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Editorial Commentary
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Chronic kidney disease (CKD): the 21-century 
epidemic

CKD is characterized by chronic (>3 months), often 
irreversible, evidence of kidney injury or dysfunction with 
consequences for health (1). A diagnosis is made in the 
presence of decreased glomerular filtration rate (GFR) 
or if there is analytical (most commonly pathological 
albuminuria), histological or imaging evidence of kidney 
injury. The criterion “with consequences for health” implies 
that CKD is associated with an increased risk of progression 
to end-stage renal disease (ESRD) requiring renal 
replacement therapy, which is the best-known consequence 
of CKD. However, CKD is also associated with an increased 
risk for premature death and in fact, CKD is projected 
to become 1 of the top 5 causes of death in the world by 
2040 and similar trends have been described in individual 
countries (2,3). While the most frequent causes of CKD 
are acquired, including kidney disease secondary to diabetes 
and hypertension, the influence of genetic factors has been 
increasingly recognized, including genetic defects leading 
to congenital abnormalities of the kidney and urinary tract 
(CAKUT). CAKUT may be caused by hereditary genetic 
defects, as recently exemplified by the description of 
basonuclin 2 (BNC2) nonsense variants as causing congenital 
lower urinary-tract obstruction (LUTO) (4).

What is CAKUT?

In PubMed, publications using the term CAKUT date 
from 1999, 20 years ago (5). CAKUT is considered the 
leading cause of pediatric ESRD and the most common 
cause of CKD before 30 years of age (6). The spectrum 
of anomalies includes kidney abnormalities (agenesis, 
hypoplasia or dysplasia as well as supernumerary, ectopic 
or fused kidneys) and urinary tract abnormalities (e.g., 
ureter duplication, ureteropelvic junction obstruction, 
primary megaureter or ureterovesical junction obstruction, 
vesicoureteral reflux, ureterocele, and posterior urethral 
valves, which are a cause of LUTO) (Figure 1). Genetic 
defects have been increasingly recognized as causing 
CAKUT. However, monogenic mutations currently explain 
only 14% of CAKUT cases (7). In addition to classical gene 
variants in developmental genes (missense or nonsense 
mutations, deletions, frameshift mutations), the spectrum 
of genetic defects causing CAKUT keeps expanding. Thus, 
CAKUT may also result from copy number variations 
(CNV) and mutations in genes, such as SON, regulating 
the splicing of CAKUT-causing genes (8,9). There is even 
a genotype-phenotype correlation at this level, with kidney 
anomaly cases being most enriched for exonic CNVs (8).  
Interestingly, genomic disorders causing CAKUT may 
also increase the risk of neurocognitive impairment, 
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whose early recognition can impact clinical care (10). 
CAKUT may also form part of a spectrum of extrarenal 
and kidney abnormalities with very variable expression 
in terms of frequency, severity and type of CAKUT (11). 
Hypospadias and LUTO are also part of the CAKUT, 
spectrum. Hypospadias is a common congenital anomaly of 
the external male genitalia, in which the urethral meatus is 
abnormally placed in a ventral position. The pathogenesis 
is considered multifactorial: it may be influenced by 
environmental factors that negatively affect androgenic 
st imulation, but it  may be related to single gene 
mutations (12). Hypospadias may be part of syndromes 
associated with other CAKUT, tumors and other systemic 
manifestations; and may present as non-syndromic 
hypospadias (12). Hypospadias is not usually associated with 
progressive CKD (13). However, LUTO may be associated 
with progressive CKD. LUTO is a rare condition 
characterized by obstruction of the bladder outflow, leading 
to secondary retrograde dilatation of the urinary tract. 
The diagnosis may be made in utero, especially if severe, 
in childhood or, for milder forms, in adulthood, when it 
presents as repeated urinary tract infections. The most 
common anatomical cause of LUTO is the presence of 
posterior urethral valves that occurs only in males, at the 
level of the prostatic urethra. Another less frequent cause of 
LUTO is urethral atresia, which can occur in both sexes (4).

What are zinc finger proteins?

Zinc finger proteins are transcription factors that regulate 
gene expression by binding to DNA and regulate numerous 
physiological processes like cell proliferation, differentiation 
and apoptosis (14). Zinc finger proteins are characterized by 
the presence of zinc fingers. A zinc finger is a small protein 
structural motif that contains a zinc ion and binds specific 
DNA sequences known as GC boxes (14,15). The zinc 
ion is ligated to a combination of cysteines and histidines, 
thus stabilizing the folds of the fingers (16). Different 
types of fingers are recognized based on the number and 
order of these amino acids. Cys2His2 is the classic zinc 
finger, characterized by two cysteines in one chain and two 
histidines in other (14). Zinc finger proteins may also be 
classified according to their overall shape into Cys2His2-
like, treble clef, and zinc ribbon (17). The crystallographic 
structure of the classical zinc finger has two β-sheets and 
one α-helix (14). A few amino acids in the α-helix that 
juxtaposes three base pairs on DNA confer the DNA 
binding specificity (14). 

What is BNC2?

BNC2 is an extremely conserved Cys2His2 zinc finger 
protein orthologous to BNC1 (18). Genes encoding 

Figure 1 Key manifestations of CAKUT. Examples of key CAKUT manifestations. All manifestations shown to affect one kidney may also 
be bilateral. CAKUT, congenital abnormalities of the kidney and urinary tract.
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both proteins differ in size and are located on different 
chromosomes, but they have a common evolutionary origin 
and BNC2 is thought to be older and to have remained 
largely invariant retaining its original function (19,20). 
The BNC2 gene is located at 9p22 and contains six exons 
encoding a 1,099-residue protein with three pairs of zinc 
fingers, a putative nuclear location signal (NLS) and a serine 
stripe (19,21) (Figure 2). The 15th exon encodes the NLS 
and the first three zinc fingers and a part of the 4th zinc 
finger and the 6th exon encodes the remaining part of the 
4th finger and the 5th and 6th zinc fingers (22). However, 
BNC2 may undergo alternative splicing with 23 alternative 
exons and has the potential to generate 89,468 mRNA 
isoforms (22). This huge number of potential isoforms and 
the presence of multiple zinc finger pairs, each potentially 
binding to a different target sequence, may explain the 
pleiotropic effects of BNC2 (18,21). BNC2 localizes in nuclear 
speckles and has an additional presumed function in nuclear 
pre-mRNA processing (18,19). The tissue distribution of 
BNC2 is wide and it is abundant in testis, skin, kidney, uterus 

and intestine (21). In addition, to the disease associations, 
discussed below, in male gonocytes, BNC2 represses meiosis 
and mitosis and also regulates hair follicle cycles (23).

What are the disease associations of BNC2?

Genetic variants in BNC2 have been associated with human 
disease, and in some cases, the relationship has been very 
well documented in functional animal studies (Table 1). 
BNC2 single nucleotide polymorphisms (SNPs) have been 
associated with adolescent idiopathic scoliosis (28). At least 
one of the SNPs is functional and the susceptibility allele 
was associated with both higher binding to a transcription 
factor, YY1 (yin and yang 1), and higher BNC2 enhancer 
activity than the non-susceptibility allele. Furthermore, 
BNC2  overexpression produced body curvature in 
developing zebrafish, supporting the relevance of the 
findings (29). Finally, BNC2 loss-of-function mutations have 
been identified in diverse cancers (24). Although a tumor 
suppressor role has been proposed, the molecular mechanisms 

Figure 2 Structure and function of basonuclin 2 (BNC2). Location of mutations associated with different diseases. Murine BNC2 gene and 
protein. (A) Gene; (B) protein: the 6 zinc fingers and the serine stripe are represented; (C) potential alternative splice sites that may originate 
multiple different proteins. Drawn from information found in (21,22). NLS, nuclear location signal.
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are unclear. Recently, BNC2 overexpression was shown to 
upregulate interferon-stimulated and tumor suppressor genes 
and to cause growth arrest of cancer cells (25,26) while BNC2 
downregulation increased cancer cell survival (27).

Disruption of the Bnc2 gene in mice causes neonatal 
death with cleft palate and craniofacial abnormalities (23). 
Genetic BNC2 variants have been also associated with 
systolic blood pressure, the renal and retinal complications 
of diabetes (35), skin pigmentation (30) and better tolerance 
to liver and kidney transplantation (34).

What is the relationship between BNC2 and 
lower urinary tract obstruction and hypospadias? 

However, until now, the most relevant disease association 
of BNC2 was a form of CAKUT, non-syndromic distal 
hypospadias (12,31,32). Non-synonymous variations in 
BNC2 gene were found in 12.5% of American patients with 
hypospadias (32). Heterozygous pathogenic mutations in 
BNC2 where found in Japanese and Vietnamese patients (31).  
In this regard, Bnc2−/− mice displayed a high frequency of 
distal urethral defects that were also observed but with 
reduced penetrance in Bnc2+/− mice (32). In this regard, 
BNC2 is involved in urethral development. Preclinical 
data in newborn mice have demonstrated a high BNC2 
expression in periurethral tissue (32). In a 7-week embryo, 

immunohistochemistry localized high BNC2 expression 
to the urogenital sinus, the precursor of the bladder and 
urethra, and, using in situ hybridization, high BNC2 
expression was demonstrated during lower urinary tract 
development (4). A high BNC2 expression is also observed 
in adult male urethra (4). Only recently, Kolvenbach et al.  
identified a truncating mutation in a family of four affected 
and a missense variant in a family of two affected members 
with LUTO with an autosomal dominant inheritance and 
varying degrees of phenotypic manifestations (4). Upon 
this finding, they re-sequenced 14 known BNC2 transcripts 
in 697 patients with LUTO in the AGORA study of 
patients and from a multinational collaboration, and found 
a probably pathogenic BNC2 variant and two variants of 
uncertain clinical significance in patients with urethral 
stenosis or posterior urethral valves (4). The hypothesis 
that BNC2 disruption indeed causes LUTO was tested in 
zebrafish, whose embryos expressed bnc2 in the pronephric 
duct and cloaca, analogs of the mammalian lower urinary 
tract. Indeed, zebrafish bnc2 knockdown using different 
methods caused pronephric-outlet obstruction and 
cloacal dilatation, thus phenocopying human congenital 
LUTO, and this was rescued by wild-type but not by 
mutated human BNC2 mRNAs (4). Thus, Kolvenbach  
et al. have identified and characterized clear pathogenic gene 
variants causing LUTO with urethral blockade, but were 
unable to progress in identifying the molecular pathways 
leading to LUTO or the factors influencing the incomplete 
penetrance.

What else needs to be known?

Genetic variants in BNC2 were identified as causing a 
specific form of CAKUT, LUTO. This will allow to screen 
for the risk of LUTO in predisposed families. However, 
the real challenge would be to develop new therapeutic 
approaches for LUTO or for other BNC2-associated 
diseases, based on this new knowledge. The answer to some 
question may allow to progress in this aim: what are the 
specific BNC2 isoforms implicated? What are the gene 
targets that are disrupted? And the cell processes involved? 
What background, genetic or environmental, influences the 
incomplete penetrance? How can BCN2 dysfunction be 
targeted during or after development?
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