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Background: The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains dismally poor and is 
widely considered as an intricate genetic disorder. The mutational landscape of PDAC may directly reflect 
cancer immunogenicity and dictate the extent and phenotype of immune cell infiltration. In adverse, the 
microenvironment may also effect the gene expression of cancer cells, which is associated with clinical 
prognosis. Thus, it is crucial to identify genomic alterations in PDAC microenvironment and its impacts on 
clinical prognosis.
Methods: The gene expression profiles, mutation data and clinical information of 179 pancreatic cancer 
patients with an initial pathologic diagnosis ranging from 2001 to 2013 were retrieved from The Cancer 
Genome Atlas (TCGA) database. The MAlignant Tumor tissues using Expression data (ESTIMATE) 
algorithm for calculating immune scores and stromal scores and Tumor IMmune Estimation Resource 
(TIMER) resource for cell infiltrations were applied in this study.
Results: The average immune score or stromal score of PDAC subtype was significantly higher than 
that of other specific subtypes. KRAS mutant cases had significantly lower immune scores (P=0.001) and 
stromal scores (P=0.007), in concert with lower immune scores in TP53 mutant cases (P=0.030). However, 
no significant difference was found in SMAD4 and CDKN2A mutations. In the cohort OS/RFS, the 
infiltration levels of CD8+ T cells, B cells, Macrophages, Neutrophils and DCs in high stromal score 
group were higher than those in the low score group (all P<0.001), as well as in immune score groups 
except for Macrophages in the cohort RFS. In the cohort OS/RFS, 317/379 upregulated genes and 9/6 
downregulated genes were observed in the high immune score group, while 227/205 upregulated genes 
and 17/6 downregulated genes in the high stromal score group. With the analysis for prognostic value 
of DEGs, 82 and 58 DEGs respectively in the high immune and stromal score group were verified to be 
significantly associated with better OS (P<0.05), while 53 and 17 DEGs respectively with longer RFS 
(P<0.05). Functional enrichment analysis showed genes of prognostic values were significantly related to 
immune response.
Conclusions: A list of genes with prognostic value in PDAC microenvironment were obtained from 
functional enrichment analysis based on immune and stromal scores, which indicates a series of potential 
auxiliary prognostic biomarkers for PDAC are available. Further research on these genes may be valuable and 
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Introduction

In developed countries, pancreatic cancer turns out to be the 
fourth leading cause of cancer-related death with a 5-year 
survival rate of less than 8.0%. In 2019, 56,770 people 
are predicted to be diagnosed with pancreatic cancer and  
45,750 patients will die from the disease in United State 
(1,2). Although enormous efforts have been made to 
improve survival of pancreatic cancer patients, the treatment 
effect is still not obvious. Pancreatic ductal adenocarcinoma 
(PDAC) is considered as an intricate genetic disorder, 
therefore, it is crucial to identify genomic alterations in 
PDAC and its impacts on clinical prognosis.

Nowadays, lots of studies have profiled and analyzed 
various amounts of PDAC specimens to uncover molecular 
aberrations at different levels of DNA, RNA, protein and 
epigenetics by using The Cancer Genome Atlas (TCGA) 
Research Network (3-5). Recent whole genomes analyses 
of PDAC have revealed a complex mutational landscape: 
KRAS, TP53, SMAD4 and CDKN2A are the four most 
common mutated genes, of which KRAS mutations are near 
ubiquitous (6). Additionally, mutations of KRAS gene may 
predict a worse prognosis, which accounts for over 90% of 
PDAC (7,8).

The tumor microenvironment (TME) is the surroundings 
where cancer cells exist and absorb nutrients or interact 
with other ingredients. Besides the cancer cells, the TME 
is composed of surrounding blood vessels, the extracellular 
matrix, other non-tumor cells (for example, immune cells, 
dendritic cells, macrophages and fibroblasts) and also 
inflammatory mediators (9,10). On one hand, the mutational 
landscape of cancer cells, a direct reflection of cancer 
immunogenicity, can dictate the extent and phenotype of 
immune cell infiltration, and more generally influence the 
whole TME (11-13). On the other hand, TME also effect 
the gene expression of cancer cells, which is associated with 
the clinical prognosis (14-17). Immune and stromal cells, 
two major components of non-tumor cell populations in 

the TME, have been identified as prognostic assessment of 
tumor (18,19). Then, Yoshihara et al. designed an algorithm 
based on gene expression signatures to estimate the immune 
and stromal cells, as well as tumor purity, called Estimation 
of STromal and Immune cells in MAlignant Tumor tissues 
using Expression data (ESTIMATE) (20). Subsequently, 
ESTIMATE algorithm has been utilized to prostate  
cancer (21), cholangiocarcinoma (22), glioblastoma (23), lung 
cancer (24), breast cancer (25), salivary duct carcinoma (26), 
colon cancer (27) and many other malignancies, disposing 
the large data with effect, whereas the immune and/or 
stromal scores of PDAC in prognostic value has not been 
sufficiently investigated.

In this study, we focused on the immune and stromal 
cells that formed the major fraction of non-tumor 
components of PDAC tissues. By making use of both 
TCGA PDAC cohorts and immune/stromal scores based 
on ESTIMATE algorithm, a group of genes related to the 
microenvironment of PDAC was obtained for predicting 
prognosis or recurrence, and potential microenvironment 
associated functions were enriched in high immune/stromal 
environment.

Methods

Database

Level 3 gene expression profile for pancreatic cancer was 
downloaded from the TCGA data portal [TCGA pancreatic 
cancer (PAAD)] (https://xenabrowser.net/datapages/), RNA 
expression for pancreatic cancer using IlluminaHiSeq_
RNASeqV2 (October 13, 2017). Gene mutation details 
about KRAS, TP53, SMAD4 and CDKN2A, along with 
data on clinical characteristics such as age, gender, TNM 
stage, histological type, survival and recurrence was also 
obtained from TCGA data portal. The downloaded 
database was applied by the ESTIMATE algorithm for 
calculating immune scores and stromal scores (https://
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bioinformatics.mdanderson.org/estimate/) (20). This study 
was approved by the Clinical Research Ethic Committee of 
Zhongshan Hospital, Fudan University (B2014-019).

Tumor IMmune Estimation Resource (TIMER)

The TIMER is a web-based open access resource for 
systematical analysis of immune infiltrations within various 
cancers (https://cistrome.shinyapps.io/timer/). All the 
PDAC cases from TCGA database were estimated for 
the abundances of six tumor-infiltrating cell populations 
including CD4+ T cells, CD8+ T cells, B cells, Macrophages, 
Neutrophils and Dendritic cells (DCs).

Differentially expressed genes (DEGs) identification

Package “limma” was used for data analysis (28). Fold 
change (FC) >3 and adj. P<0.05 were set as the cutoffs to 
identify the DEGs.

Volcano plots and heatmaps for clustering analysis

Volcano plots were generated with all related genes using 
package “gplots” in PDAC cases with FC >3 and adj. 
P<0.05. Package “gplots” were also used for generating 
heatmaps and clustering with DEGs.

Enrichment analysis of DEGs

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) (https://david.ncifcrf.gov/) (29) was 
an open-access tool for functional enrichment analysis 
of DEGs to identify gene oncology (GO) characteristics 
including biological processes (BP), molecular functions 
(MF), and cellular components (CC). Pathway enrichment 
analysis in reference to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways was also performed within 
the DAVID database. False discovery rate (FDR) <0.05 was 
used as the cut-off.

Protein-protein interaction (PPI) network construction

The PPI network was initially obtained from STRING 
database (30) and reconstructed via Cytoscape software (31). 
The minimum required interaction score was set up as 
0.400. Further analysis was just applied for individual 
networks that owned 10 or more nodes, and networks were 
directly excluded from further study if they have less than 

10 nodes. Molecular COmplex Detection (MCODE) was 
then manipulated to find topology-based clusters to locate 
regions with a high degree of connectivity.

Analysis

In this study, statistical analyses were performed with 
statistical software package R (version 3.3.4, http://www.
r-project.org/). The Kaplan-Meier survival curves of overall 
survival (OS) and recurrence free survival (RFS) were 
generated by Graphpad Prism 7 program, and the Log-
rank test for Kaplan-Meier survival curves was conducted to 
illustrate their relationships to gene mutations or expression 
levels of DEGs. All P value <0.05 made a significant 
difference statistically.

Results

Patients characteristics

The gene expression profiles, mutation data and clinical 
information of 179 pancreatic cancer patients with an initial 
pathologic diagnosis ranging from 2001 to 2013 were 
retrieved from the TCGA cohorts. Of them, 99 (55.3%) 
patients were male and 80 (44.7%) patients were female. 
Eighty-two patients (45.8%) were less than 65 years old. 
And 147 (82.1%) patients were pathologically diagnosed 
as PDAC, while 31 (17.3%) patients were other specific 
subtypes including neuroendocrine carcinoma, colloid 
carcinoma, undifferentiated carcinoma and so on. All other 
clinicopathological characteristics were displayed in Table S1. 
In the total cohort, 172 (96.1%) patients had complete and 
valid OS data and 152 (84.9%) patients had complete and 
valid RFS data. Among all PDAC patients, 146 (99.3%) 
patients had complete and detailed gene mutation data, 141 
(95.9%) patients had complete and valid OS data (cohort 
OS), and 122 (83.0%) patients had complete and valid RFS 
data (cohort RFS) (Figure 1).

Immune scores and stromal scores are significantly 
associated with PDAC subtype

ESTIMATE algorithm-derived immune scores ranged 
from −1,559.87 to 3,037.78 (stromal scores: −1,843.32 
to 2,179.19, Figure 2A,B). The average immune score 
of PDAC subtype was higher than that of other specific 
subtypes (Figure 2A, P<0.001), as well as stromal score 
(Figure 2B, P=0.007), which indicated that both scores were 
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Figure 1 The flow chart of the valid data from TCGA database. TCGA, The Cancer Genome Atlas.
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meaningfully correlated with PDAC.
Based on the published four leading mutation gene in 

PDAC (KRAS, TP53, SMAD4 and CDKN2A), mutations 
of these genes are prognostic variables for worse survival 
rates in PDAC. Thus, the distribution of immune/stromal 
scores according to the status of these four gene mutations 
in PDAC cases was plotted. The results showed that KRAS 
mutant cases had significantly lower immune scores (P=0.001) 
and stromal scores (P=0.007), in concert with lower immune 
scores in TP53 mutant cases (P=0.030) (Figure 2C,D,E,F). 
However, no significant difference was found in SMAD4 and 
CDKN2A mutations (Figure 2G,H,I,J).

The PDAC cases were parted into high and low score 
groups to uncover the potential correlation of OS or RFS 
with immune/stromal scores. Kaplan-Meier survival curves 
showed that median OS and RFS of cases with the high 
immune scores was longer than those in the low score group 
(OS, Figure 2K, 596 vs. 518 d, P=0.305; RFS, Figure 2L, 
872 vs. 593 d, P=0.241). Consistently, patients with higher 
stromal scores also had longer median OS and RFS, when 
compared to those with lower scores (OS, Figure 2M, 603 vs. 
511 d, P=0.427; RFS, Figure 2N, 872 vs. 620 d, P=0.107), 
although they were not statistically significant.

Infiltration level of immune cells with immune scores and 
stromal scores in PDAC

With the estimation of TIMER, the infiltration levels 
of CD4+ T cells, CD8+ T cells, B cells, Macrophages, 

Neutrophils and DCs in PDAC cases were retrieved. In the 
cohort OS, the infiltration levels of CD4+ T cells, CD8+ T 
cells, B cells, Macrophages, Neutrophils and DCs in high 
score group of immune scores were higher than those in 
the low score group (Figure 3A, all P<0.001). However, the 
infiltration level of CD4+ T cells was significantly lower in 
the high stromal score group than that in the low stromal 
score group (Figure 3B, all P<0.001). Additionally, in the 
cohort RFS, the same findings were achieved based on 
stromal scores (Figure 3C, all P<0.001). Concomitantly, the 
infiltration levels of CD4+ T cells, CD8+ T cells, B cells, 
Neutrophils and DCs were significantly higher in the high 
immune score group (all P<0.001) except for macrophages 
(Figure 3D, P=0.113).

Comparison of gene expression profile in PDAC with 
immune/stromal scores

To find out the correlation of global gene expression profiles 
with immune/stromal scores, all PDAC cases retrieved from 
TCGA database were analyzed. Volcano plots in Figure 
4A,B (heatmaps at http://fp.amegroups.cn/cms/7163e514a5
4a84ea9f6c0cb2c3e9502f/atm.2019.10.91-1.pdf and http://
fp.amegroups.cn/cms/690049836e7ea409972c4702e67c8
84d/atm.2019.10.91-2.pdf) and Figure S1A,B (heatmaps at 
http://fp.amegroups.cn/cms/f09688e3ced2927a8f9ddcac36
fc0b4d/atm.2019.10.91-3.pdf and http://fp.amegroups.cn/
cms/e9c7cee39b6804d69f3d7615402ae928/atm.2019.10.91-
4.pdf) displayed distinct gene expression profiles of cases 
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Figure 2 Immune scores and stromal scores are associated with PDAC subtype and their overall survival. Distribution of (A) immune 
scores and (B) stromal scores of PDAC and other subtypes. Distribution of (C) immune scores and (D) stromal scores for KRAS mutant 
and KRAS wildtype PDAC cases. Distribution of (E) immune scores and (F) stromal scores for TP53 mutant and TP53 wildtype PDAC 
cases. Distribution of (G) immune scores and (H) stromal scores for SMAD4 mutant and SMAD4 wildtype PDAC cases. Distribution of 
(I) immune scores and (J) stromal scores for CDKN2A mutant and CDKN2A wildtype PDAC cases. PDAC cases were divided into two 
groups based on their immune scores or stromal scores. Kaplan-Meier survival curve of (K) OS and (L) RFS between high and low immune 
score groups. Kaplan-Meier survival curve of (M) OS and (N) RFS between high and low stromal score groups. PDAC, pancreatic ductal 
adenocarcinoma; OS, overall survival; RFS, recurrence free survival.
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between high and low immune/stromal score groups in 
the cohort OS/RFS. Within the cohort OS, in comparison 
to low immune score group, 317 upregulated genes and 9 
downregulated genes were observed in the high score group 
(FC >3.0, P<0.05). Likewise, compared to low stromal score 
group, 227 upregulated genes and 17 downregulated genes 
were observed in the high score group (FC >3.0, P<0.05). 
Moreover, Venn diagrams (Figure 4C,D) revealed 124 
upregulated genes were commonly found in both high score 
groups, as well as 6 downregulated genes. In the cohort 
RFS, 379 upregulated genes and 6 downregulated genes 
were observed in the high score group based on immune 
scores (FC >3.0, P<0.05), and 205 upregulated genes and  
6 downregulated genes were found in the high stromal 
score group. In addition, Venn diagrams (Figure S1C,D) 
showed that 91 upregulated genes and 2 downregulated 
genes commonly appeared in both high score groups.

To reveal the underlying functional impacts of the 
DEGs, functional enrichment analysis of the DEGs were 
performed in high-immune/stromal score groups. Based on 
immune scores in the cohort OS, Top GO terms identified 
included immune, inflammatory and adaptive immune 
response, integral component of plasma membrane and T 
cell receptor complex, and receptor and chemokine activity 

(Figure 4E,F,G), while based on stromal scores, immune and 
defense response, extracellular region, and carbohydrate 
and cytokine binding were identified (Figure 4H,I,J). 
According to KEGG pathway analysis, the top one pathway 
with either immune scores or stromal scores was cytokine-
cytokine receptor interaction (Figure 4K,L). However, based 
on immune/stromal scores in the cohort RFS, the top 
GO terms and KEGG pathways were displayed in Figure 
S1E,F,G,H,I,J,K,L.

Correlation of DEGs expression in OS and RFS

To investigate the potential impacts of individual DEGs 
on survival, Kaplan-Meier survival curves were plotted and 
analyzed for the PDAC cohort. Within the total 326 DEGs 
in the high-immune score group, 82 DEGs were verified 
to be significantly associated with better OS in log-rank 
tests (P<0.05), while 58 DEGs were confirmed as better 
OS predictors in the 244 DEGs in the high-stromal score 
group (P<0.05, Table S2). In addition, among the high-
immune score group of 385 DEGs, 53 DEGs were verified 
to be significantly associated with longer RFS in log-rank 
tests (P<0.05), and in the high-stromal score group of 221 
DEGs, 17 DEGs were associated with longer RFS (P<0.05, 

Figure 3 Infiltration level of immune cells with immune scores and stromal scores in PDAC under the estimation of TIMER. In valid OS 
cohort, the infiltration levels of B cells, CD4+ T cells, CD8+ T cells, Neutrophils, Macrophages, and DCs in PDAC according to (A) immune 
scores and (B) stromal scores. In valid RFS cohort, the infiltration levels of B cells, CD4+ T cells, CD8+ T cells, Neutrophils, Macrophages, 
and DCs in PDAC according to (D) immune scores and (C) stromal scores. PDAC, pancreatic ductal adenocarcinoma; OS, overall survival; 
RFS, recurrence free survival.
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Figure 4 Comparison of gene expression profile with immune scores and stromal scores in valid OS PDAC cohort. (A) Volcano plots of 
the DEGs of immune scores of top half (high score) vs. bottom half (low score). P<0.05, fold change >3. (B) Volcano plots of the DEGs of 
stromal scores of top half (high score) vs. bottom half (low score). P<0.05, fold change >3. Venn diagrams showing the number of commonly 
(C) upregulated or (D) downregulated DEGs in immune and stromal score groups. (E-J) Top significant GO terms. (K,L) Top significant 
KEGG pathway analysis. False discovery rate (FDR) of GO and KEGG analysis was acquired from DAVID functional annotation tool. 
OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; DEGs, differentially expressed genes; GO, gene oncology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; DAVID, the Database for Annotation, Visualization and Integrated Discovery.

Table S3).

PPI of genes with prognostic value

PPI networks with the STRING and Cytoscape tool were 
administrated to better illustrate the interactions among the 

identified DEGs related to OS/RFS in high immune/stromal 
score groups. The network consisted of 8 modules including 
146 nodes and 473 edges. The top two most significant 
modules were selected for further analysis (Figure 5). For 
the purpose of convenience of recognition, specific names 
were given to these two modules—CNR2 and CCL22 
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modules, respectively. In the CNR2 module (Figure 5A), 
the remarkable 11 nodes involved in 55 edges formed in 
the network. CNR2, CCR5, CXCR2, CCR4, P2RY13, 
PTGER3, and CCL19 were typically presented in this 
network, as they had the highest degree of connectivity with 
other members of the module. Meanwhile, in the CCL22 
module (Figure 5B), CCL22, BTK, CD19, and CD1C had 
higher degree values.

Functional enrichment analysis of genes with prognostic 
value

Functional enrichment analysis of these genes indicated 
robust relationship with immune response, which was 
consistent with PPI network analysis. In the enrichment 
analysis, a total of 9 GO terms of BP, 6 of CC and 2 of 
MF were found to be significant (FDR, or FDR <0.05, 
-log FDR >1.301). Top GO terms included immune and 
adaptive immune response (Figure 6A), plasma and integral 
of plasma membrane (Figure 6B), and chemokine receptor 
activity (Figure 6C). What’s more, altered transcriptional 
output in the pathways yielded from the KEGG analysis 
(Figure 6D) were associated with immune response.

Discussion

In this study, we attempted to take advantage of samples in 
the TCGA database to obtain a list of genes that related to 
the PDAC microenvironment, which supported to predict 
prognosis or recurrence. Based on immune/stromal scores 
from the ESTIMATE algorithm, we found that both 

scores were higher in PDAC subtype. When considering 
to frequent gene mutation related to PDAC, significant 
increasing scores were found in KRAS and TP53 mutation. 
Although there was no statistical difference in high vs. low 
immune/stromal score groups, cases with higher immune/
stromal scores may actually obtain a longer OS or RFS. As 
recently reported, higher immune cell score was validated 
to be associated with better prognosis of resected PDAC 
patients (32,33). So that we utilized TIMER, an open-access 
web server for comprehensive analysis of tumor-infiltrating 
immune cells, to characterize the landscape of immune 
infiltrations, which was crucial for the investigation and 
validation of immune scores and looked for the distribution 
of each immune components (34). Intriguingly, just CD4+ 
T cells showed an adverse trend in high vs. low immune/
stromal score groups.

Then, by comparing global gene expression within 
the high vs. low immune (stromal) scores, 326 DEGs for 
cohort OS and 485 DEGs for cohort RFS were found 
to be involved in TME, totally enriching in immune, 
inflammatory and adaptive immune response, T cell 
receptor complex, and cytokine and chemokine activity, 
which further validated the essential role of immune 
regulations in the formation of PDAC microenvironment 
(35-37).

Next, OS and RFS of these DEGs were analyzed to 
identify a list of genes were associated with prognosis 
and recurrence in PDAC patients in terms of immune/
stromal scores. Accordingly, 8 PPI network modules were 
depicted through STRING and Cytoscape tool, and all of 
which showed strong associations with immune response. 

Figure 5 Top 2 protein-protein interaction (PPI) networks of CNR2 and CCL22 modules. The color of a node in the PPI network reflects 
the log (FC) value of the Z score of gene expression, and the size of node indicates the number of interacting proteins with the designated 
protein.

A B
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From the PPI networks, CNR2 and CCL22 are highly 
interconnected nodes. CNR2 encodes the Cnr2 receptor, 
which is highly expressed in T and B lymphocytes, dendritic 
cells, natural killer cells, monocyte/macrophages, and 
neutrophils (38,39). Many studies verified CNR2 expressed 
highly in tumor-associated macrophages or various cancer 
cells and its expression was proved to be correlated with 
poor prognosis (40-43). However, CNR2 was also proved 
as an efficient prognostic regulator for some specific 
cancers in several researches, which had not previously been 
linked with PDAC prognosis (44-46). In our study, CNR2 
was significantly proved to be associated with a better 
prognosis for PDAC patients. Likewise, CCL22, known 
as macrophage-derived chemokine, abundantly expressed 
in many malignancies was correlated with migration of 
regulatory T cells (47,48). It has been widely reported for 
its role in tumor-associated immunosuppression and could 
further predict reduced survival (47-50). It was strange 
that CCL22 expression in microenvironment displayed a 
positive role in survival of PDAC patients within our study, 
which may potentially facilitate other immune components 
except for regulatory T cells. However, Nakanishi et al. (51) 
previously reported that macrophage-derived CCL22 in 
human lung cancer was significantly correlated with lower 
risk of recurrence after tumor resection and longer RFS, 
which was consistent with our findings.

The s tudy  o f  tumor  gene  expres s ion  prof i l e s 
contributes to the identification of molecular subtypes 
and the establishment of predictive prognostic models, 
enriching our understanding of the molecular pathways of 
tumorigenesis (6). In addition, in our previous research, 
we found the tumor infiltrating CD8+ T cells in PDAC 
were significantly associated with survival, while tumor 
infiltrating Tregs had the adverse role. Also, TGF-
beta blockade combined with depletion of Treg or DC 
vaccine administration were verified to successfully inhibit 
PDAC growth (2,52). All our previous results showed 
PDAC microenvironment had a giant impact on tumor 
progression. Concomitantly, pancreatic cancer cell-
intrinsic PD-1 was also identified and proved its role in 
tumor progression (53). Current progresses in cancer 
immunotherapy and the reduced cost of high-throughput 
techniques have led to extensive investigations of tumor 
immune cell communications by means of genomic tools. 
Thus, through our mining the PDAC microenvironment 
related genes with valuable prognostic roles, some novel 
microenvironment related gene panel may be established 
for survival or recurrence prediction. However, owing to 
the heterogeneity of the tumor genomes and the plasticity 
of the host immune system, the communication between 
tumor cells and immune infiltrations remains a testing 
research topic and further validations are preferred (54).
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Figure 6 GO term and KEGG pathway analysis for DEGs significantly associated with prognosis. Top pathways with FDR <0.05, –log FDR 
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KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FDR, false discovery rate.
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However, there were still some limitations in this study. 
First, all the data are retrieved from the public database and 
external validations will be required to verify our findings. 
Second, the significance of up- and down-regulated 
genes may not be the answers to what is really driving 
the aggressive biology of pancreatic cancer, so further 
mechanistic study of these genes are encouraged.

In conclusion, we have extracted a list of genes with 
prognostic value in PDAC microenvironment from 
functional enrichment analysis of TCGA database based on 
immune and stromal scores in our study. These genes can 
be useful to predict the prognosis of PDAC patients and 
show their potentials to be auxiliary prognostic biomarkers 
for PDAC. Additionally, further research on these genes 
may be valuable and helpful to understand the crosstalk 
between tumor and microenvironment, new immune 
evasion mechanisms and underlying novel therapeutic 
targets in an integrated manner.
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Supplementary

Table S1 The clinicopathological stigma of the PAAD TCGA data

Variables No. of patients (n, %), total n=179

Age

<65 82 (45.8)

≥65 97 (54.2)

Mass location

Head 139 (77.7)

Body 14 (7.8)

Tail 15 (8.4)

Others 11 (6.1)

Gender

Female 80 (44.7)

Male 99 (55.3)

Grade

G1 31 (17.3)

G2 96 (53.6)

G3 48 (26.8)

G4 2 (1.1)

GX 2 (1.1)

AJCC 7th staging

I 21 (11.7)

II 147 (82.1)

III 4 (2.2)

IV 5 (2.8)

Unknown 2 (1.1)

T staging

T1 7 (3.9)

T2 24 (13.4)

T3 143 (79.9)

T4 3 (1.7)

TX 2 (1.1)

N staging

N0 51 (28.5)

N1 124 (69.3)

NX 4 (2.2)

Margin

R0 117 (65.4)

R1 53 (29.6)

R2 5 (2.8)

RX 4 (2.2)

Histological type

Adenocarcinoma ductal type 147 (82.1)

Colloid (mucinous non-cystic) carcinoma 4 (2.2)

Neuroendocrine carcinoma 8 (4.5)

Other subtypes 19 (10.6)

Unknown 1 (0.6)

KRAS mutation

Yes 124 (69.3)

No 54 (30.2)

Unknown 1 (0.6)

TP53 mutation

Yes 106 (59.2)

No 72 (40.2)

Unknown 1 (0.6)

SMAD4 mutation

Yes 37 (20.7)

No 141 (78.8)

Unknown 1 (0.6)

CDKN2A mutation

Yes 41 (22.9)

No 137 (76.5)

Unknown 1 (0.6)

TCGA, The Cancer Genome Atlas.



Figure S1 Comparison of gene expression profile with immune scores and stromal scores in valid RFS PDAC cohort. (A) Volcano plots of 
the DEGs of immune scores of top half (high score) vs. bottom half (low score). P<0.05, fold change >3. (B) Volcano plots of the DEGs of 
stromal scores of top half (high score) vs. bottom half (low score). P<0.05, fold change >3. Venn diagrams showing the number of commonly 
(C) upregulated or (D) downregulated DEGs in immune and stromal score groups. (E-J) Top significant GO terms. (K,L) Top significant 
KEGG pathway analysis. False discovery rate (FDR) of GO and KEGG analysis was acquired from DAVID functional annotation tool. 
RFS, recurrence free survival; PDAC, pancreatic ductal adenocarcinoma; DEGs, differentially expressed genes; GO, gene oncology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; DAVID, the Database for Annotation, Visualization and Integrated Discovery.
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Table S2 Differentially expression genes (DEGs) with significant OS predictor in the high immune/stromal scores group

Gene
OS

P value HR

Immune score group

CXCR2P1 0.047 0.992

CILP 0.025 0.950

SLCO2B1 0.01 0.889

CD226 0.037 0.907

NLRC4 0.032 0.886

TCL1A 0.045 0.949

PAX5 0.048 0.932

CXCR2 0.04 0.917

TARP 0.037 0.890

IGF1 0.032 0.922

SCN7A 0.042 0.926

CCR5 0.013 0.885

CNR2 0.026 0.912

GPR65 0.04 0.859

LILRB1 0.032 0.874

LY86 0.006 0.876

FCER2 0.016 0.926

CTSG <0.001 0.911

FCRLA 0.019 0.919

DPEP2 0.032 0.869

CR2 0.02 0.946

TFEC 0.041 0.869

SELL 0.023 0.865

KCNA3 0.025 0.874

CCR4 0.039 0.892

MAL 0.025 0.871

ABCA8 0.018 0.882

LILRA4 0.031 0.885

KLHL6 0.013 0.846

CD19 0.005 0.912

P2RY8 0.043 0.842

SNX20 0.01 0.834

LCP1 0.016 0.841

CLEC17A 0.025 0.881

IKZF1 0.025 0.853

CCL22 0.011 0.865

CD36 0.019 0.883

FCRL3 0.023 0.890

BIN2 0.044 0.822

SLC24A4 0.013 0.834

ITGAL 0.016 0.851

TRAF3IP3 0.034 0.836

CCL21 0.012 0.893

WDFY4 0.007 0.867

ITK 0.032 0.863

PRKCB 0.048 0.867

CD27 0.039 0.847

ANK2 0.006 0.839

WAS 0.028 0.810

CD200R1 0.018 0.829

TNFRSF13B 0.005 0.877

ADIPOQ 0.03 0.930

PI16 0.029 0.907

CHRDL1 0.04 0.885

MS4A1 0.017 0.918

CD5 0.03 0.832

P2RY14 0.016 0.830

PLA2G2D 0.019 0.890

IGJ 0.047 0.889

TNNT1 0.006 1.103

PKHD1L1 0.018 0.848

MAP4K1 0.018 0.840

SPN 0.001 0.822

GIMAP7 0.008 0.808

RELN 0.005 0.876

IL10RA 0.041 0.782

ABCD2 0.018 0.833

TUSC5 0.03 0.883

ZNF831 0.005 0.859

CCL19 0.024 0.895

CCL23 0.026 0.846

EMR3 0.04 0.837

CELF2 <0.001 0.800

ZAP70 0.022 0.813

KIAA0748 0.016 0.810

CFP 0.01 0.784

SCARA5 0.001 0.871

PLA2G2A 0.01 0.890

C5orf20 0.042 0.798

C16orf89 0.006 0.817

BEND4 0.017 0.776

DARC 0.029 0.841

RASGRP2 0.004 0.769

Stromal score group

FBN1 0.024 0.968

PPFIA2 0.028 0.964

KLHL4 0.031 0.956

SEMA3D 0.039 0.953

ADAM22 0.03 0.936

CILP 0.025 0.950

STON1-CTF2A1L 0.024 0.945

ITGA9 0.024 0.928

GPNMB 0.044 0.910

PTGER3 0.004 0.903

EBF2 0.039 0.926

PIK3CG 0.039 0.912

SPON1 0.01 0.893

SLCO2B1 0.01 0.889

CD226 0.037 0.907

TCL1A 0.045 0.949

ADAM23 0.025 0.907

CXCR2 0.04 0.917

ABCC9 0.045 0.885

IGF1 0.032 0.922

SCN7A 0.042 0.926

CCR5 0.013 0.885

NEXN 0.035 0.865

NRXN1 0.037 0.900

CTSG <0.001 0.911

FCRLA 0.019 0.919

CR2 0.02 0.946

SFRP4 0.039 0.879

TFEC 0.041 0.869

KCNK2 0.042 0.875

NLGN4X 0.032 0.857

SLIT3 0.035 0.861

KCNA3 0.025 0.874

CCR4 0.039 0.892

ABCA8 0.018 0.882

KLHL6 0.013 0.846

CD19 0.005 0.912

IKZF1 0.025 0.853

FCRL3 0.023 0.890

SFRP1 0.033 0.887

WDFY4 0.007 0.867

ITK 0.032 0.863

PRKCB 0.048 0.867

ANK2 0.006 0.837

ADIPOQ 0.03 0.930

CHRDL1 0.04 0.885

MS4A2 0.033 0.821

MS4A1 0.017 0.918

PLA2G2D 0.019 0.890

IGJ 0.047 0.890

GHR 0.028 0.801

TNNT1 0.006 1.103

ABCD2 0.018 0.833

TUSC5 0.03 0.883

ZNF831 0.005 0.859

CELF2 <0.001 0.800

CHL1 0.043 0.821

SCARA5 0.001 0.871

PLA2G2A 0.01 0.890

OS, overall survival.



Table S3 Differentially expression genes (DEGs) with significant RFS predictor in the high immune/stromal scores group

Gene
RFS

P value HR

Immune score group

CD226 0.032 0.922

CMKLR1 0.027 0.901

FCRL3 0.019 0.930

CXCR5 0.033 0.932

FABP4 0.017 0.936

FCRL1 0.015 0.930

FCRLA 0.048 0.933

CCL14 0.037 0.905

SIGLEC7 0.026 0.879

GVIN1 0.021 0.883

TCL1A 0.041 0.937

RELN 0.017 0.916

AQP9 0.037 0.897

FCER2 0.031 0.926

CD300LG 0.038 0.901

THEMIS 0.027 0.896

PRKCB 0.033 0.888

C10orf128 0.026 0.878

ADAMDEC1 0.01 0.893

SCARA5 0.04 0.916

CD37 0.019 0.839

EMR1 0.025 0.858

CNTN2 0.037 0.875

BTK 0.044 0.837

BLK 0.044 0.907

CCR2 0.033 0.847

NCF1 0.028 0.828

CLEC12A 0.032 0.858

RASGRP2 0.026 0.816

NELL2 0.022 0.861

CSF3R 0.02 0.818

SNX20 0.048 0.809

P2RY13 0.024 0.837

KMO 0.011 0.794

CD1C 0.03 0.852

PLA2G2A 0.007 0.904

NLRC4 0.047 0.779

CLEC10A 0.005 0.846

CD1E 0.019 0.814

CHIT1 0.021 0.884

C19ORF59 0.028 0.848

LILRA1 0.046 0.795

AMICA1 0.041 0.793

GRAP2 0.005 0.752

CCL23 0.013 0.824

P2RY14 0.009 0.749

LTB 0.013 0.768

CXCR2 0.021 0.824

CSF2RB 0.042 0.744

TIFAB 0.08 0.740

EMR3 0.035 0.776

CFP 0.015 0.720

CD1B <0.001 0.712

Stromal score group

ARHGAP28 0.011 0.928

P2RX7 0.07 0.920

COL1OA1 0.017 0.928

FCRL3 0.019 0.930

FCRLA 0.048 0.933

FMO1 0.04 0.888

AQP9 0.037 0.897

PRKCB 0.033 0.888

C10orf128 0.026 0.878

SCAR5 0.04 0.916

BCHE 0.027 0.853

CCR2 0.033 0.847

RGS18 0.046 0.844

AMH 0.001 1.149

PLA2G2A 0.007 0.904

CHIT1 0.021 0.884

CXCR2 0.021 0.824

EMR3 0.035 0.776

RFS, recurrence free survival.


