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Editorial Commentary

Circular RNAs as diagnostic tool for renal transplant patients with 
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The kidney is a multifunctional organ that filters waste 
products from the blood in our body in the form of 
urine. In addition, kidneys also function to regulate blood 
pressure, balance electrolytes, and secrete erythropoietin 
to support erythrocyte (red blood cells) production. Severe 
loss of kidney function or kidney failure results in the 
accumulation of fluid and metabolic waste products—if 
left untreated, can lead to seizures, coma, or even death. 
Currently, the gold standard treatment for end-stage kidney 
disease patients is kidney transplantation (1). Unfortunately, 
as of 2016, the numbers of kidneys available for kidney 
transplantation are less than 17% of what are needed (2,3). 
Hence significant effort had gone into preventing transplant 
rejection or transplant failure due to reoccurrence of the 
primary disease or the development of graft interstitial 
fibrosis and glomerulosclerosis (4). In effort to avoid such 
complication and support graft survival in recipients, 
patients must take immunosuppressive medications. When 
to start these medications depends on the severity of acute 
kidney rejection, which is classically measured by kidney 
allograft biopsy (5,6). However, renal biopsy is invasive and 
carries potential associated risks to patient health. Non-
invasive methods are preferred, which is a focus of intensive 
research in recent years (7-14).

Alternative splicing (“splicing”) is a post-transcriptional 
process in which exons of nascent precursor messenger 
RNA (pre-mRNA) transcripts are included or excluded to 

form the mature mRNA (15). In humans, more than 90% 
of multi-exonic genes undergo splicing (16,17). Due to its 
important contribution in diversifying protein isoforms 
from one gene, dysregulation in splicing (called “aberrant 
splicing”) results in various human diseases, including renal 
diseases (18-21). Recent studies show that some spliced out 
exons and introns are not degraded in the nucleus, but an 
upstream 3' splicing site (ss) can join with a downstream 5' 
ss in a reversed order (called “backsplicing”) to give rise to 
circular RNAs (circRNAs) (22-24). Since their discovery 
in early 1990s, studies have shown that circRNAs are 
quite stable and predominantly localize to the cytoplasmic 
compartment of cells (25,26). One interesting feature of 
circRNAs is that they are more stable than that of non-
circular RNAs (e.g., mRNA); this is due to the fact that 
circRNAs, which lack free 5' and 3' ends, are not susceptible 
to RNA exonuclease-mediated degradation. Because of 
their stability, circRNAs accumulate in the blood (27-29), 
saliva (30), and urine (31), which have made them attractive 
candidates for biomarker discovery. Due to the less invasive 
(i.e., collection of blood) and non-invasive (i.e., saliva 
and urine) procedures necessary for their collection from 
patients, as compared to surgically procured/needle biopsy 
samples, circRNAs stand as an easily accessible diagnostic 
biomarker to potentially distinguish/identify various types 
of human diseases.

In a recent study by Kölling et al. (32), authors investigated 
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the potential of using circRNAs in urine to distinguish kidney 
transplant patients with acute T cell-mediated allograft 
rejection from those without rejection (Figure 1). By utilizing 
human circRNA microarray (targeting 13,617 circRNAs), 
the authors detected 5,199 circRNAs in urine. Of these, 
363 circRNAs were identified to be differentially expressed. 
Among these differentially expressed circRNAs, the 
authors chose two circRNAs, hsa_circ_0071475 and hsa_
circ_0001334, for further analysis.

According to circBase (33), the database for circRNAs, 
hsa_circ_0071475 is located on chr 4:183,245,098-183,268,082 
(GRCh37/hg19) and spans exons 1 and 2 of teneurin 
transmembrane protein 3 (TENM3) gene, which encodes for 
a transmembrane protein to regulate eye (34) and neuronal 
development (35). This circRNA was originally identified 
in Salzman et al. (36) and Rybak-Wolf et al. (37) to be 
expressed in cell lines (e.g., Hela, human ES cells) and 
various regions of brain (e.g., cerebellum, frontal cortex), 
respectively. Similarly, hsa_circ_0001334 is located on chr 
3:127,337,917-127,341,124 (GRCh37/hg19) and spans 
exons 13 to 16 of minichromosome maintenance complex 
component 2 (MCM2) gene, which is involved in the 
initiation of genome replication (38). This circRNA was 
previously reported to be detected in CD19+ leukocytes (39). 
Since it is known that the expression pattern and function 
of circRNA may correlate with its parental gene (40), it is 
interesting to note that previous studies reported MCM2 
can be used as prognostic proliferative marker in renal cell 
carcinoma (41) and Wilms tumor (42), suggesting that the 
selected circRNA, hsa_circ_0001334, can be originated from 
kidneys. Indeed, further validation experiments by Kölling 
et al. (32) show that the concentrations of hsa_circ_0001334 

(but not hsa_circ_0071475) were significantly increased in 
patients with acute T cell-mediated rejection compared 
with stable transplant controls without signs of rejection. To 
further confirm the specificity of this differential expression, 
the authors also provide an evidence that the concentrations 
of this circRNA did not differ in kidney transplant patients 
with urinary tract infection. Based on these expression 
analyses, the authors propose hsa_circ_0001334 as a 
biomarker of acute renal allograft rejection, which can be 
detected in urine of patients to offer a non-invasive method.

As noted by the authors, it is a single-center cohort 
study. Thus, more rigorous, multi-center studies are 
needed to further confirm the validity of hsa_circ_0001334 
as a biomarker. Given that circRNAs can be detected by 
RT-PCR assay, the primer pair can be designed at the 
backsplicing site to specifically target the circRNA but not 
its parental gene. Thus, the multi-center studies can be 
easily conducted using urine. Furthermore, the molecular 
mechanism of urinary circRNA release is not provided 
in this study, which is harder to investigate as the origin 
of circRNAs is extremely difficult to detect unless the 
parental gene is cell-type specifically expressed (more so 
than tissue specificity). However, as noted above, previous 
studies indicate the upregulation of MCM2, the parental 
gene of hsa_circ_0001334, in renal tumors (41,42). Thus, 
it is plausible that aberrant splicing of MCM2 gene caused 
by deterioration in transplanted kidney may produce  
hsa_circ_0001334. However, a closer investigation about 
splicing variants of MCM2 gene is needed as there are 
nine MCM2 transcripts annotated in the Ensembl database 
(Ensembl Gene ID: ENSG00000073111), including five 
protein-coding, two nonsense mediated decay, one retained 

Figure 1 Detection of circRNAs from urine. Because circRNAs are more stable than linear mRNAs, Kölling et al. (32) proposed the usage 
of circRNAs in urine to distinguish kidney transplant patients with acute T cell-mediated allograft rejection from those without rejection.
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intron, and two lncRNAs. One lncRNA, MCM2-203 
(Ensembl Transcript ID: ENST00000468659.1), spans 
between exons 12 and 16 of the longest isoform of MCM2 
gene, MCM2-201 (Transcript ID: ENST00000265056.12), 
which corresponds to the majority of region covered by 
hsa_circ_0001334. As with any other lncRNA and circRNA 
research, rapid amplification of cDNA ends (RACE) 
and Northern blotting experiments must be performed 
to understand the whole transcriptomic length of  
hsa_circ_0001334 to delineate its distinction from another 
lncRNA encoded by the parental gene, MCM2.

In the last part of the Results section, the authors provide 
the in silico screening data of possible binding of miRNAs 
to hsa_circ_0001334. However, no direct, biological 
evidence (e.g., binding assay between circRNA and 
miRNAs) has not been provided, which raises a question 
about hsa_circ_0001334 functioning as miRNA sponges. 
Indeed, a comprehensive bioinformatics analysis (43) and 
our biological validation experiments (44) indicate that 
circRNAs acting as miRNA sponges are rare, while binding 
to RNA-binding proteins (RBPs) is more frequent (45-47)  
as some RBPs [e.g., Muscleblind (48), Quaking (49)] are 
involved in the biogenesis of circRNAs. Although it is 
outside of the scope of the current study, further detailed 
studies, including the characterization of hsa_circ_0001334 
for its exact transcript length and biogenesis as well as gain/
loss-of-function experiments, are needed to understand the 
biology of circRNA in general.

In conclusion, the study by Kölling et al. (32) provides a 
nice addition to a repertoire of circRNAs detected in urine, 
which could serve as biomarkers for various diseases and 
their progressions, including acute renal allograft rejection 
investigated in this study.
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