast, FA value, which indicates the degree 
of directionality of water diffusion, represents the degree of 
directionality and integrity of white matter microstructures, 
such as axon, myelin, and microtubule (9,33). Our 
observation that FN of the right CST increased without 
change of FA value suggest that the total FN of the right 
CST increased with two weeks of walnut rolling training. 
This agrees with studies that report an association between 
improvement of motor function and increment of FN of the 
contralateral CST (34-36). No change of DTT parameters 
of the left CST and TCF for the hand motor somatotopy 
means the effect of the walnut rolling training was confined 
to the contralateral CST (37).

Many neuroimaging studies reported on the effects of 
IHM. Only a few studies reported an effect of IHM similar 
to the walnut rolling in this study (2-4). In 1998, Kawashima 
et al. reported increased cerebral blood flow in the primary 
motor area, premotor area, and cerebellum during the 
ball rotation task using position emission tomography in 

Table 1 Clinical scores at pre- and post-walnut rolling training

Clinical data

PPT Tip pinch GS

Right hand 
(control side)

Left hand 
(training side)

Right hand 
(control side)

Left hand 
(training side)

Right hand 
(control side)

Left hand 
(training side)

Pre-training 16.25±1.98 14.94±1.36 5.75±2.26 3.66±1.44 37.58±14.61 33.58±11.08

Post-training 16.97±1.67 16.59±1.09 5.66±2.31 5.03±2.18 37.82±14.25 40.61±10.99

P value 0.08 0.00* 0.64 0.00* 0.72 0.00*

Values: mean ± standard deviation. *, significant differences between pre- and post-walnut rolling training, P<0.05. PPT, Purdue pegboard 
test, GS, grip strength.

Table 2 The parameters of diffusion tensor tractography at pre and post-walnut rolling training

DTT parameter CST Pre-training Post-training P value

FA Right CST (training side) 0.50±0.02 0.51±0.01 0.15

Left CST (control side) 0.51±0.01 0.51±0.01 0.20

FN Right CST (training side) 1,734.73±581.84 2,123.05±529.07 0.00*

Left CST (control side) 1,705.45±587.37 1,754.57±560.17 0.16

FA TCF for the hand motor somatotopy 0.44±0.02 0.45±0.03 0.32

FN 1,871.15±636.36 1,823.84±701.14 0.60

Values: mean ± standard deviation. *, significant differences between pre- and post-walnut rolling training, P<0.05. FA, fractional 
anisotropy; FN, fiber number; CST, corticospinal tract; TCF, transcallosal fiber; DTT, diffusion tensor tractography.
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Figure 1 The change of the neural tracts on pre- and post-walnut training diffusion tensor tractography (DTT) in a 32-year-old female 
subject. (A) The right corticospinal tract [CST, fiber number (FN): 2117] on the post-training DTT became thicker (arrows) compared with 
pre-training DTT (FN: 1591); (B,C) the left CST the transcallosal fibers for the hand motor somatotopy do not change significantly on pre- 
and post-training DTTs.

Pre-training                                             Post-training

FN: 1591                                                               FN: 2117

Right corticospinal tract

Left corticospinal tract

TCF for hand motor somatotopy

FN: 1675                                                               FN: 1760

FN: 1008                                                               FN: 1069

A

B

C

eight normal subjects (2). In 2006, Jang et al. evaluated 
the differences of the cortical activation by walnut rolling, 
wooden-ball rolling, and hand grasp-release movement 
using fMRI in 12 normal subjects (3). They found total 
activation in the cerebral cortex occurred in order of 
walnut rolling, wooden ball rolling, and hand grasp-release 
movement. In 2008, Park et al. investigated the difference 

of cortical activation during wooden ball rotation task 
and grasp-release movement of the hand using fMRI in 
11 normal subjects (4). They found stronger activation of 
the primary sensorimotor cortex, premotor area, and the 
ipsilateral cerebellum during wooden ball rotation task 
compared with grasp-release movement of the hand. To the 
best of our knowledge, this is the first study to demonstrate 
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an effect of walnut rolling training on the hand function 
and the CST on DTT in normal subjects. However, the 
limitations of this study should be considered. First, this 
study included a small number of subjects. Second, although 
DTI is a good anatomic imaging tool, it can produce both 
false positive and negative results due to the complexity and 
crossing fiber effect (38). Third, we used the hand opposite 
from the walnut rolling training hand as a control rather 
than recruiting a control group.

In conclusion, we demonstrated improvement of the 
hand function and facilitation of the contralateral CST by 
two weeks’ walnut rolling training in normal subjects. Our 
results suggest that walnut rolling training can be used 
for improvement of hand function and facilitation of the 
contralateral CST for the patients with brain injury as well 
as normal subjects. As a result, intensive short-term IHM 
training (90 minutes per day during two weeks) led to some 
increase in hand function and facilitation of the contralateral 
CST. This carries important implications for sport or skill 
training for normal subjects and neuro-rehabilitation for 
patients with brain injury.
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