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Abstract: Breast cancer is the most commonly diagnosed malignancy and a leading cause of cancer-
related death in women worldwide. It also exhibits pronounced racial disparities in terms of incidence 
and clinical outcomes. There has been a growing interest in research community to better understand 
the role of the microenvironment in cancer. Several lines of evidence have highlighted the significance of 
chronic inflammation at the local and/or systemic level in breast tumor pathobiology. Inflammation can 
influence breast cancer progression, metastasis and therapeutic outcome by establishing a tumor supportive 
immune microenvironment. These processes are mediated through a variety of cytokines and hormones 
that exert their biological actions either locally or distantly via systemic circulation. Targeting of immune 
and inflammatory pathways has met tremendous success in some cancers underscoring the importance of 
research to further our understanding of these systems in breast cancer. This knowledge can be helpful not 
only in the development of novel prevention and therapeutic strategies, but also help in better prediction 
of therapeutic responses in patients. This review summarizes some of the significant findings on the role of 
inflammation in breast cancer to gain collective molecular and mechanistic insights. We also discuss ongoing 
efforts and future outlook to exploit the existing knowledge for improved breast cancer management.
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Introduction

Breast cancer (BC) remains the foremost cause of cancer-
related death and most frequently diagnosed non-cutaneous 
malignancy in women in the United States and worldwide (1).  
According to an estimate by American Cancer Society, this 
year ~268,600 women are expected to be diagnosed with 
BC and about 41,760 will die because of it in the United 
States (2). Moreover, an increase in BC incidence has been 
reported in recent decades among women who are older 
than 50 years of age, while a reduced rate of survival is 
reported for women below 50 years (3-5). Furthermore, 

significant race-associated disparities in BC incidence and 
clinical outcomes has also been reported (6,7). Women 
of African origin are affected most disproportionately 
exhibiting an early onset of disease, more likely diagnosis of 
aggressive BC subtypes and significantly greater mortality 
(8,9). In the past, overall incidence rate of BC used to be 
lower in African American women than that in Caucasian 
women, but it is catching up fast, while mortality gap 
continues to widen between these racial groups (10-12).

Many risk factors have been recognized for BC 
development including advancing age, family history, 
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certain genetic mutations (such as BC gene, BRCA1 and 
BRACA2), obesity and drinking habits to name a few (13-15). 
Chronic inflammation at the local and systemic level has 
also been suggested to be an important driver of BC (16,17). 
Indeed, tumor development is a complex and evolutionary 
process that involves changes not only in the tumor 
initiating cells, but also in the surrounding environment 
comprising of other cells and secreted biomolecules (18,19). 
An inflammatory tumor microenvironment (TME) can 
influence BC progression in various ways and numerous 
studies have been conducted to better understand the 
role of inflammatory pathways in BC pathobiology. In 
this review, we will discuss findings pertinent to the role 
of inflammation in BC to gain collective molecular and 
mechanistic insights and envision how this knowledge could 
be translated into strategies for disease prevention and 
therapy. 

BC: histological and molecular subtypes

BC is a heterogeneous group of neoplasms. The disease can 
differ greatly at the histological and molecular levels among 
cancer-bearing individuals and also within a single tumor 
(20,21). Considering this high degree of diversity, breast 
tumors are classified into various histological and molecular 
subtypes for their effective clinical management (Figure 1).

Histological subtypes

Based on their histological features, breast tumors are 
largely divided into two subtypes, pre-invasive or in situ 
breast carcinoma and invasive breast carcinoma.

Pre-invasive (in situ) breast carcinoma
The in situ breast carcinoma is referred to the localized 
cancer that has not spread beyond the primary site. It is 
further sub-classified as either ductal carcinoma in situ 
(DCIS) or lobular carcinoma in situ (LCIS). DCIS is 
diagnosed more commonly in the United States than LCIS 
accounting (22-24). It is characterized by BC cells that 
are restricted to the lining of the milk ducts and have not 
invaded into the surrounding breast tissue or any other 
parts of the body. However, if left untreated, it can spread 
to nearby tissue over time, and develop into an invasive BC. 
On the basis of histological appearance, DCIS is further 
subdivided into several subtypes including micropapillary, 
papillary, solid, cribriform and comedo (25,26). LCIS, on 
the other hand, develops in the lobules and usually does not 
ever spread to the surrounding breast tissue (24), although 
patients with LCIS remain at higher risk of developing 
BC. About 20–25% of women with LCIS are estimated 
to develop some form of invasive BC (either lobular or 
infiltrating ductal carcinoma) within her lifetime (24,27).

Figure 1 Histological and molecular classification of breast cancer. Classification is based on architectural features, growth pattern and the 
genetic landscape of breast tumors. IDC, invasive ductal carcinoma.
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Invasive breast carcinoma
As the nomenclature suggests, this cancer histological 
type has invaded into the surrounding breast tissues at 
the time of diagnosis. Also, similar to in situ carcinomas, 
invasive carcinomas are a group of tumors that are further 
categorized into several histological subtypes, such as 
infiltrating ductal, invasive lobular, ductal/lobular, mucinous 
(colloid), tubular, medullary and papillary carcinomas. Of 
these, invasive ductal carcinoma (IDC), which develops 
in the milk ducts and spreads to the fatty tissue of the 
breast outside the duct, is the most common and accounts 
for about 70–80% of all invasive lesions (28,29). IDC 
is further sub-classified based on mitotic index, nuclear 
pleomorphism, and glandular/tubule formation into well-
differentiated (grade 1), moderately differentiated (grade 2) 
or poorly differentiated (grade 3) carcinomas (28). Unlike 
DCIS, where the use of molecular markers including 
estrogen receptor (ER), progesterone receptor (PR), and 
HER2/neu is still a subject of debate, IDC sub-classification 
based on the molecular markers is well accepted (30).

Molecular subtypes

Classification of BC based on molecular components is 
more useful than that based on histology for the treatment 
planning and development of newer targeted therapies. 
It is achieved by obtaining the molecular and genetic 
information from the cancerous breast tissue. Broadly, five 
major molecular subtypes of BC have been defined that 
include luminal A, luminal B, triple-negative or basal-like, 
HER2-enriched and normal-like. Two additional molecular 
subtypes that are less common and poorly described are 
claudin-low and molecular apocrine BC. The claudin-low 
BC has low-to-absent expression of luminal markers and 
elevated expression of epithelial-mesenchymal transition 
(EMT) markers, whereas molecular apocrine tumors are 
characterized by an ER negative/androgen receptor (AR) 
positive phenotype (31,32). 

Luminal A
This subtype is hormone-receptor positive (ER+ and/
or PR+) and HER2 negative. It also expresses low levels 
of Ki-67 protein. Tumors of this subtype are low-grade, 
grow slowly and have the best outcomes among all other 
molecular sub-types (32,33).

Luminal B
This subtype is hormone-receptor positive, but can be 

either HER2 positive or HER2 negative with high Ki-67 
levels. Tumors of this subtype grow slightly faster, have 
poorer tumor grade and poorer prognosis as compared to 
subtype luminal A (32,33). 

Triple-negative BC (TNBC)/basal-like
This subtype is estrogen-receptor, progesterone-receptor 
and HER2 negative. It is considered the most aggressive. 
Also, for not yet established reasons, this subtype is more 
common among younger African American women 
(26,32,33). 

HER2-enriched
This subtype is hormone-receptor negative, but HER2 
positive. Tumors of this molecular subtype grow faster 
than luminal A and B subtypes; however, can be effectively 
treated with anti-HER2 drugs such as trastuzumab 
(herceptin) (26,32,33). 

Normal-like
This subtype is hormone-receptor positive, HER2 negative, 
and has low levels of KI-67. Their prognosis is generally 
good, but slightly worse than luminal A subtype (26,32,34).

Inflammation and inflammatory mediators

Inflammation is a process by which our immune system 
protects us from foreign invaders, such as viruses and 
bacteria, and helps in the healing and repair of the damaged 
tissue. However, if not regulated correctly and remained 
prolonged (chronic inflammation), it can actually contribute 
to the development of diseases including BC (16,17). 
Chronic inflammation can be induced by abnormal immune 
reactions, infections that perpetuate, or conditions such 
as obesity. In obese condition, excessive accumulation 
of macronutrients in the adipose tissues stimulates 
the release of inflammatory mediators to maintain the 
tissue homeostasis, thus creating a pro-inflammatory 
tumor supportive environment. Similarly, poor lifestyle 
(smoking habit, unhealthy diet, alcohol overuse, etc.) and 
inadequate relief of chronic stress can also lead to long-
term inflammation and contribute to the development, 
progression, and recurrence of BC (35-37). Indeed, 
inflammatory BC, a rare type of cancer often negative for 
triple receptors, develops rapidly and is considered one of 
the most aggressive BC subtype (38-40). 

Chronic inflammation is mediated through a variety 
of cytokines and hormones, which also contribute to BC 
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progression, metastasis and therapy-resistance in various 
ways. These inflammatory mediators are the cell and/
or plasma-derived soluble and diffusible molecules that 
exert their biological actions either locally or distantly via 
systemic circulation. Some of the important categories of 
inflammatory mediators are described below:

Complement system and kinins

The complement system is a collection of soluble proteins 
and membrane receptors in the bloodstream that works 
together to destroy the pathogens, provoke inflammatory 
reactions, and remove debris from cells and tissues. The 
complement systems proteins are numerically labeled with 
the prefix C (e.g., C1–C9) and are primarily synthesized 
in the liver. These proteins are largely enzyme precursors 
which catalyze a series of enzymatic reactions leading to 
the formation of products that have multiple immune 
effects. The mediators of inflammation in complement 
system include complement and complement-derived 
peptides (mainly C3 and C5) and kinins (bradykinin) 
that are released via the classical or alternative pathways. 
Complement component increase vascular permeability, 
activate leukocytes and induce mast-cell degranulation 
(41-43). Also, they work as a potent chemotactic factor for 
neutrophils and mononuclear phagocytes. 

Vasoactive amines

Vasoactive amines are amino groups such as histamine or 
serotonin, derived from decarboxylation of amino acid 
histidine that alter the permeability of blood vessels or 
cause vasodilation. Histamine is produced by mast cells, 
basophils and circulating platelets in response to heat, cold, 
irradiation, trauma injury or immune reactions (44-46).  
Histamine increases the vascular permeability by increasing 
the blood flow and disrupting the endothelial barriers. 
Also, histamine promotes vasodilatation by inducing the 
nitric oxide release. It helps in maintaining the acute-
phase response during inflammation (45,47). Histamine 
is shown to induce the proliferation of several cancer cells 
including BC (48-50). Histamine receptors that aid in 
cellular proliferation, expressed in vast variety of cancer 
cells (50,51). Mice lacking histamine H4 receptor (H4R-
KO) show reduced breast tumor size and weight, decreased 
number of lung metastases reduced percentage of CD4+ 
tumor-infiltrating T cells, indicating that histamine 
receptor is associated with BC progression and regulates 

antitumor immunity (52). Another vasoactive amine, 
serotonin is produced by decarboxylation of tryptophan 
within enterochromaffin cells of the intestine and released 
into the bloodstream. It is stored in the platelets and mast 
cells. Platelets stores serotonin is secreted upon activation 
at the site of thrombus formation or inflammation (53,54). 
The actions of serotonin and similar to histamine but they 
are less potent. Serotonin also exhibit cancer cell growth 
stimulatory effects and suggested to be involved in tumor 
cell migration, metastasis and tumor angiogenesis (55,56). 
One of the mechanisms through serotonin exerts its effects 
on tumor progression by increasing the blood supply to 
tumors (55).

Cytokines 

Cytokines are a large group of proteins that are produced 
by a broad range of cells, including immune cells, 
endothelial cells, stromal cells, and cancer cells that 
mediate important biological processes such as growth, 
proliferation and mobilization of cells. Cytokines modulate 
the biological activities of multiple cell types, however, they 
are of particularly important due to their role in regulation 
of the immune system to coordinate and control the 
inflammatory response to pathogens (57-60). They are the 
core components of the inflammatory milieu and play an 
important role in mediating innate and adaptive immune 
responses. They help in the recruitment and activation 
of leukocytes, increase cytotoxicity of natural killer (NK) 
cells and enhance proliferation of B and T cells (58,60,61). 
Interleukin-1 (IL-1), IL-6, IL-12 and IL-33, resistin, tumor 
necrosis factor alpha (TNF-α), granulocyte-macrophage 
colony stimulating factor (GM-CSF) and interferon gamma 
(IFN-γ) are important inflammatory cytokines among 
several others. 

Hormones

Hormones are chemical messengers produced by different 
cell types that regulate the homeostasis of the body and 
the cross-talk between the cardiovascular, endocrine, and 
immune systems. In the early 1990s, Garcia-Leme et al.  
demonstrated that hormone receptors are expressed at 
reactive structures in inflamed areas where hormone 
molecules bind and generate signals affecting cell functions 
important for the development of inflammatory responses, 
thus suggesting that inflammation is not only a local 
response but also a hormone-controlled process (62). 
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Leptin, a hormone predominantly made by adipose cells 
was shown to reverse the immunosuppressive effects of 
acute starvation in mice model (63). In hyperleptinemia, 
chronic low-grade inflammation was observed via elevation 
of the production of IL-1, IL-6, IL-12, and TNF-α (64). 
Elevated expression of leptin in serum and its receptor 
in human BC cells were associated with BC risk (65,66). 
Leptin treatment significantly induces the proliferation 
of T47-D BC cell line (67). Moreover, leptin-induced cell 
signaling axis is suggested to be involved in the increased 
risk for cancer development (68). Cortisol is another 
hormone which has been extensively studied for its role 
in immune function and the body’s anti-inflammatory 
processes. Alteration in cortisol has been suggested to cause 
acute proinflammatory stress response resulting in extensive 
inflammation (69). Significant advances have been made in 
understanding the molecular mechanisms by which cortisol 
regulates inflammation and inflammatory diseases (70). It 
has been demonstrated that corticosteroids regulate the 

expression of various inflammatory genes such as annexin-1 
(lipocortin-1), SLPI, and the inhibitor of NF-κB (IκB-α) 
(70-72). Importantly, activation of glucocorticoid receptor 
is suggested to be increase BC metastasis (73).

Role of inflammation in tumor immune microenvironment

Immune cells [macrophages, dendritic cells, T cells, 
myeloid-derived suppressor cells (MDSCs), etc.] are an 
important component of the TME that greatly impact 
tumor development and therapeutic outcomes (74-76). 
Tumor cells and residing non-tumor cells in the TME 
build up tumor supportive immune microenvironment by 
releasing soluble factors such as cytokines, growth factors 
and hormones (76-78). Interaction of these factors with 
receptors present on the immune cells determines the 
mobilization of immune cells into the TME and their fate 
(Figure 2). For instance, CCL2 secreted by breast tumor 
cells promotes the trafficking of CCR2+ macrophages into 

Figure 2 Schematic representation of the components of the inflammatory tumor microenvironment. Tumor-derived soluble factors induce 
mobilization and reprogramming of immune cells and activation of stromal cells in the tumor-adjacent extracellular matrix. Cytokines and/
or growth factors secreted by these immune or stromal cells further regulate the activity of recruited immune cells leading to the sustenance 
of tumor favoring inflammatory tumor microenvironment. IL, interleukin; TGF-β, transforming growth factor β; MCP-1, monocyte 
chemoattractant protein-1; CSF, colony stimulating factor; NK, natural killer; PAI-1, plasminogen activator inhibitor-1; Arg-1, arginase 1.
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the TME (79). Furthermore, it is thought that the diverse 
chemokine ligand-receptor interactions determine, at least 
in part, the heterogeneity of immune cell infiltration into 
the TME. Indeed, some chemokines can bind to multiple 
receptors (for example CCL5 binds to CCR1, CCR3, 
CCR5) or conversely a single chemokine receptor can also 
bind to multiple ligands (for example CCR5 binds to both 
CCL3 and CCL5). These interactions also help create an 
immunosuppressed milieu within the TME by maintaining 
a tumor supportive balance of pro- and anti-tumor immune 
responses through a complex cellular communication 
network. Recruitment of MDSCs and macrophages 
among others in the TME impairs T cell infiltration and/
or favor the accrual and activation of regulatory T (Treg) 
cells. Tumour-associated macrophages (TAMs) or M2 
macrophages are the most extensively studied and their 
high density in primary BC is associated with worse patient 
prognosis (80-82). M2 polarized macrophages secrete 
factors (arginase, IL-10, TGF-β, etc.) to promote an 
immunosuppressive TME. For example, arginase derived 
from TAMs can deplete a critical amino acid, arginine, 
which is crucial for T cell survival and antitumor activities 
(16,83,84). IL-10 derived from TAMs is also shown to 
inhibit T cell proliferation (85). MDSCs present in the 
TME are shown to promote their immune suppressive 
activities by upregulation of programmed cell death protein 

1 (PD-1), PD-1 ligand 1 (PD-L1), cytotoxic T lymphocyte 
antigen 4 (CTLA4) on CD4+ or CD8+ T cells (86). Thus, 
heterocellular interactions facilitated through inflammatory 
mediators help build immune-suppressive TME to support 
tumor growth.

Effect of inflammation on breast tumor growth, 
angiogenesis and metastasis

Inflammatory TME positively influences tumor growth and 
metastasis either via direct impact of the factors secreted 
by the immune cells on the tumor cells or indirectly 
through their effect on other resident cells within the 
TME including fibroblasts and endothelial cells (Figure 3).  
Infiltrated and adipose tissue-resident macrophages are 
crucial in nurturing the inflammatory TME by releasing 
several inflammatory cytokines including resistin. Our 
recent findings demonstrated that the levels of resistin 
are elevated in BC patients and support breast tumor 
cell growth, aggressiveness, and stemness (87,88). In 
another report, the elevated levels of resistin were shown 
to positively correlate with breast tumor size and stage, 
and negatively associated with disease-free and overall 
survival in BC patients (89). IL-6 release from TAMs is 
also shown to increase BC cell proliferation by inducing 
phosphoinositide 3-kinase (PI3K)-Akt signaling pathway as 

Figure 3 Contribution of inflammatory tumor microenvironment in breast cancer progression. Interaction between the cells in the tumor 
microenvironment leads to enhanced production of cytokines, growth factors, angiogenic factors and proteolytic enzymes that help in 
sustaining tumor growth, promoting angiogenesis, and tumor cell invasion and metastasis. IL, interleukin; TGF-β, transforming growth 
factor β; MMP, matrix metalloproteinase; GM-CSF, granulocyte-macrophage colony stimulating factor; MCP-1, monocyte chemoattractant 
protein-1; VEGF, vascular endothelial growth factor.
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well as apoptosis inhibition through enhancing BCL-2 and 
decreased BAX expression (90). Also, a positive correlation 
between increased macrophage index and high vascular 
grade, and reduced relapse-free survival in BC patients (91).  
It is shown, TAMs produce pro-angiogenic factor, YKL-
39, which promotes angiogenesis in BC (92). Also, 
elevated levels of YKL-39 in tumor mass after neoadjuvant 
chemotherapy are shown to positively correlate with the 
increased risk of metastasis and poor clinical responses in 
patients with BC (92). A positive feedback loop between 
BC secreted GM-CSF and TAMs produces CCL18, which 
is suggested to be essential for BC metastasis (93). GM-
CSF secreted by BC cells polarizes the macrophages to 
TAM phenotype and in return, TAMs secrete CCL18 to 
induce EMT and metastasis of BC cells. Furthermore, 
inhibition of either GM-CSF or CCL18 led to significant 
reduction of BC metastasis (93). In another report, TAMs 
were shown to produce matrix metalloproteinases (MMPs), 
cysteine cathepsins and serine proteases, which degrade and 
loosen the extracellular matrix (ECM) to support cancer 
cell invasion (94). TAMs also release proteins such as 
SPARC and epidermal growth factor (EGF) that promote 
malignant behavior and metastasis of the breast tumor 
cells (95,96). In a preclinical mouse model, deletion of 
intercellular cell adhesion molecule-1 (ICAM-1), which is 
inversely associated with macrophage infiltration and M2 
polarization, inhibited metastatic tumor progression (97).  
Other crucial cells of breast TME, MDSCs, are also 
associated with tumor grade, stage and poor prognosis in 
patients with BC (98). A recent study showed that CXCL17 
secreted by lung metastasized BC cells recruits MDSCs 
and induces the expression of platelet-derived growth 
factor (PDGF)-BB in them, which in turn, contributes to 
MDSC-mediated angiogenesis and further supports the 
colonization of BC cells (99). Along with suppressing the 
adaptive immune responses, MDSCs also regulate innate 
immune responses by altering the cytokine secretion of 
macrophages, which facilitate tumor growth, angiogenesis, 
and metastasis (100,101).

Effect of inflammation on BC therapy resistance

Intrinsic or acquired therapy resistance is a significant 
clinical problem that could occur through a variety of 
mechanisms (102-104). Inflammatory TME-induced 
alterations in the gene expression and tumor cell secretome 
have been recognized as an important mechanism in 
chemotherapy resistance (75,105,106). We recently 

demonstrated that inflammatory cytokine, resistin, 
protected BC cells from doxorubicin-induced cell death 
through activation of STAT3 (88). Also, IL-6 has been 
demonstrated to induce stem cell phenotype in BC, and 
initiate an inflammatory feedback loop of IL-6/STAT3/
Akt/NF-κB, leading to trastuzumab resistance (107). IL-6 
confers doxorubicin resistance in BC by activating the 
CCAAT enhancer-binding protein, leading to the expression 
of the downstream genes, such as multidrug resistance-1  
(MDR1) (108). Further, several chemotherapeutic drugs 
are shown to induce the expression of IL-8 and its receptor 
CXCR1/2 in BC as a counter defense mechanism (109,110). 
IL-8 confers docetaxel resistance to BC cells through 
activation of PI3K/Akt and NF-κB pathways (111). TGF-β1 
that is often elevated in the plasma of BC patients, is also 
shown to be associated with increased tumorigenicity and 
therapy resistance (112). Another report suggested the 
role of TGF-β pathway in epirubicin resistance in BC 
where it promoted cancer stemness (113). In some studies, 
mobilization of immune cells to the TME in response 
to chemotherapy-induced cytokine release is suggested 
to determine the therapeutic efficacy of treatment. 
Chemotherapeutic drugs such paclitaxel considerably 
increases the recruitment of cathepsin-secreting TAM in 
BC (114). These macrophages-released cathepsin proteases, 
partially cathepsins B and S, prevent paclitaxel-induced breast 
tumor cell death. Importantly, combining paclitaxel with 
cathepsin inhibition significantly increased the therapeutic 
efficacy in primary and metastatic breast tumors (114). 

Targeting of inflammatory pathways for the 
management of BC

Strategies to intervene inflammation have been and are 
being sincerely investigated for cancer management. 
Multiple preclinical studies have reported the inhibitory 
effect of nonsteroidal anti-inflammatory drugs (NSAIDs) 
against mammary carcinogenesis (115-118). In an 
observational study of the prospective Women’s Health 
Initiative data, Harris and coworkers (2003) examined 
the effects of the usage of ibuprofen, aspirin, and 
acetaminophen on BC risk. Their investigation revealed 
that the regular use of NSAID for 5–9 years resulted in the 
reduction of BC incidence by 21% and its usage for 10 or 
more years decreased the incidence by 28% (119). Further, 
the deep analysis indicated that the risk reduction in the 
group using ibuprofen in long-term was greater than that 
for aspirin, while no relation between acetaminophen use 
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and BC incidence was observed. In a rat model, where rats 
were fed Ibuprofen prior to mammary tumor development, 
only 74% rats developed tumors as compared to 86% 
tumor incidence in control rats (116). Apart from NSAIDs, 
anti-oxidants have also been suggested as chemopreventive 
agents. A population-based case-control study, where 
correlation between antioxidants and BC risk was examined, 
suggested that the long-term supplementation (10 years 
or more) of multiple vitamins, vitamin C, vitamin E, beta-
carotene, and zinc in postmenopausal women was effective 
in prevention of BC development (120).

In multiple studies, application of neutralizing antibodies 
for tumor-promoting cytokines and/or chemokines, small-
molecule inhibitors of chemokines/receptor signaling, and 
selective depletion of tumor supportive immune suppressive 
cells is suggested to be a potential strategy for BC 
treatment. CXCR1/2 antagonists, AZD5069 and reparixin, 
are being evaluated in the early phase of the clinical trial 
to impede granulocyte recruitment to tumors (121). 
CXCR1/2 receptor-expressing inflammatory immune cells 
are recruited to breast TME by their tumor cell-derived 
ligand, CXCL8, which in turn help in tumor promotion 
via reciprocal signaling (122,123). In HER2-negative 
BC, reparixin (CXCR1/2 inhibitor) in combination with 
paclitaxel produced favorable responses in a phase I clinical 
trial (124). A phase II trial is currently ongoing to explore 
the safety, pharmacokinetics, and biological effects of the 
reparixin with paclitaxel in a combination therapy (125).  
High indoleamine 2,3-dioxygenase (IDO) expression in 
TME is associated with breast tumor growth, metastasis 
and poor prognosis (126,127). A clinical trial is exploring 
the efficacy of chemotherapy (docetaxel or paclitaxel) with 
or without the addition of indoximod (IDO inhibitor) 
in metastatic BC (128). CD47 expressed on cancer cells 
interacts with signal regulatory protein-α (SIRP-α) present 
on the surface of macrophages, which helps in their evasion 
of phagocytosis (129-131). Overexpression of CD47 
in breast tumors is associated with tumor progression, 
metastasis and poor prognosis (132-134). Preclinical studies 
have evaluated the efficacy of anti-CD47 therapy and 
found that the blockade of CD47 inhibited BC growth and 
enhanced macrophage-mediated clearance of BC cells (135).  
Another phase II clinical trial study is evaluating the 
efficacy of PLX3397, a CSF1R antagonist, in combination 
with eribulin chemotherapy in patients with metastatic 
BC (136). CSF-1/CSF-1R signaling pathway has been 
associated with poor prognosis in many cancers including 
BC (137,138). Inhibition of CSF-1/CSF-1R signaling using 

a monoclonal antibody is also shown to regulate both the 
infiltration and function of tumor-infiltrating MDSCs and 
critically influence the response to CTLA-4 checkpoint 
immunotherapy (139).

Conclusion and future perspective

Significant epidemiological, experimental and clinical data 
now exist to not only support, but convincing prove, an 
association of inflammation with BC pathogenesis and 
therapeutic outcomes. Indeed, emerging data continue to 
strengthen this association further and provide evidence 
that local or systemic inflammation may be an important 
risk factor for breast and other malignancies as well as 
be an important underlying cause of prevalent cancer 
disparities. These findings have strongly supported the 
relevance of inflammation as a clinically significant drug 
target for cancer prevention and therapy. There are; 
however, still some gaps that need to be filled before we 
can take a significant leap forward in clinically exploiting 
the association of inflammation and cancer. We need to 
better understand the complex nature of inflammatory and 
immune cell drivers of cancer-associated local and systemic 
inflammation. We also need to precisely define the impact 
of this inflammation and associated immune suppression 
on therapy-resistance including the drug pharmacokinetics 
in well-defined diverse sets of cancer populations. It is 
also required that we define how these changes affect drug 
availability to the tumor cells, drug activity and utilization, 
and/or responses resulting from changes in drug target 
excess and accessibility. On a positive note, we now have 
well-annotated clinical datasets available to us in addition 
to the state-of-the-art technology (high throughput 
approaches and automated systems, etc.) that can help us 
address these important questions. Cancer is a significant 
clinical problem and many investigational drugs fail in 
clinical trials. Having established a role of inflammation in 
therapeutic outcome will help us develop newer and more 
effective combination therapeutic approaches. In addition 
to identification of actionable drug targets, future research 
could also help develop clinical tests for risk prediction, 
early diagnosis and therapeutic planning. Clearly, we have 
significantly advanced our understanding of pathobiological 
association of inflammation with cancer through years of 
research. We can very well anticipate that novel clinical 
management approaches will emerge from this knowledge 
to improve the life-expectancy of cancer patients and 
impact the quality of life for patients.
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