
Page 1 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):758 | http://dx.doi.org/10.21037/atm.2019.11.71

Original Article

Upregulated miR-155 inhibits inflammatory response induced by C. 
albicans in human monocytes derived dendritic cells via targeting 
p65 and BCL-10
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Background: Candida albicans (C. albicans) is one of the most common fungal pathogens causing superficial 
and systemic infections. The innate immune system is the first defense line against C. albicans infection. MiR-
155, a multifunctional microRNA (miRNA), has been proved to be a crucial regulator in innate immune 
response against bacterial and virus. However, the biological function of miR-155 in innate immune response 
against C. albicans infection remains unknown.
Methods: The expression miR-155, as well as inflammatory factors [interleukin-6 (IL-6), tumor necrosis 
factor-α (TNF-α) and interferon-γ (IFN-γ)], in monocytes derived dendritic cells (DCs) during heat-killed 
C. albicans infection was detected by quantitative reverse-transcriptase polymerase chain reaction (qRT-
PCR). The biological functions of miR-155 were investigated with “gain- and loss-of-function” experiments. 
Potential targets of miR-155 were identified by bioinformatics analysis, luciferase assay and western blot. 
Small interfering RNA (siRNA) was used to validate the function of miR-155 target.
Results: C. albicans increased the expression of miR-155 and pro-inflammatory factors. MiR-155 induced 
by C. albicans was depended on Dectin-1-spleen tyrosine kinase (Syk)/Raf-1-MAPK signaling pathway. 
Furthermore, miR-155 suppressed the secretion of pro-inflammatory cytokines induced by C. albicans by 
targeting NF-κB p65 and B cell leukemia/lymphoma 10 (BCL-10).
Conclusions: In conclusion, up-regulated miR-155 acts as a negative feedback regulator in the innate 
immune response against C. albicans infection.
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Introduction

Candida albicans (C. albicans) is an opportunistic fungal 
pathogen commonly colonizing on the surface of skin and 
mucosa (oral cavity, intestinal tract and vagina). It rarely 

causes infection in immunocompetent individuals (1); 

however, in immunocompromised individuals, C. albicans 

is one of the most prevalent fungal pathogen. It causes 

various types of candidiasis, ranging from superficial 
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infection to invasive systemic infection (2). In recent years, 
with the increasing number of immunocompromised 
patients [e.g., cancer therapy, transplantation and the 
human immunodeficiency virus (HIV) epidemics], 
the incidence of C. albicans infections has considerably  
increased (3). In addition, physical alterations of the 
anatomical barrier, such as surgery, indwelling medical 
devices or antibiotic treatment, facilitate the access of 
fungi to the bloodstream and lead to increased incidence of 
disseminated candidiasis (4). Noteworthy, the nosocomial 
bloodstream infection in immunosuppressive patients is life-
threatening, with a mortality rate as high as 40% (5).

The innate immune response is the first defense line 
against C. albicans infection (6). It is initiated by the 
recognition of the conserved molecular components of C. 
albicans, termed as pathogen-associated molecular patterns 
(PAMPs). The recognition of PAMPs depends on the 
pattern recognition receptors (PRRs) on innate immune 
cells (7). Dendritic cells (DCs), a kind of classical innate 
immune cells, plays an important role in anti-C. albicans 
immune response. With PRRs expressed on its surface, 
DCs senses the PAMPs of C. albicans and initiates the innate 
immune response rapidly. Many PRRs are involved in the 
interaction of C. albicans, such as toll-like receptors (TLRs), 
C-type lectin receptors (CLRs) and nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs) (8). 
Dectin-1, a member of CLRs, can sense the β-glucan on 
the surface of C. albicans. The interaction between Dectin-1 
and β-glucan triggers two intracellular signaling pathways 
named spleen tyrosine kinase (Syk)-dependent pathway 
and Raf-1 dependent pathway. The activation of these two 
pathways induces the immune response against C. albicans, 
which is characterized by the release of several types of 
pro-inflammatory cytokines, such as interleukin-6 (IL-6) 
and tumor necrosis factor-α (TNF-α) to control C. albicans 
infection (9,10).

MicroRNA (miRNA) is a type of short non-coding 
RNA that regulates multiple target genes expression at 
post-transcriptional level (11). It is widely involved in the 
regulation of immune cell development and activation 
(12,13). MiR-155 is an active immune regulator in innate 
immune response with dose-dependent effects (14,15). 
Moderate elevated miR-155 expression is critical for pro-
inflammatory response; however, extremely high level of 
miR-155 starts to gradually terminate the response, due to 
its ability to target different transcripts (15). Previous studies 
have shown that miR-155 was upregulated by heat-killed 
C. albicans in murine bone marrow-derived macrophages 

(BMDMs) (16) and human DCs (17). However, the 
biological function of miR-155 in human monocytes derived 
DCs treated with C. albicans remains unknown. Hence, the 
aim of the present study was to investigate the biological 
function and underlying mechanisms of miR-155 in C. 
albicans activated DCs.

Methods

Candida albicans (C. albicans)

C. albicans (SC5314) strain was grown in Sabouraud 
dextrose (SBD) agar plates at 37 ℃. For cells preparation, 
C. albicans cultures were incubated in Sabouraud broth 
at 37 ℃ overnight with shaking. Cells were harvested by 
centrifugation, washed twice with phosphate-buffered saline 
(PBS), and heat-killed for 1 hour at 100 ℃ (18). C. albicans 
were counted and adjusted to the proper concentration 
before using.

Cell lines and culture

Healthy individuals’ peripheral blood mononuclear cells 
(PBMCs) were isolated using density centrifugation 
with Ficoll (GE Healthcare, Sweden). CD14+ monocyte 
subsets were positively selected using anti-CD14 MACS 
microbeads from freshly isolated PBMCs, according to 
the instructions of the manufacturer (Miltenyi Biotec, 
Germany). Purified monocytes were cultured at 37 ℃ in 
6-well plates with complete RPMI 1640 medium at the 
concentration of 106/mL. The cells were induced into 
immature DCs with 50 ng/mL of human granulocyte-
macrophage colony-stimulating factor (GM-CSF, R&D 
Systems, USA) and 50 ng/mL human IL-4 (R&D Systems, 
USA) for 6 days and the culture was replaced at the third 
and fifth day of induction (19). This study was approved 
by the Ethic Board of Changzheng Hospital and written 
approvals were obtained from the subjects.

THP-1 cells, 293T cells and murine RAW264.7 cells 
were obtained from the Shanghai Institutes for Biological 
Sciences. All cells were cultured in either RPMI 1640 
medium or DMEM (Gibco, USA) containing 10% fetal 
bovine serum (FBS, Gibco, USA) and 100 U/mL penicillin-
streptomycin (Mediatech, USA).

Immature DCs were treated with heat-killed C. albicans 
at a ratio of 1:1 (20) or 100 ng/mL lipopolysaccharide (LPS, 
Sigma, USA). For inhibiting signaling pathways, DCs were 
pretreated with following inhibitors for 1 hour: Dectin-1 
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inhibitor laminarin 100 μg/mL, Syk inhibitor R406 5 μM, 
Raf-1 inhibitor GW5074 10 μM, MEK/ERK inhibitor 
U0126 10 μM, JNK inhibitor SP600125 10 μM and p38 
kinase inhibitor SB203580 1 μM. All these inhibitors, except 
laminarin, were purchased from MedChem Express (USA), 
while laminarin was purchased from Sigma-Aldrich (USA).

Transient transfection

Small interfering RNAs (siRNAs) for Dectin-1, NF-κB 
p65 and B cell leukemia/lymphoma 10 (BCL-10) were 
ordered from RiboBio Company (Guangzhou, China). 
The sequences of siRNAs were presented in Table S1. 
MiR-155 mimics and mimic control, miR-155 inhibitor 
and inhibitor control were purchased from RiboBio 
Company, and used at the concentration of 50 and 100 nM, 
respectively. SiRNAs (100 nM) were transfected into DCs 
using riboFECTTM CP reagent from RiboBio according to 
the manufacturer’s instructions. Twenty-four or forty-eight 
hours after transfection, cells and the supernatants were 
harvested for the subsequent experiments. The transfected 
miRNA negative control (NC) tagged by red fluorescence 
was imaged by fluorescence microscopy.

RNA isolation and quantitative reverse-transcriptase 
polymerase chain reaction (qRT-PCR)

Total RNA, including miRNA, was extracted using Trizol 
reagent (Invitrogen, USA) according to the manufacturer’s 
instructions.  RNA concentration was assessed by 
NanoDrop 2000 (Wilmington, DE, USA). Total RNA was 
reverse-transcribed to complementary DNA (cDNA) with 
PrimeScript™ RT Master Mix (Takara, Japan). qRT-PCR 
for target genes was performed on the Applied Biosystems 
7500 Sequence (Applied Biosystems, USA). The primers 
were presented in Table S2. The primers for miR-155 and 
U6 small nuclear RNA were purchased from RiboBio 
Company (Guangzhou, China). Relative expression of 
messenger RNA (mRNA) and miRNA was calculated using 
the 2–ΔΔCT method (21).

Western blot

After stimulation and transfection, cells were harvested 
and centrifuged. Protein was isolated by RIPA Lysis Buffer 
containing protease inhibitor cocktail and phosphatase 
inhibitor. Protein concentration was quantified using 
BCA protein assay kit (Takara, Japan). Equal amounts of 

protein were separated by 10% SDS-PAGE (Beyotime 
Biotechnology) and transferred onto PVDF membranes 
(Millipore, USA). After blocking, the membranes were 
sequentially incubated with specific primary antibodies for 
2 hours at room temperature. Antibodies against phospho-
ERK (ab201015), total-ERK (ab184699), phospho-JNK 
(ab124956), total-JNK (ab179461) and BCL-10 (ab108328) 
were purchased from Abcam (USA); while phospho-p65 
(3033S), Dectin-1 (60128S), p38 (9212S), phospho-p38 
(4511S), c-Jun (9165S) and phospho-c-Jun (3270S) were 
from Cell Signaling Technology (USA); and total p65 [5006] 
was from Affinity Bioscience (USA). Immune-complexes 
were incubated with fluorescein-conjugated secondary 
antibodies and then detected using an Odyssey fluorescence 
scanner (Li-Cor, USA).

Enzyme-linked immunosorbent assay (ELISA)

The concentrations of cytokines in cell culture supernatants 
were measured using specific commercial ELISA kits 
(Neobioscience, China) according to the manufacturer’s 
instructions. All experiments were performed in triplicate.

Luciferase reporter assay

Luciferase reporter plasmids p65-3'UTR-Wt, p65-3'UTR-
Mt, BCL-10-3'UTR-Wt, BCL-10-3'UTR-Mt were 
constructed from Obio Technology. Then these plasmids 
(0.2 μg) were co-transfected into 293T cells (2×105/mL) 
with a renilla control plasmid (0.01 μg) and miR-155 mimics 
(100 nM), NC (100 nM) using 0.2 μL Lipo2000 transfection 
reagent (Invitrogen, USA) according to the manufacture’s 
instruction. Medium contains transfection reagents was 
replaced with fresh and complete DMEM medium 24 hours  
after transfection. Reporter luciferase activities were 
measured using the Dual-Luciferase kit (E1910, Promega) 
according to the manufacture’s instruction 48 hours later.

Statistical analysis

All experiments were performed in triplicate. All statistical 
analyses were performed using SPSS 19.0 (SPSS Inc., 
Chicago, IL, USA) or GraphPad Prism 6.0 (GraphPad 
Software, La Jolla, CA, USA). Data were presented as mean 
and standard deviation (SD) from at least three independent 
experiments. Student’s t-test was used to compare the mean 
values between two groups. Multiple comparisons were 
performed using one-way analysis of variance (ANOVA). A 



Wei et al. MiR-155 in innate immune response against C. albicans

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):758 | http://dx.doi.org/10.21037/atm.2019.11.71

Page 4 of 12

P value <0.05 was considered statistically significant.

Results

Heat-killed C. albicans promoted the expression of pro-
inflammatory factors and miR-155 in DCs

Heat-killed C. albicans significantly increased the expression 
of intracellular IL-6, TNF-α and interferon-γ (IFN-γ) 
mRNA as well as the concentration of these cytokines in 
culture media after 24 hours’ stimulation (Figure 1A,B). We 
further detected the dynamic changes of these cytokine’s 
mRNA with PCR, then found that their expressions were 
upregulated up to 3 hours after C. albicans stimulation 
and then decreased (Figure 1C). Meanwhile, miR-155 was 

significantly upregulated in DCs by heat-killed C. albicans 
in time dependent manner (Figure 1D). In addition, a 
significant increase of miR-155 expression was detected in 
human monocytes (Figure 1E), THP-1 cells (Figure 1F) 
and murine RAW264.7 cells (Figure 1G) in response to C. 
albicans for 24 and 48 hours.

Increased miR-155 expression in DCs induced by C. 
albicans was mediated via Dectin-1-Syk/Raf-1-MAPK 
pathway

To explore whether the upregulation of miR-155 was 
relevant to Dectin-1, DCs were treated with Dectin-1 
blocker laminarin for 1 hour before heat-killed C. albicans 
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Figure 1 Heat-killed C. albicans promoted the expression of pro-inflammatory factors and miR-155 in DCs. (A) Human monocytes derived 
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IL-6, TNF-α and IFN-γ mRNAs in DCs treated with heat-killed C. albicans was detected using qRT-PCR; (D) time dependent expression 
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stimulation. As shown in Figure 2A, the upregulation of 
miR-155 was significantly impaired by laminarin. Further, 
we specifically suppressed the expression of Dectin-1 in 
DCs using siRNA. Dectin-1 expression was significantly 
decreased by s iRNA at  mRNA and protein level  
(Figure S1A,B). The upregulation of miR-155 induced by 
C. albicans was significantly impaired by siRNA of Dectin-1 
(Figure 2B). A previous study has indicated that the 
interaction of C. albicans and Dectin-1 could further activate 
Syk-dependent signaling pathway and Raf-1-dependent 
pathway (22). To explore whether these two pathways were 
involved in the upregulation of miR-155 upon Dectin-1 
stimulation, DCs were pretreated with a specific inhibitor 
for Syk (R406) and Raf-1 (GW5074), respectively. As 
shown in Figure 2C, both R406 and GW5074 significantly 
attenuated the upregulation of miR-155 induced by C. 
albicans. These results demonstrate that the increased miR-
155 expression in DCs induced by C. albicans is partially 
mediated via Dectin-1-Syk/Raf-1 pathway.

Next, we tested whether the induction of miR-155 by C. 
albicans was dependent on MAPK pathway using inhibitors. 
First, we found that both ERK and JNK, but not p38, 
in MAPK pathway were significantly phosphorylated in 
response to C. albicans (Figure 2D). We used the U0126, 
SP600125 and SB203580 to in inhibit the phosphorylation 
of MEK/ERK, JNK and p38, respectively (Figure S1C). 
The MEK/ERK inhibitor U0126 and the JNK inhibitor 
SP600125 significantly suppressed the upregulation of miR-
155 by C. albicans stimulation, whereas the p38 inhibitor 
SB203580 had little influence on the expression of miR-
155 (Figure 2E). When both ERK and JNK were inhibited, 
the expression of miR-155 was further declined (Figure 2E). 
These results imply that MAPK pathway is involved in the 
induction of miR-155 upon C. albicans stimulation.

MiR-155 suppressed the upregulation of pro-inflammatory 
cytokines in DCs induced by heat-killed C. albicans

To investigate the function of miR-155 on the production 
of inflammatory cytokines, synthetic miR-155 mimics or 
scrambled control oligonucleotides were transfected into 
DCs. Transfection efficiency was detected by fluorescence 
microscope (Figure S2A) and qRT-PCR (Figure S2B) 
after 24 hours. Overexpression of miR-155 significantly 
suppressed C. albicans-induced expression and secretion of 
IL-6, TNF-α and IFN-γ (Figure 3A,B); whereas inhibition 
of endogenous miR-155 increased the expression and 
concentration of IL-6, TNF-α and IFN-γ induced by 

C. albicans (Figure 3C,D). These results indicate that the 
upregulation of miR-155 has a negative effect on the 
production of pro-inflammatory cytokines in heat-killed C. 
albicans treatment DCs.

MiR-155 downregulated the expression of IL-6, TNF-α 
and IFN-γ in DCs against C. albicans through targeting 
NF-κB p65 and BCL-10

To identify underlying mechanisms of miR-155  in 
inflammatory response induced by C. albicans, three types 
of bioinformatic prediction software, named Targetscan, 
miRanda and miRNA.org, were used to predict the 
potential targets of miR-155. Bioinformatics analysis 
showed that 3'UTR of NF-κB p65 contained miR-
155 binding sites at 197–204 nucleotides (Figure 4A). 
Luciferase activity was significantly reduced when co-
transfected with wild type of p65 and miR-155 (Figure 
4A), indicating that miR-155 can bind to the 3'UTR of 
p65 mRNA directly. Then, upon C. albicans stimulation, 
miR-155 mimics reduced the protein level of p65, while 
miR-155 inhibitor had an opposite effect (Figure 4B). The 
dynamic changes of p65 in C. albicans treated DCs were 
also investigated. We found that the expression of p65 was 
upregulated within 6 hours after C. albicans stimulation but 
then decreased (Figure S3A). Furthermore, we used siRNA 
to knock down the expression of p65 and determined the 
production of IL-6, TNF-α and IFN-γ induced by C. 
albicans. We found that p65 siRNA significantly inhibit 
the expression of p65 at both mRNA and protein level  
(Figure S3B,C). The production of IL-6, TNF-α and IFN-γ 
was impaired by p65 siRNA in C. albicans treated DCs, at 
both mRNA (Figure 4C) and protein levels (Figure 4D). 
These results indicate miR-155 inhibits the production of 
IL-6, TNF-α and IFN-γ in C. albicans treated DCs partially 
by targeting p65.

We found that the 3'UTR of BCL-10 contained 
m i R - 1 5 5  b i n d i n g  s i t e s  a t  4 0 5 – 4 1 2  n u c l e o t i d e s  
(Figure 4E). Then luciferase activity was significantly 
reduced when co-transfected with BCL-10 wild type and 
miR-155 (Figure 4E). Upon C. albicans stimulation, protein 
level of BCL-10 was reduced after transfection with miR-
155 mimics but increased with miR-155 inhibitor (Figure 
4F). We also determined the dynamic changes of BCL-10 
in C. albicans treated DCs. Similar to p65, the expression 
of BCL-10 increased up to 6 hours after C. albicans 
stimulation but decreased then (Figure S3D). We used 
siRNA to knock down the expression of BCL-10 and found 
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that its expression was inhibited by siRNA (Figure S3E,F). 
Notably, siRNA of BCL-10 decreased the phosphorylation 
of p65 (Figure 4G). The levels of IL-6, TNF-α and IFN-γ 
induced by C. albicans were repressed significantly by siRNA 
of BCL-10 (Figure 4H,I). Taken together, these results 
indicate that miR-155 inhibits phosphorylation of p65 and 
inflammatory cytokines secretion by targeting BCL-10.

Discussion

In this study, we found that heat-killed C. albicans could 
upregulate the expression of miR-155 and inflammatory 
cytokines in DCs. Up-regulated miR-155 negatively 
regulated the production of inflammatory cytokines by 
targeting p65 and BCL-10. These results indicate that  
miR-155 plays a crucial role in negatively regulating the 
inflammation response against C. albicans in DCs.

Some previous studies have detected the miRNA profile 
of C. albicans treated cells. Using miRNA array and qRT-
PCR, Monk et al. (16) reported that the expression of miR-

155 was increased in murine BMDMs stimulated with 
C. albicans, but the function of elevated miR-155 was not 
illustrated. Similar to the study performed by Dix et al. (17), 
we observed the upregulation of miR-155 in human DCs 
treated with C. albicans. Besides, we found that heat-killed C. 
albicans could also increase miR-155 in human monocytes, 
THP-1 cells and RAW 264.7 cells. Interestingly, previous 
studies reported that miR-155 could also be elevated by 
viral infection or LPS in monocytes, macrophages and DCs 
(23-28). Taken together, these findings revealed that miR-
155 may be upregulated in innate immune cells by various 
pathogens.

Dectin-1 was confirmed to bind β-glucans on C. albicans 
wall, playing an important role in the phagocytosis of  
fungi (29) and activation of immune response (30). In our 
study, the expression of miR-155 was attenuated by Dectin-1 
inhibitor laminarin and siRNA of Dectin-1, indicating that 
the induction of miR-155 by C. albicans is partially through 
the activation of Dectin-1. A previous study has shown that 
the increased miR-155 in murine macrophages exposure to 
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UV-killed C. albicans hyphae was associated with Dectin-
1-Syk pathway, while Raf-1 pathway had no effect on miR-
155 expression (31). In contrast, using specific inhibitors for 
each pathway, our study demonstrates that both of Dectin-
1-Syk pathway and Dectin-1-Raf-1 pathway are involved in 
the induction of miR-155. The inconsistence between our 
work and previous study might be attributed to the different 
strains of C. albicans, inactivated methods and cell lines used 
in experiments.

MAPK signal pathways are known to be triggered 
by inflammatory response induced by Dectin-1 (32,33). 
Notably, MAPK pathways were reported to modulate 
miR-155 expression in murine macrophages by poly-I:C 
or TNF-α stimulation (34). In addition, the promoter 
regions of miR-155 primary transcript, B-cell integration 
cluster (BIC) contain binding sites for activator protein-1 
(AP-1) (35). In this study, ERK and JNK pathway were 
significantly phosphorylated when exposure to C. albicans. 

Inhibition of ERK or JNK significantly attenuated 
the enhanced expression of miR-155 stimulated by C. 
albicans, whereas p38 inhibitor had no effect on miR-
155 accumulation. These might be attributed to that 
inhibition of ERK or JNK pathway could suppress 
the phosphorylation of c-Jun (AP-1 key component), 
influencing the transcription of miR-155. Since cross-talk is 
existed among MAPK pathways, inhibition of one pathway 
could activate another (36). Our study found that both ERK 
and JNK were inhibited, the expression of miR-155 was 
further declined. Previous studies have reported that miR-
155 could be induced by inflammatory cytokines, such as 
TNF-α or IFN-β (34,37,38). Therefore, we hypothesize 
that there might be two possible mechanisms responsible 
for the increased expression of miR-155. One is the direct 
activation of Dectin-1 and its downstream intracellular 
signaling pathways by C. albicans; another is the effect of 
inflammatory cytokines released by innate immune cells.

Figure 4 MiR-155 regulated inflammatory response of DCs against C. albicans through targeting NF-κB p65 and BCL-10. (A) The 
sequence of miR-155 and its potential matching sites in p65 3'UTR. Dual luciferase reporter assay was performed on 293T cells to 
determine targeting of p65 3'UTR by miR-155; (B) DCs were transfected with miR-155 mimics, mimic control, miR-155 inhibitor or 
inhibitor control for 48 hours. Protein levels of p-p65 and p65 in DCs exposed to C. albicans for 3 hours (mimics, mimic control) or 
12 hours (inhibitor, inhibitor control) were detected using western blot. The levels of protein are normalized to GAPDH; (C,D) DCs 
were transfected with 100 nM siRNA of p65 or NC. After 24 hours, cells were exposed to C. albicans and the levels of IL-6, TNF-α 
and IFN-γ were detected 6 hours later using qRT-PCR and 24 hours later using ELISA; (E) the sequence of miR-155 and its potential 
matching sites in BCL-10 3'UTR. Dual luciferase reporter assay was performed on 293T cells to determine targeting of BCL-10 
3'UTR by miR-155; (F) DCs were transfected with miR-155 mimics, mimic control, miR-155 inhibitor or inhibitor control for 48 hours. 
Protein levels of BCL-10 were detected using western blot after the cell were treated with C. albicans for 3 (mimics, mimic control) or  
12 hours (inhibitor, inhibitor control). The levels of protein are normalized to GAPDH; (G) DCs were transfected with 100 nM siRNA 
of BCL-10 or NC. After 24 hours, cells were exposed to C. albicans and the levels of p-p65 were detected 3 hours later using western 
blot; (H,I) after 24 hours’ transfection with siRNA of BCL-10 or NC, cells were exposed to C. albicans and the levels of IL-6, TNF-α 
and IFN-γ were detected 6 hours later using qRT-PCR and 24 hours later using ELISA. Values are means ± SD from three independent 
experiments performed in triplicate. *, P<0.05; **, P<0.01; ***, P<0.001. DCs, dendritic cells; C. albicans, Candida albicans; BCL-10, B cell 
leukemia/lymphoma 10; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; siRNA, small interfering RNA; NC, negative control; IL-6, 
interleukin-6; TNF-α, tumor necrosis factor-α; IFN-γ, interferon-γ; qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction; 
ELISA, enzyme-linked immunosorbent assay; SD, standard deviation; mRNA, messenger RNA.
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As miR-155 has been reported to be involved in 
regulating the strength and duration of innate immune 
response (14,39), whether miR-155 could regulate the 
strength of innate immune response triggered by C. 
albicans in DCs remained unknown. We found that miR-
155 suppressed the production of inflammatory cytokines 
induced by C. albicans, including IL-6, TNF-α and IFN-γ, 
indicating that miR-155 plays as a negative regulator in 
inflammation to C. albicans. To the best of our knowledge, 
this is the first study reporting that miR-155 negatively 
regulate the releasing of IFN-γ in DCs. Then we identified 
the underlying mechanisms of miR-155 in C. albicans 
induced inflammatory response. Previous studies have 
indicated that p65, a subunit of NF-κB, was the target of 
miR-155 in endothelial inflammation (40) and gastric cancer 
(39,41). Therefore, we hypothesize that miR-155 impairs 
the upregulation of inflammatory cytokines via targeting 
p65. Using reporter assay and western blot, we found that 
miR-155 repressed the expression of p65 by direct targeting 
its 3’UTR. Furthermore, knockdown of p65 reproduced the 
effect of miR-155 mimics. These results indicate that miR-
155 negatively regulates inflammatory cytokines producing 
via targeting p65.

Previous studies have indicated that BCL-10 is involved 
in the immune response against C. albicans. After the 
Dectin-1 activation by C. albicans and phosphorylation 
by Syk, caspase recruitment domain-containing protein 
9 (CARD9) forms a complex with BCL-10 and mucosa-
associated lymphoid tissue 1 (MALT1), mediating NF-κB 
activation and initiating the expression of several type of 
inflammatory cytokines (42). Furthermore, bioinformatics 
analysis indicated that BCL-10 was a potential target of 
miR-155. Therefore, we hypothesize that BCL-10 mediates 
the anti-inflammation effect of miR-155. In this study, 
we found that miR-155 repressed the expression of BCL-
10 induced by C. albicans, and BCL-10 was a direct target 
of miR-155. Furthermore, silencing BCL-10 by siRNA 
suppressed the phosphorylation of p65 and the secretion 
of pro-inflammatory cytokines, reproducing the anti-
inflammation effects of miR-155. Accordingly, we deduce 
that miR-155 negatively regulated pro-inflammatory 
cytokines in response to C. albicans by functionally targeting 
BCL-10.

Conclusively, our study demonstrated that the activation 
of Dectin-1 pathway in DCs upregulated the expression 
of miR-155. With targeting NF-κB p65 and BCL-10, 
increased expression of miR-155 attenuated the excessive 
inflammation induced by C. albicans. MiR-155 might “fine-

tune” the innate immune response triggered by C. albicans.
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Supplementary

Table S1 Sequences of siRNA used in this study

Gene siRNA Sequences

si-Dectin-1-1 CAGGATAGCTGTTGTTTCA

si-Dectin-1-2 GGATGAAGATGGATATACT

si-Dectin-1-3 GAAGATGGATATACTCAAT

si-p65-1 GCTGCAGTTTGATGATGAA

si-p65-2 CTTCCAAGTTCCTATAGAA

si-p65-3 GGACATATGAGACCTTCAA

si-BCL-10-1 GCCACCAGATCTACAGTTA

si-BCL-10-2 CACAGAACTTCCTGATACA

si-BCL-10-3 GGACACCCTTGTTGAATCT

siRNA, small interfering RNA; BCL-10, B cell leukemia/lymphoma 10.

Table S2 Sequences of primers used for qRT-PCR in this study

Gene name Forward primers (5'-3') Reverse primers (5'-3')

IL-6 CTCAGCCCTGAGAAAGGAGA TTTCAGCCATCTTTGGAAGG

TNF-α GGAGGGGTCTTCCAGCTGGAGA CAATGATCCCAAAGTAGACCTGC

IFN-γ TGAATGTCCAACGCAAAGCA CTGGGATGCTCTTCGACCTC

Dectin-1 CGACTCTCAAAGCAATACCAGGA GTACCCAGGACCACAGCTATCAC

p65 CCTCCACCTCGACGCA GCCCAGAAGGAAACACCA

BCL-10 GCTTGGACACCCTTGTTGAATC GGGCGTCGTGCTGGATT

β-actin TACTGCCCTGGCTCCTAGCA TGGACAGTGAGGCCAGGATAG

GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAAT

qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; IFN-γ, 
interferon-γ; BCL-10, B cell leukemia/lymphoma 10; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.



Figure S1 Identification of Dectin-1-siRNAs and inhibitors for MAPK pathway. (A) DCs were transfected with 100 nM Dectin-1-siRNAs 
(si-Dectin-1) or 100 nM NC. Twenty-four hours later, the expression of Dectin-1 mRNA was determined using qRT-PCR; (B) DCs were 
transfected with 100 nM si-Dectin-1 or 100 nM NC. Forty-eight hours later, the protein of Dectin-1 was determined using western blot; 
(C) DCs were pretreated with DMSO, 1 μM SB203580 (p38 inhibitor), 10 μM SP600125(JNK inhibitor), or 10 μM U0126 (MEK/ERK 
inhibitor) for 1 hour and then stimulated with C. albicans. The expression of p-ERK, p-JNK, p-p38 and p-c-Jun protein was determined 
using western blotting. Values are means ± SD from three experiments performed in triplicate. **, P<0.01; ***, P<0.001. DCs, dendritic cells; 
siRNA, small interfering RNA; NC, negative control; mRNA, messenger RNA; qRT-PCR, quantitative reverse-transcriptase polymerase 
chain reaction; C. albicans, Candida albicans; SD, standard deviation; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SB, SB203580; 
SP, SP600125.
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Figure S2 The transfection efficiency of miR-155 in DCs. (A) Transfected miR-155 negative control tagged by red fluorescence in DCs was 
detected by fluorescence microscope; (B) miR-155 level of DCs after miR-155 mimics (50 nM) or inhibitor (100 nM) transfection was measured 
by qRT-PCR. **, P<0.01; ***, P<0.001. DCs, dendritic cells; qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction.
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Figure S3 The inhibitory effect of p65 siRNAs and BCL-10 siRNAs. (A) Dynamic expression of p-65 protein in C. albicans treated DCs 
was determined using western blot; (B) DCs were transfected with 100 nM p65-siRNAs (si-p65) or 100 nM NC. Twenty-four hours later, 
the expression of p65 mRNA was determined using qRT-PCR; (C) DCs were transfected with 100 nM si-p65 or 100 nM NC. Forty-
eight hours later, the protein of p65 was determined using western blot; (D) dynamic expression of BCL-10 protein in C. albicans treated 
DCs was determined using western blot; (E) DCs were transfected with 100 nM BCL-10-siRNAs (si-BCL-10) or 100 nM NC. Twenty-
four hours later, the expression of BCL-10 mRNA was determined using qRT-PCR; (F) DCs were transfected with 100 nM si-BCL-10 or  
100 nM NC. Forty-eight hours later, the protein of BCL-10 was determined using western blot. Values are means ± SD from three 
experiments performed in triplicate. **, P<0.01; ***, P<0.001. C. albicans, Candida albicans; DCs, dendritic cells; siRNA, small interfering 
RNA; NC, negative control; mRNA, messenger RNA; qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction; BCL-10, B 
cell leukemia/lymphoma 10; SD, standard deviation; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

NC

NC

NC

NC

S1-
p6

5

S1-
BCL-

10

S1-
BCL-

10

S2-
BCL-

10

S2-
BCL-

10

S3-
BCL-

10

S3-
BCL-

10

S1-
p6

5

S2-
p65

S2-
p65

S3-
p65

S3-
p65

Time (h)

p-p65

p65

β-actin

Time (h)

BCL-10

GAPDH

BCL-10

GAPDH

p65

β-actin

0          3          6          12        24

0           3           6         12         24

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

p6
5 

m
R

N
A

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

B
C

L-
10

 m
R

N
A

**

***
***

**
**

A B

DC

E F

Candida albicans

Candida albicans


