
Page 1 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Big-data Clinical Trial Column

Binary logistic regression modeling with TensorFlow™

Zhongheng Zhang1, Lei Mo2, Chen Huang3, Ping Xu4; written on behalf of AME Big-Data Clinical Trial
Collaborative Group

1Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Department

of Biostatistics, Lejiu Healthcare Technology Co., Ltd, Shanghai, China; 3Nursing Department, Information Technology (IT) Center, Sir Run Run

Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 4Emergency Department, Zigong Fourth People’s Hospital,

Zigong 643000, China

Correspondence to: Zhongheng Zhang. No. 3, East Qingchun Road, Hangzhou 310016, China. Email: zh_zhang1984@zju.edu.cn.

Abstract: Logistic regression model is one of the most widely used modeling techniques in clinical
medicine, owing to the widely available statistical packages for its implementation, and the ease of
interpretation. However, logistic model training requires strict assumptions (such as additive and linearity)
to be met and these assumptions may not hold true in real world. Thus, clinical investigators need to master
some advanced model training methods that can predict more accurately. TensorFlow™ is a popular tool
in training machine learning models such as supervised, unsupervised and reinforcement learning methods.
Thus, it is important to learn TensorFlow™ in the era of big data. Since most clinical investigators are
familiar with the logistic regression model, this article provides a step-by-step tutorial on how to train a
logistic regression model in TensorFlow™, with the primary purpose to illustrate how the TensorFlow™
works. We first need to construct a graph with tensors and operations, then the graph is run in a session.
Finally, we display the graph and summary statistics in the TensorBoard, which shows the changes of the
accuracy and loss value across the training iterations.

Keywords: Logistic regression; TensorFlow; gradient descent

Submitted Sep 17, 2019. Accepted for publication Sep 18, 2019.

doi: 10.21037/atm.2019.09.125

View this article at: http://dx.doi.org/10.21037/atm.2019.09.125

Introduction

Binary logistic regression modeling is probably one of the
most commonly used approaches for predictive analytics
in clinical medicine. The advantage of this modeling
technique is that its estimated coefficient is easy to
understand. The exponentiation of the coefficient gives the
odds ratio, which is directly interpretable for clinicians (1).
Furthermore, there are many statistical packages available
for the implementation of the logistic regression modeling.
The limitation of the logistic regression approach is that it
cannot automatically model complex relationships among
covariates such as non-linear and interaction terms. In
the era of big data, numerous feature variables are readily
available from electronic healthcare records, and it is usually
challenging for researchers to correctly specify the model
with domain knowledge. Many sophisticated machine

learning algorithms have been developed to deal with such
high-dimension data. The advantage of these advanced
algorithm is that they can model complex relationship
among feature variables without explicitly specifying
interactions and high-order terms (2,3). The limitation
is that they are black-box approaches that the causal
relationship between variables and labels are not easily
understandable for subject matter audience (4).

The training of prediction models heavily relies on
TensorFlow™ in modern era in the business domain.
TensorFlow™ is an open source software library for
numerical computation using data flow graphs. Nodes in
the graph represent mathematical operations, while the
graph edges represent the multidimensional data arrays
(tensors) communicated between them. The advantages
of TensorFlow™ include: (I) good computational graph

591

https://crossmark.crossref.org/dialog/?doi=10.21037/atm.2019.09.125

Zhang et al. Logistic regression modeling

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Page 2 of 10

visualization; (II) efficient library management backed by
Google; and (III) execution subparts of a graph allows to
retrieve discrete data onto an edge and therefore offers
great debugging method. However, TensorFlow™ has
not been widely used in clinical research partly due to the
technical complexity of its implementation. Due to many
advantages of the TensorFlow™, the present article aims
to introduce TensorFlow™ by illustrating how to train a
logistic regression model.

Working example

We first create a dataset for the illustration purpose. The
data are generated by a function called sim_data(). The
dataset includes five feature variables, namely, age, lac, wbc,
sex and type. The mort was the outcome (label). The training
set is dat and the testing set is the dat_test.

> sim_data <- function(n=2000){

library(dummies)

age <- round(abs(rnorm(n,mean = 60, sd = 20)))

lac <- round(abs(rnorm(n,3,1)),1)

wbc <- round(abs(rnorm(n,10,3)),1)

sex <- factor(rbinom(n,size = 1,prob = 0.6),

labels = c("Female","Male"));

type <- as.factor(sample(c("Med","Emerg","Surg"),

size = n,replace = T,

prob = c(0.4,0.4,0.2)))

linPred <- cbind(1,age,lac,wbc,dummy(sex)[,-1],

dummy(type)[,-1]) %*%

c(-30,0.2,4,1,-2,3,-3)

pi <- 1/(1+exp(-linPred))

mort <- factor(rbinom(n,size = 1, prob = pi),

labels = c("Alive","Died"))

dat <- data.frame(age=age,lac=lac,wbc=wbc,

sex=sex,type=type,

mort = mort)

return(dat)

}

> set.seed(123)

> dat <- sim_data()

> dat_test <- sim_data(n=1000)

After running the above code, we can take a look at the
data frame:

> head(dat)

age lac wbc sex type mort

1 49 2.5 10.6 Male Emerg Alive

2 55 3.2 12.0 Male Emerg Died

3 91 2.5 12.0 Female Med Died

4 61 4.2 6.1 Female Emerg Died

5 63 3.2 3.9 Male Surg Alive

6 94 2.4 16.6 Female Surg Died

There are three numeric variables including age, lac and
wbc; and two categorical variables that are sex and type (also
called factor variable in R). There are two levels for the
outcome variable mort: Alive and Died.

Training logistic regression model with
conventional method

Logistic regression model can be trained by using the build-
in R function glm(), which is used to fit generalized linear
models, specified by giving a symbolic description of the
linear predictor and a description of the error distribution.

> mod <- glm(mort~., data = dat, family = "binomial")

> library(tableone)

> ShowRegTable(mod,exp = F)

coef [confint] p

(Intercept) -28.92 [-32.46, -25.73] <0.001

age 0.19 [0.17, 0.22] <0.001

lac 3.94 [3.49, 4.44] <0.001

wbc 0.94 [0.82, 1.07] <0.001

sexMale -1.96 [-2.41, -1.52] <0.001

typeMed 2.70 [2.19, 3.24] <0.001

typeSurg -2.81 [-3.40, -2.25] <0.001

The above output shows the coefficients estimated by
using maximum likelihood method. All coefficients are
statistically significant with P values less than 0.001. Next,
we will show how the model performs in the test dataset.
Note that the test dataset is not used for training the model.

> pred <- predict.glm(mod,newdata = dat_test,

type = "response")

> library(pROC)

> roc(response = dat_test$mort,predictor = pred,ci=T)

Annals of Translational Medicine, Vol 7, No 20 October 2019 Page 3 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Call:

roc.default(response = dat_test$mort, predictor = pred, ci = T)

Data: pred in 314 controls (dat_test$mort Alive) < 686 cases

(dat_test$mort Died).

Area under the curve: 0.9841

95% CI: 0.9784-0.9897 (DeLong)

> predBi <- pred >= 0.5

> crossTab <- table(predBi,dat_test$mort)

> (crossTab[1]+crossTab[4])/sum(crossTab)

[1] 0.936

The area under the characteristic curve (AUROC) is a
standard measure to assess the discrimination of a model.
In our example, the AUROC is 0.9841, indicating that the
model performs perfectly in discriminating survivors and
non-survivors. The accuracy (0.936) is another measure for
the performance of the model, which is obtained by dividing
the correctly classified subjects by the total number of
subjects. Note that the accuracy is dependent on the cutoff
values used to judge Alive versus Died subjects. Thus, we
can plot the accuracy against the cutoff values to examine
the relationship between the two quantities.

> DTaccuracy <- data.frame()

> for (cutoff in seq(0,1,by = 0.01)) {

predBi <- pred >= cutoff;

crossTab <- table(predBi, dat_test$mort)

accuracy = (crossTab[1]+crossTab[4])/sum(crossTab)

DTaccuracy <- rbind(DTaccuracy,c(accuracy,cutoff))

}

> names(DTaccuracy) <- c('Accuracy','Cutoff')

> qplot(x=Cutoff, y = Accuracy, data = DTaccuracy)

We vary the cutoff value by a step of 0.01 and calculate
the accuracy at each cutoff value. The output Figure 1
shows that the accuracy is the highest at the cutoff value
of 0.5, which means that subjects who predicted to have a
probability of death greater than 0.5 by the training model
should be judged as Died; otherwise, they are predicted to
be Alive.

TensorFlow™ method

Splitting the data into training and validation cohort

In machine learning practice, the dataset is usually split
into the training and validation sets. The purpose of
the validation set is to tune hyperparameters such as
the learning rate, number of batches and epochs. More
advanced algorithms such as neural networks can have more
hyperparameters including the number of hidden layers and
weight decay (5). However, the latter ones are out of the
scope of the present discussion. Because the validation set is
used to tune hyperparameters, it contributes to the model
training process (i.e., the model sees the validation data
during training). Thus, we also need a testing dataset to
verify that the trained model is generalizable to future data.

> library(caret)

> y = with(dat, model.matrix(~ mort + 0))

> x = with(dat,

model.matrix(~ age + lac+wbc+sex+type))[,-1]

> trainIndex = createDataPartition(1:nrow(x),

p=0.7, list=FALSE,times=1)

> x_train = x[trainIndex,]

> x_valid = x[-trainIndex,]

> y_train = y[trainIndex,]

> y_valid = y[-trainIndex,]

In the example, we use the model.matrix() function
to generate a design (or model) matrix, by expanding

0.90

0.85

0.80

0.75

0.00 0.25 0.50 0.75 1.00
Cutoff

A
cc

ur
ac

y

Figure 1 Scatter plot showing the changes of the model accuracy
with the cutoff values for determining survivors versus non-
survivors. It appears that the accuracy reaches its maximum at the
cutoff value of 0.5.

Zhang et al. Logistic regression modeling

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Page 4 of 10

factors to a set of dummy variables (depending on the
contrasts) and expanding interactions similarly. Then the
createDataPartition() is employed to split the dataset into
the training and validation samples by the ratio of 7:3.

Data dimension

It is very important to clarify the data dimension within the
TensorFlow™ framework. In our example, each subject is a
1 × 6 vector for the feature space, and the outcome (label) is
a 1 × 2 vector. The number of classes is 2.

> dim(x_train)

[1] 1400 6

> dim(y_train)

[1] 1400 2

Placeholders for features and labels

Placeholder is one of the tensor types used in TensorFlow™.
It is a variable that we will assign data in a future time.
Placeholders are nodes whose value is fed in at execution
time. In the example, placeholders refer to the features and
labels that will be used in a session, they are empty in the
graph.

> library(tensorflow)

> tf$reset_default_graph()

> X <- tf$placeholder(tf$float32,

shape(NULL, ncol(x)),

name = "X")

> Y = tf$placeholder(tf$float32, shape(NULL, 2L),

name = "Y")

The above code firstly loads the tensorflow package
(version: 1.13.1.9000) to the workspace. Details for the
installation of TensorFlow within R environment are
available at https://tensorflow.rstudio.com/tensorflow/
articles/installation.html. The tf$reset_default_graph()
function clears the default graph stack and resets the global
default graph. The tf$placeholder() function has three
arguments: data type, shape and name. In the example, the
data type is float32 for both features and labels. The shape
is the dimension of the features and labels. The NULL
value in the shape means that the first dimension of the

placeholder can be any number of subjects. The name
argument specifies the Tensorflow name that will appear in
the graph.

TensorFlowTM variables for weights and bias

TensorFlow™ variables are stateful nodes which output
their current value; meaning that they can retain their
value over multiple executions of a graph. It is the best way
to represent shared, persistent state manipulated by your
program. In fact, variables are the things that you want
to tune in order to minimize the loss, such as the bias and
weights in the example.

>W = tf$Variable(tf$random_normal(shape(ncol(x),2L),

stddev = 1.0),

name = "weights")

>b = tf$Variable(tf$zeros(shape(2L)), name = "bias")

TensorFlow™ variables can be created using the
tf$Variable() function. The arguments define the shape and
initial values of the variables. The property of the variable
W can be viewed with the following code:

> print(W)

<tf.Variable 'weights:0' shape=(6, 2) dtype=float32_ref>

Unlike the conventional S3 R object, the result of a
TensorFlow™ object cannot be obtained until running a
session.

Operations for logistic regression model

Binary logistic regression model requires a sigmoid function
to transform the probability into the logit scale.

() 1P mort 1 =
1 ze−=
+

where z = b + w1
• age + w2

• lac + w3 • wbc + w4
• sexMale + w5

•
typeMed + w6

• typeSurg
Instead of using the conventional mean squared error,

we use a cost function called Cross-Entropy, also known as
Log Loss. Cross entropy consists of two parts: one for mort
=1 and the other for mort = 0. A cost function basically tells
us how good our model is at making predictions for a given
value of W and b.

https://tensorflow.rstudio.com/tensorflow/articles/installation.html
https://tensorflow.rstudio.com/tensorflow/articles/installation.html

Annals of Translational Medicine, Vol 7, No 20 October 2019 Page 5 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

() () ()
1

1lo ˆ ˆss 1 1
n

i i i i
i

y log y y log y
n =

 = − ⋅ + − ⋅ − ∑

where iy is the observed outcome which takes values

of 0 or 1; ˆiy is the predicted probability of event taking
values from 0 to 1 1(.)

1
ˆ

ii zi e y
e−=

+
. With cross entropy, as the

predicted probability comes closer to 0 (ˆ 0)iy  for the “yes”
example (1)iy = , the loss increases closer to infinity. The
purpose of model training is to find appropriate weights (W)
and bias (b) to minimize the loss function.

> logits = tf$add(tf$matmul(X, W), b)

> pred = tfnnsigmoid(logits)

The tf$matmul() function multiply two matrix X and W,
note that the second dimension of X must be equal to the
first dimension of W according to the matrix multiplication
rule. Then the tf$add() function add the bias term b,
resulting in a tensor in logit scale. The tfnnsigmoid()
function is employed to transform the logit scale to
probability. The next step is to define the loss function. We
will use sigmoid cross entropy with logits as a loss function.

> entropy = tfnnsigmoid_cross_entropy_with_logits(labels = Y,

logits = logits)

> loss = tf$reduce_mean(entropy, name = "loss")

With the loss function being defined, we can use
gradient descent approach to find appropriate weights and
bias to minimize the loss function. The gradient measures
how much the output of a function changes if you change
the input a little bit. It can be thought of as the slope of a
function. A higher gradient means a steeper slope and the
faster a model can learn. In mathematical terms, a gradient
is a partial derivative of the loss function with respect to its
weights (6). The gradient of the loss function can be written
as ()w L w∇ w.r.t. the weights. The learning rate η determines
the size of the step we take to reach the minimum. The
update process can be written as: ()w w η wL w= − ⋅∇ . The
process can be written in R code as follows:

> learning_rate = 0.01

> optimizer = tf$train$

GradientDescentOptimizer(learning_rate = learning_rate)$

minimize(loss)

> init_op = tf$global_variables_initializer()

The second line defines an operation to initialize global
variables in the graph. Now that we have trained the model,
let’s evaluate it:

> correct_prediction <- tf$equal(tf$argmax(logits, 1L),

tf$argmax(Y, 1L),

name = "correct_pred")

> accuracy <- tf$reduce_mean(tf$cast(correct_prediction,

tf$float32),

name = "accuracy")

Save all values of model performance

There i s a spec ia l opera t ion ca l l ed summar y in
TensorFlow™ to facilitate visualization of the model
parameters like weights and biases of a logistic regression
model, metrics like loss or accuracy values, and images like
input images to a neural network. The summary operation
takes in a regular tensor and outputs the summarized data
to the computer disk.

> loss_scalar <- tf$summary$scalar("Loss", loss)

> accuracy_scalar <- tf$summary$scalar("Accuracy",

accuracy)

> W_hist <- tf$summary$histogram("Coefficient", W)

> b_hist <- tf$summary$histogram("Intercept", b)

> merged <- tf$summary$merge_all()

The tf$summary$scalar() function is to write the values
of a scalar tensor that changes over time or iterations to
the computer disc. In the example, the loss and accuracy of
the model performance are scalar tensors that change over
training iterations. Similarly, the tf$summary$histogram()
function is used to plot the histogram of the values of a
non-scalar tensor. This gives us a view of how does the
histogram (and the distribution) of the tensor values change
over training iterations. In the example, it's used to monitor
the changes of weights and biases distributions. The last
line of code merges all statistics so that all summaries can be
run at once within the running session.

Execute a graph within a session

Now that we have structured the graph, let’s execute a graph
within a session. Note that all results can only be returned
after running a session. Technically, a session places the
graph operations on hardware such as CPUs or GPUs and

Zhang et al. Logistic regression modeling

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Page 6 of 10

provides methods to execute them.

> learning_rate = 0.01

> with(tf$Session() %as% sess, {

sess$run(init_op)

for (i in 1:10000) {

sess$run(optimizer,

feed_dict = dict(X=x_train, Y=y_train))

}

sess$run(accuracy,

feed_dict=dict(X = x_valid, Y = y_valid))

})

[1] 0.758

The output shows that the accuracy is only 0.758, which
is far less than that obtained by the conventional glm()
function. We need to tune the hyperparameters to obtain a
better predictive performance.

Hyperparameters

There are many hyperparameters in model training.
Here we will explain some important ones for the logistic
regression model.
	 Epoch is one forward pass and one backward pass of

all the training examples.
	 Batch size is the number of training examples in one

forward/backward pass. The larger the batch size,
the more memory space you’ll need.

	 Iteration is one forward pass and one backward pass
of one batch of subjects in the training set.

Now let’s define some values for these important
hyperparameters.

> epochs = 10000 # Total number of training epochs

> batch_size = 30 # Training batch size

> display_freq_iter = 10 # Frequency of displaying the training

results

> display_freq_epoch = 1000

> learning_rate = 0.01 # The optimization initial learning rate

The display_freq_iter and display_freq_epoch are parameters
for printing results during the training iterations. They will
not influence the results. The above specification results in
a total of 46 iterations.

> nrow(x_train)/batch_size

[1] 46.66667

Create an interactive session

An alternative method to run a session is by calling the
tf$InteractiveSession() function. The only difference with
a regular Session is that an InteractiveSession installs itself
as the default session on construction. In other words,
the InteractiveSession supports less typing, as allows to run
variables without needing to constantly refer to the session
object. In the example, we launch an InteractiveSession:

> sess = tf$InteractiveSession()

TensorBoard

TensorBoard is a visualization tool that comes with any
standard TensorFlow™ installation. In Google’s words: “The
computations you’ll use TensorFlow for (like training a massive
deep neural network) can be complex and confusing. To make it
easier to understand, debug, and optimize TensorFlow programs,
we’ve included a suite of visualization tools called TensorBoard.”
The two most important purposes of TensorBoard is: (I) to
visualize the graph and (II) writing summaries to visualize
the learning process. For example, the changes of accuracy
across training epochs can be visualized with TensorBoard.

To visualize the graph with TensorBoard, we need to
write log files of the program. To write event files, we first
need to create a train_writer for those logs, using this code:

> train_writer <- tf$summary$FileWriter(logdir = "YOUR

PATH/logs")

> train_writer$add_graph(sess$graph)

The directory stores log files and the graph of the
program is added by using the add_graph() function. We
will not call the tensorboard() function at present because
we want to store more summary statistics to the train_writer
object.

Run the model within a session

We need to initialize all variables at the beginning of
running a session.

Annals of Translational Medicine, Vol 7, No 20 October 2019 Page 7 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

> sess$run(init_op)

Number of training iterations in each epoch

> num_tr_iter = floor(nrow(y_train) / batch_size)

All used global variables need to be initialized (i.e., you
do not need to initialize variables that are not run, or none
of the runs depends on them.). The number of iterations is
explained as above.

> for (epoch in 1:epochs){

if(epoch %% display_freq_epoch == 0){

print(paste('Training epoch:',epoch),quote = F)

}

Randomly shuffle the training data at the beginning of each

#epoch

sample_seq <- sample(1:nrow(x_train))

x_train <- x_train[sample_seq,]

y_train <- y_train[sample_seq,]

for (iteration in 1:num_tr_iter) {

start = (iteration-1) * batch_size+1

end = iteration * batch_size

x_batch = x_train[start:end,]

y_batch = y_train[start:end,]

Run optimization op (backprop)

feed_dict_batch = dict(X = x_batch,Y = y_batch)

result <- sess$run(list(merged, optimizer),

feed_dict=feed_dict_batch)

summary <- result[[1]]# extract the summary result of merged

train_writer$add_summary(summary, epoch) # write summary

#to disk

if(iteration %% display_freq_iter == 0 &

epoch %% display_freq_epoch == 0){

Calculate and display the batch loss and accuracy

loss_batch = sess$run(loss,

feed_dict=feed_dict_batch)

acc_batch = sess$run(accuracy,

feed_dict=feed_dict_batch)

print(sprintf("iter %i: Loss=%.2f, Training Accuracy=%.2f",

iteration, loss_batch, acc_batch),quote = F)

}

}

Run validation after every 100 epoch

if(epoch %% display_freq_epoch == 0){

feed_dict_valid = dict(X = x_valid,Y = y_valid)

loss_valid = sess$run(loss, feed_dict=feed_dict_valid)

acc_valid = sess$run(accuracy, feed_dict=feed_dict_valid)

print('---',quote = F)

print(sprintf("Epoch: %i,

validation loss: %.2f, validation accuracy: %.2f",

epoch, loss_valid, acc_valid),quote = F)

print('---',quote = F)

}

}

The above code loops through epochs. Recall that we
have defined the total number of epochs to be 10,000.
There are a number of iterations within each epoch. The
actual data are passed to the sess$run() function by using the
dict() function. The tensor objects (merged and optimizer)
in the list argument are the part of the graph that run in the
session. It is not necessarily to run the whole graph. The
above loop print validation loss and accuracy at a frequency
of 1,000 epochs, and at an iteration of 10 within each epoch.
The output for the last training epoch is as follows:

[1] Training epoch: 10000

[1] iter 10: Loss=0.18, Training Accuracy=0.90

[1] iter 20: Loss=0.28, Training Accuracy=0.97

[1] iter 30: Loss=0.24, Training Accuracy=0.87

[1] iter 40: Loss=0.18, Training Accuracy=0.93

[1] ---

[1] Epoch: 10000, validation loss: 0.18, validation accuracy: 0.92

[1] ---

Model validation in the testing set

Note that the model is evaluated in the validation cohort
in the above session run, we can validate the model
performance in the testing set as follows:

> x_test = with(dat_test,

model.matrix(~ age + lac + wbc+

sex + type))[,-1];

> y_test = with(dat_test, model.matrix(~ mort + 0))

> feed_dict_test = dict(X = x_test, Y = y_test)

> loss_test = sess$run(loss, feed_dict = feed_dict_test);

Zhang et al. Logistic regression modeling

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Page 8 of 10

> acc_test = sess$run(accuracy, feed_dict = feed_dict_test)

> print(sprintf("Test loss: %.2f, test accuracy: %.2f",

loss_test, acc_test),quote = F)

[1] Test loss: 0.19, test accuracy: 0.93

The first two lines transform the testing set to those
suitable for passing to the TensorFlow™ placeholder. In the
following sessions, we only run the loss and accuracy tensors
because we already have trained the model with updated
weights and bias. The result showed that the accuracy of the
model was 0.93 in the testing set.

Weights and bias

The weights and bias after training can be obtained by
running the b and W tensors in the session. Also remember
to close the session after running.

> sess$run(b)

[1] 21.10329 -21.11448

> sess$run(W)

[,1] [,2]

[1,] -0.1486220 0.1487045

[2,] -2.9049671 2.9064085

[3,] -0.6881254 0.6884889

[4,] 1.6609378 -1.6614350

[5,] -1.9071095 1.9081335

[6,] 2.1673198 -2.1680720

> sess$close()

The output shows that the weights and bias are close to
the one obtained by the glm() method. However, you need
to tune the hyperparameters such as learning rate and the
number of epochs to achieve the minimal loss.

Launch the TensorBoard

The tensorboard() function provides a tool to inspect
and understand your TensorFlow runs and graphs. The
argument log_dir is to specify the directory to scan for
training logs.

> tensorboard(log_dir = "/YOUR PATH/logs")

The TensorFlow™ graph is shown in Figure 2. The
graph displays the tensors and operations defined in
the previous code. From the bottom, there is a matrix
multiplication between X and weights (W), and then the
bias (b) was added. The tensor shape is shown in the data
flow edge. In the scalar tab of the TensorBoard, there are
two plots showing the accuracy and loss across training
epochs. It appears that the training accuracy and loss
stabilize after 5,000 epochs (Figures 3 and 4).

Concluding remarks

The article shows how to perform logistic regression model

Figure 2 TensorBoard showing the graph of tensor flow for the logistic regression model.

Close legend.

Namespace* ?
OpNode ?
Unconnected series* ?
Connected series* ?
Constant ?
Summary ?
Dataflow edge ?
Control dependency edge ?
Reference edge ?

Graph (* = expandable)

logistic_loss
Add

Y
MatMul
weights

...1 more

gradients GradientDe...

GradientDe...

GradientDe...

GradientDesc...

MatMul

gradients

gradients

gradients gradients

gradients
gradients

gradients

Cast

Const_1

Const
loss

Loss_1

Accuracy_1

ArgMax ArgMax...
dimension dimension

correct...

Sigmoid

Add

accuracy

logistic_loss

random_nor

bias

bias

bias

Weights

weights

weights

init

init

init

Y

X

Annals of Translational Medicine, Vol 7, No 20 October 2019 Page 9 of 10

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

training in TensorFlow™ within R. It is useful for beginners
who are going to work with TensorFlow™. However, the
power of TensorFlow™ is not fully demonstrated with the
current example (i.e., the accuracy of the model trained
with TensorFlow™ is no better than the one trained with
the conventional method). It is probably due to the fact
that the data is simulated with generalized linear model
and there is no complex interaction and non-linear terms.
Thus, the maximum likelihood method is capable to obtain
the weights and bias to maximize the likelihood function.
Since the function is linear with monotone property, there
is no local minima. TensorFlow™ has the power to model
complex relationship among features and labels and it
has been widely used for some deep learning methods.
Understanding how the TensorFlow™ works will help to
explore more on data science.

Acknowledgments

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

References

1.	 Tolles J, Meurer WJ. Logistic Regression: Relating Patient

0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.74
0.72

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Accuracy_1

Figure 3 Training accuracy across epochs.

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Loss_1

Figure 4 Training loss across epochs.

Zhang et al. Logistic regression modeling

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(20):591 | http://dx.doi.org/10.21037/atm.2019.09.125

Page 10 of 10

Characteristics to Outcomes. JAMA 2016;316:533-4.
2.	 Shi L, Wang XC. Artificial neural networks: Current

applications in modern medicine. IEEE, 2010:383-7.
3.	 Chen JH, Asch SM. Machine Learning and Prediction in

Medicine - Beyond the Peak of Inflated Expectations. N
Engl J Med 2017;376:2507-9.

4.	 Castelvecchi D. Can we open the black box of AI? Nature

2016;538:20-3.
5.	 Stefaniak B, Cholewiński W, Tarkowska A. Algorithms

of Artificial Neural Networks - Practical application
in medical science. Polski Merkuriusz Lekarski.
2005;19:819-22.

6.	 Ruder S. An overview of gradient descent optimization
algorithms. Vol. cs.LG, arXiv.org. 2016.

Cite this article as: Zhang Z, Mo L, Huang C, Xu P; written
on behalf of AME Big-Data Clinical Trial Collaborative Group.
Binary logistic regression modeling with TensorFlow™. Ann
Transl Med 2019;7(20):591. doi: 10.21037/atm.2019.09.125

