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Artificial Intelligence (AI) in healthcare has become a 
quasi-normal subject (1). In the last few years, there has 
been an impressive increase in the number of publications 
concerning the application of machine learning (ML), a 
set of techniques and models for building data-driven AI 
systems, to medical tasks, such as the diagnosis, prognosis 
and anticipation of treatment effects and complications (2).  
Several studies and clinical trials have been conducted in 
virtually all medical specialties, including oncology (3), 
cardiology (4) and ophthalmology (5), often reporting 
machine performance on par with or even superior to human 
performance in both diagnostic and prognostic tasks (2).  
Due to its allegedly superhuman accuracy and black-box 
nature (6), we refer to this new generation of AI as oracular 
to distinguish it from traditional rule-based expert systems 
and decision support systems. The US Food and Drug 
Administration (FDA) has recently approved quasi-oracular 
AI products  for detecting atrial fibrillation (AliveCor, 
Apple Watch), diabetic retinopathy (IDx), cancer (Arterys) 
and wrist fractures (Imagen). However, the barrier for entry 
of these algorithms has been low, and the FDA’s fast-track 
approval plan published in 2018 (2) is seen by some as a sign 
of the inadequacy of current regulatory standards (7). Two 

years after AI systems (based on ML) were first recognized 
as riding “atop the peak of inflated expectations” (8), we can 
now behold from a distance what lies beyond this peak, what 
still separates us from the “plateau of productivity”1 and 
what will attract major interest from multiple stakeholders: 
validation. Validation is a commonly used term that, 
unfortunately, is associated with the same meaning in 
different scientific communities (e.g., medicine and AI). 
In its broadest terms, we view AI validation as proof that 
these systems can and do deliver value consistently2 and, more 
prosaically, “live up to their (vendors’) claims” (9). What is 
usually referred to as the “clinical validation” or “prospective 
validation” of AI systems is urgent in that it has been “high 
on promise and relatively low on data and proof” (2).  
Indeed, a recent paper (10) analysed 516 published studies 
(in the first six months of 2018) reporting the performance 
of AI algorithms for the diagnostic analysis of medical 
images and found that only six percent (31 studies) 
externally validated their algorithms.

From this perspective, as authors belonging to the 
two different and yet increasingly closer communities 
mentioned above, we aim to characterize this concept of 
validity further and increase awareness of the complexities 

161

 
1 Here the reference is to Gartner’s Hype Cycle for Emerging Technologies, a diagram in which technology applications are interpreted in 

terms of how expectations regarding their impact change over time, passing through distinct phases, from a steady increase that saturates at 
a peak and then decreases with similar steepness through a shallow trough of disillusion, finally settling on a more constant and reasonable 
plateau of productivity.

2 This general definition is compatible with the definition of validation used in the software engineering field, which is an evaluation of a 
system based on the satisfaction of specified requirements (cf. IEEE Std 610.12-1990 R2002), if we agree that the main requirement of 
such a system is to provide value and be helpful for doctors and patients.
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intrinsic in its evaluation. As stated earlier, the requirement 
for further “clinical validation” of AI is now legitimate 
and widespread, but we propose viewing it as an emerging 
property of nested validation tasks, accomplished from 
different yet complementary perspectives (Figure 1), aimed 
at defining different kinds of validity. Among these, we 
distinguish between statistical validity, relational validity, 
pragmatic validity and ecological validity. To better 
understand the characteristics of these four kinds of validity, 
we must first take a step back.

Different kinds of validity

Two main approaches can be considered to validate a 
computational system. The first is objectivistic, which is 
focused on technology as an active agent, and the other 
is consequentialist, which is focused on the effects of 
technology on a given setting. The former attaches to AI 
systems the nature of objects that are characterized by 
properties (e.g., accuracy and reliability), and these are 
in turn considered intrinsic and essential to the systems 
and therefore susceptible to quantitative and objective 
evaluation. The latter approach considers AI systems as 
inseparable from—and not really distinct from—their actual 
use, that is, as computational processes performed within 
human practices of collaborative care and decision-making. 
In turn, these latter practices can be assessed either in terms 
of their unfolding (or performance) or their consequences 
(e.g., the impact they have on the user’s work) and, even 
more importantly, on patients’ health. The objectivistic 
approach is by far the most common in the computer 
science and engineering disciplines, as it is grounded in the 
cognitivist model of computation (11), and it is employed 
in most (if not all) of the latest studies aimed at validating 

AI systems in medicine. According to this approach, the 
validity of AI systems is based on accuracy, sensitivity 
or other similar error-based measures [e.g., the positive 
predictive value or the area under the receiver operating 
characteristic (ROC) curve]. This is what we call statistical 
validity. This kind of validity entails being proved valid with 
respect to a numerical, statistical threshold (usually the best 
state-of-the-art algorithm, posed as a benchmark) under 
well-specified experimental conditions. Unfortunately, the 
AI research is pervaded by terminological confusion that 
does not spare the concept of validation (12), making it 
difficult to know whether or not what has been reported by 
a research group is in fact sound (statistical) validation. As 
odd as it might seem, such validation is not accomplished 
during the phase called cross-validation. Cross-validation 
is often performed on a subset of the training data 
(called, not without irony, a validation set) for a twofold 
purpose: to obtain an average estimate of the system 
prediction performance (or skill, as it is called within the AI 
community) in different cases and to tune some parameters 
of the system’s model (e.g., the number of hidden units 
in an artificial neural network) before training it on all 
the available data. Although performing cross-validation 
on mutually exclusive partitions of the validation dataset 
(instead of on a single holdout set) and reporting the related 
metrics is a recommended—and often neglected—practice 
in medical AI papers (2,13), the final proof of the system’s 
validity should be given in terms of an unbiased estimate of 
the system’s skill, which is obtained by testing the system on 
a “test dataset” (i.e., a set of cases that were originally held 
back from the available data and were used neither to train 
nor to tune the system’s model).

Whatever way it is statistically proven, this kind of 
validity is not sufficient for the clinician to responsibly rely 
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: Optimal clinical validity

SV: Statistical validity
RV: Relational validity
PV: Pragmatic validity
EV: Ecological validity

Figure 1 Types of validity.
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upon or for the health manager to procure and the payer to 
reimburse, as it completely lacks proof of efficacy, safety and 
other clinically relevant concepts. The question becomes, 
to effectively support medical decision-making, what is 
an acceptable level of accuracy that a technology should 
exhibit? Some doctors might appreciate receiving correct 
advice from a computerized decision aid seven times out of 
ten (with the conviction that they will be able to recognize 
the wrong three cases and find reassurance and confirmation 
in the other seven); however, others may demand better 
performance. Paradoxically, a more accurate AI system is 
not necessarily better. This is because the AI’s “tremendous 
predictive power” (7) might lead doctors to over-rely on its 
advice, even when it is wrong. Hence, the doctors might 
not be fully vigilant, and they could fail to consider all the 
available evidence or to seek out alternative evidence. In this 
way, “oracularity” could affect decision-making and lead to 
automation bias (14). To go beyond single-figure metrics 
(e.g., the F1 score and the area under the ROC curve, which 
are commonly used to express statistical validity), some 
doctors might wish to distinguish between specificity (the 
capability of the machine to not induce doctors to commit a 
“false positive” error) and sensitivity (the machine’s capacity 
to contribute to avoiding “false negative” errors) and 
“choose” the operating point at which the machine should 
work to exhibit the safest (sensitive) behaviour, without 
inducing unspecific overuse (15). For instance, in (16) 
Corey and colleagues describe an oracular AI (appropriately 
called Pythia), which, based on the patient’s age, race, sex, 
medication and comorbidity history, is able to determine 
the risk of morbimortality after surgery. At a sensitivity 
level of 0.75, one out of three patients flagged by Pythia 
experiences a postsurgical complication within 30 days and 
hence could benefit from targeted enhanced assessment 
and management. However, the other two patients would 
receive unnecessary, and potentially harmful, treatments.

This example, among many others, suggests that, even 
if we defined a sound benchmark for statistical validity 
for a class of systems, it would likely not be a sufficient 
condition for assessing the usability of AI systems. In this 
case we speak of relational validity. We choose a purposely 
novel term in order to increase the awareness of aspects 
that are usually neglected and which we consider to have 
equal importance to let clinical validity emerge (Figure 1). 
With the term relational validity, we refer to the extent to 
which physicians can relate to the AI, attach some clinical 
meaning to its advice and integrate its use in their daily 
workflows and routines. Relational validity is more difficult 

to assess than statistical validity due to the difficulty in 
setting objective requirements. Relational validity requires 
the oracular AI to be explainable and interpretable (17). 
It must be open to the doctor’s scrutiny so as to address 
multiple questions: in which cases is it more likely to fail? 
The most complex ones (whatever this means)? The less 
frequent and unusual ones? Those that involve patient 
groups that are not adequately represented in the training 
data of the system? In this latter case, will the AI reproduce 
or even corroborate the (sampling) bias possibly hidden 
in the training data? (18). Or rather, will the AI be unable 
to provide an accurate diagnosis in any case where some 
data are missing, incomplete or less than totally accurate or 
where the observer variability is high (19)? 

The above reference to usability is no coincidence, as 
addressing these questions requires that doctors are able to 
interact with the decision support, undertake counterfactual 
analysis (20), compare local surrogate models and inspect 
the relative importance of specific features (predictors) and 
patients for the prediction produced; in other words, their 
ability to get (and remain) “in the loop” (21). Evaluating 
the usability of AI systems requires going beyond the 
concept of accuracy that statistical validity refers to and 
also assessing these systems in terms of security, efficiency 
and satisfaction. Security, broadly speaking, involves 
protection against deliberate incidents. Efficiency is related 
to the resources an AI system consumes to deliver its main 
function and hence to the extent to which its adoption in 
a real setting can actually yield higher throughputs (with 
the resources employed for service provision being equal), 
relevant savings (with the service level guaranteed by the 
healthcare provider being equal) or less administrative 
paperwork for the clinicians (which is unproductive). This 
is a condition that is usually (and optimistically) associated 
with improved opportunities for clinicians to spend more 
time with patients (22). Perhaps more realistically, it will 
contribute to reaching the higher throughput mentioned 
above. Last but not least, satisfaction can regard either 
the direct users of a medical AI (i.e., physicians, nurses) 
or the indirect ones (e.g., patients, who can be involved 
in providing useful data for the training of prognostic 
models in terms of how they feel, as with the Patient-
Reported Outcome) (23). The satisfaction of different 
users is usually intertwined (24) and is closely related to 
both effectiveness and efficiency. However, it is much 
more neglected than the other dimensions explicitly 
mentioned in standard glossaries of usability (cf. ISO 
9241-11:2018). In fact, the patient experience has been 
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found to correlate with outcome in complex ways (25,26), 
and, when less than optimal, it has been found to have a 
negative effect on treatment adherence and patient anxiety. 
In turn, a negative physician experience is associated 
with error-prone behaviours, such as alert fatigue (27) 
and burnout (24), which several recent studies relate to 
the increased paperwork and information overload often 
associated with health information technologies (28-31).  
Statistical and relational validity are often disjointed ideals, 
but we are interested in systems that can exhibit both these 
kinds and provide the right conditions for users to exploit 
their accurate performance.

However, it is worth noting that relational validity, 
unlike statistical validity, is not an intrinsic feature of 
a technological system. Rather, it emerges from the 
interaction between the system and its users within a situated 
context: it is “quality in use” (32) and “fit to purpose” (33).  
Thus, we move from the intrinsic characteristics of an 
object, which are not different in different settings (provided 
that a clear, reproducible and immutable standard is also 
given), to those that characterize a system in a specific 
context, utilizing a common and shared definition of 
success (i.e., optimal outcome) that is agreed upon by all the 
stakeholders involved (34) but would not necessarily hold 
outside that context.

Can AI work? Does AI work?

The local scope is the main common element between 
statistical and relational validity. However, while it allows 
for sound and accurate measurement, it is also their main 
shortcoming. In fact, both statistical and relational validity 
address the first question that Haynes once considered (35) 
for the testing of healthcare interventions: “can it work?” 
Statistical validity regards a more specific question, “can it 
work effectively?” while relational validity regards questions 
like “can it work efficiently, or in a fair way?” and the like. 
A positive answer to this question means that validity has 
been demonstrated in at least one controlled experimental 
setting or in one single real-world setting, where pipelines 
are deployed that ingest requests, pre-process and cure 
electronic medical record (EMR) data and allow inference 
to be run at scale. Proving the good statistical performance 
of a system by training it on clinical data from multiple 

settings and gathering real-world data, which are engineered 
and cured in a feasible and sustainable manner in routine 
operations, is an important step toward guaranteeing 
external (statistical) validity, or what we call pragmatic 
validity, mirroring the idea of pragmatic, real-world trials. 
Commentators often equate pragmatic validity to clinical 
validity, while we see it as a kind of external validity (34), 
which must still be complemented by an external relational 
validity (i.e., relational validity observed in multiple and 
heterogeneous settings), or what we call ecological validity 
(Figure 1). Ecological validity regards the impact of a 
technology not only on strictly clinical (e.g., outcome and 
care) or workflow- and productivity-related aspects but 
also on the overall social context, such as career prospects, 
occupational hazards and salaries for those working with the 
technology. In this respect, the requirements (against which 
to match a system) are more difficult to pinpoint (e.g., in the 
case of deskilling and fairness). Nevertheless, recognizing 
the importance of ecological validity for medical AI 
requires considering the impact of AI on workers’ skills 
(avoiding the simplistic idea of augmentation) and defining 
an “Algorithmic Impact Assessment” model. Such a model 
should take into account related equality and human 
rights laws, particularly with regard to discrimination, 
and also assess the AI in terms of compliance with third-
party audit certifications (e.g., ORCAA3), guidelines and 
recommendations (e.g., the WLinAI network4). Regarding 
augmentation, for instance, this seems plausible in terms 
of the cognitive skills that are related to sign interpretation 
and to rational reasoning, as pointed out by Obermeyer 
et al. (36). However, this sort of “rational” augmentation 
could exacerbate the reliance on imaging and laboratory 
tests, thus raising concerns about its impact on patient 
safety (37), clinical skills (38) and costs related to overuse. 
Moreover, emotional, interpersonal and linguistic skills 
are also universally recognized as important qualities for a 
caring and effective practitioner and part of the “caring” 
ecology. Several studies have shown how communication 
with patients—and even colleagues—deteriorates due to 
information technology (39,40). We cannot predict how 
AI will impact group dynamics, communication patterns 
and decision-making processes or whether AI, being 
heavily grounded in big data, will reinforce the ideal of 
the “quantified patient” (41), according to which the 

 
3 http://www.oneilrisk.com/
4 http://womenleadinginai.org/category/wlinai-network
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measurable aspects of an illness are more important than 
the context-dependent and existential ones. Promises of 
AI to relieve doctors from administrative and documental 
tasks (e.g., through virtual scribes) (42) have to be balanced 
with darker predictions. For example, it will also require 
doctors to expend additional effort to validate more input 
data and then interpret its pervasive output in order to 
discern potentially biased results, spurious correlations and 
confounders (43).

Is AI worth it?

As hinted above, pragmatic and ecological validity relate 
to the replicability of good statistical and relational results. 
The need for replication, as a core principle of science 
experimentation, also explains why US drug regulators 
require at least two adequate and well-controlled trials to 
support drug effectiveness (44). However, Coiera et al. (45)  
recently noted that studies in the health informatics fields 
are seldom replicated, and when they are, the results are 
often varied. The lack of relevant external replication is 
not specific to computational science and has already been 
described in many medical disciplines. In the authors’ 
view, different outcomes between similar studies can 
obviously relate to different contextual conditions but also 
to methodological flaws that fail to take context (including 
necessary implementation changes, existing workload and 
users’ attitudes towards digital innovation) into account. In 
either case, relying on the results of a single-facility study 
would be insufficient for assessing the clinical validation of 
an AI solution.

However, pragmatic and ecological validity go beyond 
mere replicability. Laboratory (46) or Hawthorne effects 
can be common in different experimental settings, while 
pragmatic and ecological validity require testing and 
validation in real-world conditions and hospital routines. 
Thus, evaluating pragmatic and ecological validity also 
requires addressing the final, and most important, question 
posed by Haynes (35): is AI worth the efforts to obtain, use 
and maintain it? Obtaining proofs to address this question is 
obviously the most difficult task of validation. For instance, 
with regard to effectiveness (pragmatic validity), Moja  
et al. (47) showed that there is little evidence that decision 
support systems (mostly rule-based ones), when integrated 
with EMR data, can improve morbidity outcomes and 
other surrogate endpoints, and there is no evidence that 
they can affect mortality (or survival). To our knowledge, 
no study has been published on a specific (ML-based) 

AI to determine whether it achieves general (i.e., cross-
sectional) validity in different contexts (i.e., its local validity 
is replicated in different settings). This has been done, for 
example, in the case of computer-aided mammography (48), 
for which no significant statistical difference was found 
in comparison to unaided mammography. Importantly, 
the authors pointed out that, although computer-aided 
detection (CAD) was not found to be beneficial for 
mammographical interpretation (cf. statistical and pragmatic 
validity), it might “offer advantages beyond interpretation, 
such as improved workflow or reduced search time for faint 
calcifications” (48), hinting at the concepts of relational and 
ecological validity. More recently, an ML-based AI system 
(developed by Google researchers and certified in Europe 
under the Verily name), which proved to be statistically 
valid in detecting diabetic retinopathy from retinal fundus 
photographs (49), has been used at the Aravind Eye 
Hospital in India (50). This system was trained on clear, 
unobstructed images of the retina, and the researchers are 
now struggling to make it valid with lower-quality images 
(i.e., pragmatic valid) and to integrate AI-based detection 
into routine care in India (ecological validity). A relatively 
simple way to assess ecological validity would be to compare 
the performance-, outcome- and practice-oriented measures 
(e.g., satisfaction) exhibited by medical teams that adopt the AI 
support compared to those exhibited by unaided teams (or that 
use traditional technology) in the same clinical setting (ceteris 
paribus). This type of comparison is often advocated (43) but 
seldom performed (51).

A further crucial difference between statistical/relational 
validity and pragmatic/ecological validity is based not 
only on replicability but also on sustainability. The former 
could be certified once and for all through well-designed 
and well-conducted user studies (possibly of a prospective 
nature, as advocated by multiple authors) (2,7). The latter, 
instead, calls for continuous monitoring over time to 
ensure that the initially valid system continues to deliver 
net benefits and requires periodic impact assessments and 
continual monitoring of ethical issues in the settings where 
the algorithms are used to support medical practice.

In other words, clinical validity, that is, the overall (i.e., 
statistical + relational) validity of a system that is proven in 
different clinical settings and is a necessary precondition 
for its adoption in others, cannot be decoupled from the 
periodic assessment and continuous monitoring of its 
appropriateness in clinical practice, as this can change and 
evolve over time, and of its capability to keep delivering 
a positive balance between the clinical and other (even 
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intangible) benefits and the potential risks and costs. 
Thus, AI is similar to any other medical technology, such 
as medical devices, diagnostic tests and drugs (52), which 
are all “expected to do better than harm for a patient 
with a given indication or set of indications” (53) and 
for which cost-effectiveness analyses are often proposed 
and undertaken. In the case of AI, this kind of analysis 
entails considering alternatives, such as whether or not to 
invest in AI equipment, choosing from among different 
ways to integrate AI into existing hospital workflows 
and considering both tangible and intangible costs (e.g., 
opportunity costs and those related to the erosion of human 
responsibility, control and self-determination) (54). To date, 
the medical community has developed and tested many 
sound methodologies and techniques for assessing the 
benefits of healthcare interventions. The transferability of 
these techniques to AI-driven interventions is a challenge 
that should be given high priority. This includes the 
difficulty in isolating the relative advantage of a single 
technology from its socio-technical environment, the 
difficulty in isolating the opportunity costs that are related 
to the underuse of AI below its full potential due to fear, 
ignorance, misplaced concerns or excessive reactions, which 
Floridi et al. (54) call the “wrong reasons”, and, as simple as 
it may sound, the difficulty in pinpointing the very concept 
of technology success, which is more a social and situated 
achievement than a technical, objective and transferrable 
property (34,55).

In praise of AI technovigilance

We strongly encourage regulators and all relevant 
stakeholders to keep in mind the different kinds of 

validation that oracular AI products need to demonstrate 
before allowing their widespread adoption. To contribute 
to this effort, we distinguished between different forms 
of validity (Table 1): the statistical validity of AI systems, 
which is an abstract and context-independent measure 
of its performance; relational validity, which regards the 
extent to which the system provides a sample of physicians 
with meaningful point-of care advice and is usable; 
pragmatic validity, which regards the capability of the 
system to perform well with real-world data and in real-
world conditions; and ecological validity, which regards the 
ecological fit of the system within a network of interactions 
between humans (including the patients), which are seen 
as joint cognitive systems (56), and therefore the extent 
to which the system contributes positively to the specific 
socio-technical agency in which it is embedded and exerts 
its positive effects continuously. 

While statistical validation, which has been the 
predominant concern so far in the medical AI community, 
refers to the system isolated from human interaction, the 
other kinds of validations are all grounded in the interaction 
of practitioners with AI and must therefore be assessed with 
the involvement of physicians. Therefore, since these forms 
of validity regard practices, we advocate that validation be 
performed in a consequentialist manner. This approach 
should not be confused with a fatalist one. Outcomes can 
be predicted; their nature, be it positive or negative, can 
be assessed, and the outcome likelihood can be either 
increased or decreased with specific interventions if the 
net benefits are found to be higher or lower than the costs, 
respectively. Pragmatic validity should be assessed using 
established standards that include meaningful endpoints 
of clinical benefit and appropriate benchmarks (7), while 

Table 1 Summary of the concepts discussed

Statistical validity Relational validity Pragmatic validity Ecological validity

Paradigm Objectivity (the system) Inter-subjectivity Consequentialist  
(with respect to data)

Consequentialist  
(with respect to work)

Focus Efficacy Usability Effectiveness Cost-effectiveness 
(unintended consequences)

Main requirements Replicability/optimal 
accuracy

Optimal performance Better outcomes/noninferiority Net benefits resilience

Scope Internal (local lab) Internal (local lab or  
real-world setting)

External (mainly cross-sectional) External (mainly longitudinal)

Standards available Yes (e.g., ISO 5725) Yes (e.g., ISO 9241) Yes (e.g., ISO 14155) Not yet

Question Can it work? Can it work? Does it work? Does it work? Is it worth it?
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ecological validations should result in an increasing number 
of guidelines and best practices being shared across multiple 
research and hospital settings. This will push the medical 
community to change its attitude towards validation. 

To date, however, none of the studies reviewed in (10) 
have demonstrated that their methods were indeed ready 
for clinical use or adopted design features that the authors 
recommend for robust validation of the real-world clinical 
performance of AI algorithms: diagnostic cohort design, 
the inclusion of multiple institutions, verification that the 
data reflect relevant variations in patient demographics and 
diseases and prospective data collection for external and 
independent validation.

In summary, in proposing four types of validity 
corresponding to different perspectives to evaluate true 
clinical validity, we do not mean to make a short story 
long. On the contrary, we are aware that effectiveness is 
hard to prove in medicine, where only one treatment and 
intervention out of ten is clearly proven to be beneficial (57).  
We make the case that  other dimensions beyond 
effectiveness must be considered, and methods besides trials, 
more pragmatic and grounded in continuous monitoring, 
must be adopted to guarantee validity over time. 

We are not the first researchers to notice important 
similarities between AI validation and drug validation and 
to shed light on the importance of considering a form of 
pharmacovigilance for the “software as a medical device” 
(SaMD), a concept for which a specific term has been 
proposed: technovigilance (52,58). We also warn against 
the simplistic view of taking for granted the effectiveness 
of surveillance infrastructures in the case of AI. In doing 
so, we agree with Parikh and colleagues (7), who point 
out that “unlike a drug or device, algorithms are not static 
products [as] their inputs […] can change with context”. As 
most editorials and viewpoints end with the great potential 
of AI for outcome improvements for all, we do not need to 
reiterate that perspective. Indeed, such optimism is welcome 
for its role in attracting funding for AI development and 
creating a positive terrain for its widespread adoption. 
However, what we advocate now is a culture demanding 
the responsible assessment of the benefits and costs of 
AI and the realistic management of the inevitable risks, 
which should not offset the immense potential of AI or 
be overlooked—or, worse yet, removed from sight. Most 
pharmacovigilance advances have been made in reaction to 
drug accidents. We do not need to wait for serious problems 
to occur to create a reliable system of AI technovigilance.
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