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Abstract: Logistic regression model is one of the most widely used modeling techniques in clinical 
medicine, owing to the widely available statistical packages for its implementation, and the ease of 
interpretation. However, logistic model training requires strict assumptions (such as additive and linearity) 
to be met and these assumptions may not hold true in real world. Thus, clinical investigators need to master 
some advanced model training methods that can predict more accurately. TensorFlow™ is a popular tool 
in training machine learning models such as supervised, unsupervised and reinforcement learning methods. 
Thus, it is important to learn TensorFlow™ in the era of big data. Since most clinical investigators are 
familiar with the logistic regression model, this article provides a step-by-step tutorial on how to train a 
logistic regression model in TensorFlow™, with the primary purpose to illustrate how the TensorFlow™ 
works. We first need to construct a graph with tensors and operations, then the graph is run in a session. 
Finally, we display the graph and summary statistics in the TensorBoard, which shows the changes of the 
accuracy and loss value across the training iterations.
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Introduction

Binary logistic regression modeling is probably one of the 
most commonly used approaches for predictive analytics 
in clinical medicine. The advantage of this modeling 
technique is that its estimated coefficient is easy to 
understand. The exponentiation of the coefficient gives the 
odds ratio, which is directly interpretable for clinicians (1). 
Furthermore, there are many statistical packages available 
for the implementation of the logistic regression modeling. 
The limitation of the logistic regression approach is that it 
cannot automatically model complex relationships among 
covariates such as non-linear and interaction terms. In 
the era of big data, numerous feature variables are readily 
available from electronic healthcare records, and it is usually 
challenging for researchers to correctly specify the model 
with domain knowledge. Many sophisticated machine 

learning algorithms have been developed to deal with such 
high-dimension data. The advantage of these advanced 
algorithm is that they can model complex relationship 
among feature variables without explicitly specifying 
interactions and high-order terms (2,3). The limitation 
is that they are black-box approaches that the causal 
relationship between variables and labels are not easily 
understandable for subject matter audience (4).

The training of prediction models heavily relies on 
TensorFlow™ in modern era in the business domain. 
TensorFlow™ is an open source software library for 
numerical computation using data flow graphs. Nodes in 
the graph represent mathematical operations, while the 
graph edges represent the multidimensional data arrays 
(tensors) communicated between them. The advantages 
of TensorFlow™ include: (I) good computational graph 
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visualization; (II) efficient library management backed by 
Google; and (III) execution subparts of a graph allows to 
retrieve discrete data onto an edge and therefore offers 
great debugging method. However, TensorFlow™ has 
not been widely used in clinical research partly due to the 
technical complexity of its implementation. Due to many 
advantages of the TensorFlow™, the present article aims 
to introduce TensorFlow™ by illustrating how to train a 
logistic regression model.

Working example

We first create a dataset for the illustration purpose. The 
data are generated by a function called sim_data(). The 
dataset includes five feature variables, namely, age, lac, wbc, 
sex and type. The mort was the outcome (label). The training 
set is dat and the testing set is the dat_test.

> sim_data <- function(n=2000){

library(dummies)

age <- round(abs(rnorm(n,mean = 60, sd = 20)))

lac <- round(abs(rnorm(n,3,1)),1)

wbc <- round(abs(rnorm(n,10,3)),1)

sex <- factor(rbinom(n,size = 1,prob = 0.6),

labels = c("Female","Male"));

type <- as.factor(sample(c("Med","Emerg","Surg"),

size = n,replace = T,

prob = c(0.4,0.4,0.2)))

linPred <- cbind(1,age,lac,wbc,dummy(sex)[,-1],

dummy(type)[,-1]) %*%

c(-30,0.2,4,1,-2,3,-3)

pi <- 1/(1+exp(-linPred))

mort <- factor(rbinom(n,size = 1, prob = pi),

labels = c("Alive","Died"))

dat <- data.frame(age=age,lac=lac,wbc=wbc,

sex=sex,type=type,

mort = mort)

return(dat)

}

> set.seed(123)

> dat <- sim_data()

> dat_test <- sim_data(n=1000)

After running the above code, we can take a look at the 
data frame:

> head(dat)

age lac wbc sex type mort

1 49 2.5 10.6 Male Emerg Alive

2 55 3.2 12.0 Male Emerg Died

3 91 2.5 12.0 Female Med Died

4 61 4.2 6.1 Female Emerg Died

5 63 3.2 3.9 Male Surg Alive

6 94 2.4 16.6 Female Surg Died

There are three numeric variables including age, lac and 
wbc; and two categorical variables that are sex and type (also 
called factor variable in R). There are two levels for the 
outcome variable mort: Alive and Died.

Training logistic regression model with 
conventional method

Logistic regression model can be trained by using the build-
in R function glm(), which is used to fit generalized linear 
models, specified by giving a symbolic description of the 
linear predictor and a description of the error distribution.

> mod <- glm(mort~., data = dat, family = "binomial")

> library(tableone)

> ShowRegTable(mod,exp = F)

coef [confint] p

(Intercept) -28.92 [-32.46, -25.73] <0.001

age 0.19 [0.17, 0.22] <0.001

lac 3.94 [3.49, 4.44] <0.001

wbc 0.94 [0.82, 1.07] <0.001

sexMale -1.96 [-2.41, -1.52] <0.001

typeMed 2.70 [2.19, 3.24] <0.001

typeSurg -2.81 [-3.40, -2.25] <0.001

The above output shows the coefficients estimated by 
using maximum likelihood method. All coefficients are 
statistically significant with P values less than 0.001. Next, 
we will show how the model performs in the test dataset. 
Note that the test dataset is not used for training the model.

> pred <- predict.glm(mod,newdata = dat_test,

type = "response")

> library(pROC)

> roc(response = dat_test$mort,predictor = pred,ci=T)
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Call:

roc.default(response = dat_test$mort, predictor = pred, ci = T)

Data: pred in 314 controls (dat_test$mort Alive) < 686 cases 

(dat_test$mort Died).

Area under the curve: 0.9841

95% CI: 0.9784-0.9897 (DeLong)

> predBi <- pred >= 0.5

> crossTab <- table(predBi,dat_test$mort)

> (crossTab[1]+crossTab[4])/sum(crossTab)

[1] 0.936

The area under the characteristic curve (AUROC) is a 
standard measure to assess the discrimination of a model. 
In our example, the AUROC is 0.9841, indicating that the 
model performs perfectly in discriminating survivors and 
non-survivors. The accuracy (0.936) is another measure for 
the performance of the model, which is obtained by dividing 
the correctly classified subjects by the total number of 
subjects. Note that the accuracy is dependent on the cutoff 
values used to judge Alive versus Died subjects. Thus, we 
can plot the accuracy against the cutoff values to examine 
the relationship between the two quantities.

> DTaccuracy <- data.frame()

> for (cutoff in seq(0,1,by = 0.01)) {

predBi <- pred >= cutoff;

crossTab <- table(predBi, dat_test$mort)

accuracy = (crossTab[1]+crossTab[4])/sum(crossTab)

DTaccuracy <- rbind(DTaccuracy,c(accuracy,cutoff))

}

> names(DTaccuracy) <- c('Accuracy','Cutoff')

> qplot(x=Cutoff, y = Accuracy, data = DTaccuracy)

We vary the cutoff value by a step of 0.01 and calculate 
the accuracy at each cutoff value. The output Figure 1 
shows that the accuracy is the highest at the cutoff value 
of 0.5, which means that subjects who predicted to have a 
probability of death greater than 0.5 by the training model 
should be judged as Died; otherwise, they are predicted to 
be Alive.

TensorFlow™ method

Splitting the data into training and validation cohort

In machine learning practice, the dataset is usually split 
into the training and validation sets. The purpose of 
the validation set is to tune hyperparameters such as 
the learning rate, number of batches and epochs. More 
advanced algorithms such as neural networks can have more 
hyperparameters including the number of hidden layers and 
weight decay (5). However, the latter ones are out of the 
scope of the present discussion. Because the validation set is 
used to tune hyperparameters, it contributes to the model 
training process (i.e., the model sees the validation data 
during training). Thus, we also need a testing dataset to 
verify that the trained model is generalizable to future data.

> library(caret)

> y = with(dat, model.matrix(~ mort + 0))

> x = with(dat,

model.matrix(~ age + lac+wbc+sex+type))[,-1]

> trainIndex = createDataPartition(1:nrow(x),

p=0.7, list=FALSE,times=1)

> x_train = x[trainIndex,]

> x_valid = x[-trainIndex,]

> y_train = y[trainIndex,]

> y_valid = y[-trainIndex,]

In the example, we use the model.matrix() function 
to generate a design (or model) matrix, by expanding 
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Figure 1 Scatter plot showing the changes of the model accuracy 
with the cutoff values for determining survivors versus non-
survivors. It appears that the accuracy reaches its maximum at the 
cutoff value of 0.5.
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factors to a set of dummy variables (depending on the 
contrasts) and expanding interactions similarly. Then the 
createDataPartition() is employed to split the dataset into 
the training and validation samples by the ratio of 7:3.

Data dimension

It is very important to clarify the data dimension within the 
TensorFlow™ framework. In our example, each subject is a 
1 × 6 vector for the feature space, and the outcome (label) is 
a 1 × 2 vector. The number of classes is 2.

> dim(x_train)

[1] 1400  6

> dim(y_train)

[1] 1400  2

Placeholders for features and labels

Placeholder is one of the tensor types used in TensorFlow™. 
It is a variable that we will assign data in a future time. 
Placeholders are nodes whose value is fed in at execution 
time. In the example, placeholders refer to the features and 
labels that will be used in a session, they are empty in the 
graph.

> library(tensorflow)

> tf$reset_default_graph()

> X <- tf$placeholder(tf$float32,

shape(NULL, ncol(x)),

name = "X")

> Y = tf$placeholder(tf$float32, shape(NULL, 2L),

name = "Y")

The above code firstly loads the tensorflow package 
(version: 1.13.1.9000) to the workspace. Details for the 
installation of TensorFlow within R environment are 
available at https://tensorflow.rstudio.com/tensorflow/
articles/installation.html. The tf$reset_default_graph() 
function clears the default graph stack and resets the global 
default graph. The tf$placeholder() function has three 
arguments: data type, shape and name. In the example, the 
data type is float32 for both features and labels. The shape 
is the dimension of the features and labels. The NULL 
value in the shape means that the first dimension of the 

placeholder can be any number of subjects. The name 
argument specifies the Tensorflow name that will appear in 
the graph.

TensorFlowTM variables for weights and bias

TensorFlow™ variables are stateful nodes which output 
their current value; meaning that they can retain their 
value over multiple executions of a graph. It is the best way 
to represent shared, persistent state manipulated by your 
program. In fact, variables are the things that you want 
to tune in order to minimize the loss, such as the bias and 
weights in the example.

>W = tf$Variable(tf$random_normal(shape(ncol(x),2L),

stddev = 1.0),

name = "weights")

>b = tf$Variable(tf$zeros(shape(2L)), name = "bias")

TensorFlow™ variables can be created using the 
tf$Variable() function. The arguments define the shape and 
initial values of the variables. The property of the variable 
W can be viewed with the following code:

> print(W)

<tf.Variable 'weights:0' shape=(6, 2) dtype=float32_ref>

Unlike the conventional S3 R object, the result of a 
TensorFlow™ object cannot be obtained until running a 
session.

Operations for logistic regression model

Binary logistic regression model requires a sigmoid function 
to transform the probability into the logit scale.

( ) 1P mort 1 =
1 ze−=
+

where z = b + w1 
• age + w2 

• lac + w3 • wbc + w4 
• sexMale + w5 

• 
typeMed + w6 

• typeSurg
Instead of using the conventional mean squared error, 

we use a cost function called Cross-Entropy, also known as 
Log Loss. Cross entropy consists of two parts: one for mort 
=1 and the other for mort = 0. A cost function basically tells 
us how good our model is at making predictions for a given 
value of W and b.

https://tensorflow.rstudio.com/tensorflow/articles/installation.html
https://tensorflow.rstudio.com/tensorflow/articles/installation.html
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predicted probability comes closer to 0 ( ˆ 0)iy   for the “yes” 
example ( 1)iy = , the loss increases closer to infinity. The 
purpose of model training is to find appropriate weights (W) 
and bias (b) to minimize the loss function.

> logits = tf$add(tf$matmul(X, W), b)

> pred = tf$nn$sigmoid(logits)

The tf$matmul() function multiply two matrix X and W, 
note that the second dimension of X must be equal to the 
first dimension of W according to the matrix multiplication 
rule. Then the tf$add() function add the bias term b, 
resulting in a tensor in logit scale. The tf$nn$sigmoid() 
function is employed to transform the logit scale to 
probability. The next step is to define the loss function. We 
will use sigmoid cross entropy with logits as a loss function.

> entropy = tf$nn$sigmoid_cross_entropy_with_logits(labels = Y,

logits = logits)

> loss = tf$reduce_mean(entropy, name = "loss")

With the loss function being defined, we can use 
gradient descent approach to find appropriate weights and 
bias to minimize the loss function. The gradient measures 
how much the output of a function changes if you change 
the input a little bit. It can be thought of as the slope of a 
function. A higher gradient means a steeper slope and the 
faster a model can learn. In mathematical terms, a gradient 
is a partial derivative of the loss function with respect to its 
weights (6). The gradient of the loss function can be written 
as ( )w L w∇  w.r.t. the weights. The learning rate η determines 
the size of the step we take to reach the minimum. The 
update process can be written as: ( )w w η wL w= − ⋅∇ . The 
process can be written in R code as follows:

> learning_rate = 0.01 

> optimizer = tf$train$

GradientDescentOptimizer(learning_rate = learning_rate)$

minimize(loss)

> init_op = tf$global_variables_initializer()

The second line defines an operation to initialize global 
variables in the graph. Now that we have trained the model, 
let’s evaluate it:

> correct_prediction <- tf$equal(tf$argmax(logits, 1L),

tf$argmax(Y, 1L),

name = "correct_pred")

> accuracy <- tf$reduce_mean(tf$cast(correct_prediction, 

tf$float32),

name = "accuracy")

Save all values of model performance

There  i s  a  spec ia l  opera t ion  ca l l ed  summar y  in 
TensorFlow™ to facilitate visualization of the model 
parameters like weights and biases of a logistic regression 
model, metrics like loss or accuracy values, and images like 
input images to a neural network. The summary operation 
takes in a regular tensor and outputs the summarized data 
to the computer disk.

> loss_scalar <- tf$summary$scalar("Loss", loss)

> accuracy_scalar <- tf$summary$scalar("Accuracy", 

accuracy)

> W_hist <- tf$summary$histogram("Coefficient", W)

> b_hist <- tf$summary$histogram("Intercept", b)

> merged <- tf$summary$merge_all()

The tf$summary$scalar() function is to write the values 
of a scalar tensor that changes over time or iterations to 
the computer disc. In the example, the loss and accuracy of 
the model performance are scalar tensors that change over 
training iterations. Similarly, the tf$summary$histogram() 
function is used to plot the histogram of the values of a 
non-scalar tensor. This gives us a view of how does the 
histogram (and the distribution) of the tensor values change 
over training iterations. In the example, it's used to monitor 
the changes of weights and biases distributions. The last 
line of code merges all statistics so that all summaries can be 
run at once within the running session.

Execute a graph within a session

Now that we have structured the graph, let’s execute a graph 
within a session. Note that all results can only be returned 
after running a session. Technically, a session places the 
graph operations on hardware such as CPUs or GPUs and 
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provides methods to execute them.

> learning_rate = 0.01

> with(tf$Session() %as% sess, {

sess$run(init_op)

for (i in 1:10000) {

sess$run(optimizer,

feed_dict = dict(X=x_train, Y=y_train))

}

sess$run(accuracy,

feed_dict=dict(X = x_valid, Y = y_valid))

})

[1] 0.758

The output shows that the accuracy is only 0.758, which 
is far less than that obtained by the conventional glm() 
function. We need to tune the hyperparameters to obtain a 
better predictive performance.

Hyperparameters

There are many hyperparameters in model training. 
Here we will explain some important ones for the logistic 
regression model.
	 Epoch is one forward pass and one backward pass of 

all the training examples.
	 Batch size is the number of training examples in one 

forward/backward pass. The larger the batch size, 
the more memory space you’ll need.

	 Iteration is one forward pass and one backward pass 
of one batch of subjects in the training set.

Now let’s define some values for these important 
hyperparameters.

> epochs = 10000 # Total number of training epochs

> batch_size = 30 # Training batch size

> display_freq_iter = 10 # Frequency of displaying the training 

results

> display_freq_epoch = 1000

> learning_rate = 0.01 # The optimization initial learning rate

The display_freq_iter and display_freq_epoch are parameters 
for printing results during the training iterations. They will 
not influence the results. The above specification results in 
a total of 46 iterations.

> nrow(x_train)/batch_size

[1] 46.66667

Create an interactive session

An alternative method to run a session is by calling the 
tf$InteractiveSession() function. The only difference with 
a regular Session is that an InteractiveSession installs itself 
as the default session on construction. In other words, 
the InteractiveSession supports less typing, as allows to run 
variables without needing to constantly refer to the session 
object. In the example, we launch an InteractiveSession:

> sess = tf$InteractiveSession()

TensorBoard

TensorBoard is a visualization tool that comes with any 
standard TensorFlow™ installation. In Google’s words: “The 
computations you’ll use TensorFlow for (like training a massive 
deep neural network) can be complex and confusing. To make it 
easier to understand, debug, and optimize TensorFlow programs, 
we’ve included a suite of visualization tools called TensorBoard.” 
The two most important purposes of TensorBoard is: (I) to 
visualize the graph and (II) writing summaries to visualize 
the learning process. For example, the changes of accuracy 
across training epochs can be visualized with TensorBoard.

To visualize the graph with TensorBoard, we need to 
write log files of the program. To write event files, we first 
need to create a train_writer for those logs, using this code:

> train_writer <- tf$summary$FileWriter(logdir = "YOUR 

PATH/logs")

> train_writer$add_graph(sess$graph)

The directory stores log files and the graph of the 
program is added by using the add_graph() function. We 
will not call the tensorboard() function at present because 
we want to store more summary statistics to the train_writer 
object.

Run the model within a session

We need to initialize all variables at the beginning of 
running a session.
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> sess$run(init_op)

# Number of training iterations in each epoch

> num_tr_iter = floor(nrow(y_train) / batch_size)

All used global variables need to be initialized (i.e., you 
do not need to initialize variables that are not run, or none 
of the runs depends on them.). The number of iterations is 
explained as above.

> for (epoch in 1:epochs){

if(epoch %% display_freq_epoch == 0){

print(paste('Training epoch:',epoch),quote = F)

}

# Randomly shuffle the training data at the beginning of each 

#epoch

sample_seq <- sample(1:nrow(x_train))

x_train <- x_train[sample_seq,]

y_train <- y_train[sample_seq,]

for (iteration in 1:num_tr_iter) {

start = (iteration-1) * batch_size+1

end = iteration * batch_size

x_batch = x_train[start:end,]

y_batch = y_train[start:end,]

# Run optimization op (backprop)

feed_dict_batch = dict(X = x_batch,Y = y_batch)

result <- sess$run(list(merged, optimizer),

feed_dict=feed_dict_batch)

summary <- result[[1]]# extract the summary result of merged

train_writer$add_summary(summary, epoch) # write summary 

#to disk

if(iteration %% display_freq_iter == 0 &

epoch %% display_freq_epoch == 0){

# Calculate and display the batch loss and accuracy

loss_batch = sess$run(loss,

feed_dict=feed_dict_batch)

acc_batch = sess$run(accuracy,

feed_dict=feed_dict_batch)

print(sprintf("iter %i: Loss=%.2f, Training Accuracy=%.2f",

iteration, loss_batch, acc_batch),quote = F)

}

}

# Run validation after every 100 epoch

if(epoch %% display_freq_epoch == 0){

feed_dict_valid = dict(X = x_valid,Y = y_valid)

loss_valid = sess$run(loss, feed_dict=feed_dict_valid)

acc_valid = sess$run(accuracy, feed_dict=feed_dict_valid)

print('---------------------------------------------------------',quote = F)

print(sprintf("Epoch: %i, 

validation loss: %.2f, validation accuracy: %.2f",

epoch, loss_valid, acc_valid),quote = F)

print('---------------------------------------------------------',quote = F)

}

}

The above code loops through epochs. Recall that we 
have defined the total number of epochs to be 10,000. 
There are a number of iterations within each epoch. The 
actual data are passed to the sess$run() function by using the 
dict() function. The tensor objects (merged and optimizer) 
in the list argument are the part of the graph that run in the 
session. It is not necessarily to run the whole graph. The 
above loop print validation loss and accuracy at a frequency 
of 1,000 epochs, and at an iteration of 10 within each epoch. 
The output for the last training epoch is as follows:

[1] Training epoch: 10000

[1] iter 10: Loss=0.18, Training Accuracy=0.90

[1] iter 20: Loss=0.28, Training Accuracy=0.97

[1] iter 30: Loss=0.24, Training Accuracy=0.87

[1] iter 40: Loss=0.18, Training Accuracy=0.93

[1] ---------------------------------------------------------

[1] Epoch: 10000, validation loss: 0.18, validation accuracy: 0.92

[1] ---------------------------------------------------------

Model validation in the testing set

Note that the model is evaluated in the validation cohort 
in the above session run, we can validate the model 
performance in the testing set as follows:

> x_test = with(dat_test,

model.matrix(~ age + lac + wbc+

sex + type))[,-1];

> y_test = with(dat_test, model.matrix(~ mort + 0))

> feed_dict_test = dict(X = x_test, Y = y_test)

> loss_test = sess$run(loss, feed_dict = feed_dict_test);
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> acc_test = sess$run(accuracy, feed_dict = feed_dict_test)

> print(sprintf("Test loss: %.2f, test accuracy: %.2f",

loss_test, acc_test),quote = F)

[1] Test loss: 0.19, test accuracy: 0.93

The first two lines transform the testing set to those 
suitable for passing to the TensorFlow™ placeholder. In the 
following sessions, we only run the loss and accuracy tensors 
because we already have trained the model with updated 
weights and bias. The result showed that the accuracy of the 
model was 0.93 in the testing set.

Weights and bias

The weights and bias after training can be obtained by 
running the b and W tensors in the session. Also remember 
to close the session after running.

> sess$run(b)

[1] 21.10329 -21.11448

> sess$run(W)

[,1] [,2]

[1,] -0.1486220 0.1487045

[2,] -2.9049671 2.9064085

[3,] -0.6881254 0.6884889

[4,] 1.6609378 -1.6614350

[5,] -1.9071095 1.9081335

[6,] 2.1673198 -2.1680720

> sess$close()

The output shows that the weights and bias are close to 
the one obtained by the glm() method. However, you need 
to tune the hyperparameters such as learning rate and the 
number of epochs to achieve the minimal loss.

Launch the TensorBoard

The tensorboard() function provides a tool to inspect 
and understand your TensorFlow runs and graphs. The 
argument log_dir is to specify the directory to scan for 
training logs.

> tensorboard(log_dir = "/YOUR PATH/logs")

The TensorFlow™ graph is shown in Figure 2. The 
graph displays the tensors and operations defined in 
the previous code. From the bottom, there is a matrix 
multiplication between X and weights (W), and then the 
bias (b) was added. The tensor shape is shown in the data 
flow edge. In the scalar tab of the TensorBoard, there are 
two plots showing the accuracy and loss across training 
epochs. It appears that the training accuracy and loss 
stabilize after 5,000 epochs (Figures 3 and 4).

Concluding remarks

The article shows how to perform logistic regression model 

Figure 2 TensorBoard showing the graph of tensor flow for the logistic regression model.
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training in TensorFlow™ within R. It is useful for beginners 
who are going to work with TensorFlow™. However, the 
power of TensorFlow™ is not fully demonstrated with the 
current example (i.e., the accuracy of the model trained 
with TensorFlow™ is no better than the one trained with 
the conventional method). It is probably due to the fact 
that the data is simulated with generalized linear model 
and there is no complex interaction and non-linear terms. 
Thus, the maximum likelihood method is capable to obtain 
the weights and bias to maximize the likelihood function. 
Since the function is linear with monotone property, there 
is no local minima. TensorFlow™ has the power to model 
complex relationship among features and labels and it 
has been widely used for some deep learning methods. 
Understanding how the TensorFlow™ works will help to 
explore more on data science.
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