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Mitochondria: the panacea to improve oocyte quality?
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Abstract: Oocyte quality is one of the most important factors involving in female reproduction. The 
number of compromised oocytes will increase with maternal age, while mitochondrial dysfunction has 
implicated in age-related poor oocyte. Together with the successful application of ooplasmic transfer (OT) 
and the critical role of mitochondria in the oocyte, functional mitochondria transfer may be a feasible 
strategy to improve oocyte quality. However, limitation on ethics and laws are strictly and optimal condition 
or methods to exert transferring need to be further explored. Therefore, the role of oocyte mitochondria 
and the effective molecular involving in oocyte quality will be hot topics in next few years. In this review, 
we summarize the potential mechanism of mitochondria in oocyte and embryo development and discuss the 
next step for mitochondrial transfer therapy.
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Introduction

Infertility has become a growing problem worldwide, and 
decreased oocyte quality mainly culminates in the age-
related deterioration of reproductive capacity (1). Network 
of regulating oocyte quality is greatly complicated and 
mechanism is still unclear, but it’s certain clear that energy 
metabolism and competing endogenous RNA (ceRNA) 
regulating network are hugely essential (2).

Attributed to the key role in regulation of cellular 
metabolism and epigenetics, mitochondria have been paid 
more attentions in recent years (3-6). Several hypotheses 
implicate that mitochondria are one of the critical indicators 

in oocyte quality (7). Mitochondrial functions are important 
for the early embryo development and implantation, 
including the formation of meiotic spindles and the 
maintenance of the metaphase II (MII) spindle before 
fertilization (8). All of the complex processes oocyte goes 
through prior to ovulation and fertilization require energy, 
especially those adenosine triphosphate (ATP) derived from 
mitochondrial oxidative phosphorylation (OXPHOS) (9). 
It has been shown that insufficient ATP production during 
the oogenesis and embryogenesis will result in aneuploidy, 
a condition in which chromosomal segregation errors are 
frequently encountered (10). Furthermore, mitochondria 
as the center of cellular metabolism will have an impact on 
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gene expression by cross-talk with nucleus (11). Interaction 
between mitochondria and nucleus can involve in many 
biological progresses which are important for both oocyte 
maturation and embryonic development (11-13). Autologous 
mitochondrial transfer technologies (AUGMENT, one of 
strategy in assisted reproduction technology) which transfer 
mitochondria from oocyte precursor cells to MII oocyte have 
succeeded in promoting outcome (14). Subsequently, clinical 
research also indicates that mitochondrial transfer actually 
can rejuvenate ageing oocyte (15).

However,  a recent randomized pilot trial  f inds 
AUGMENT had no significant curative effect on 
ameliorating oocyte quality (16). This result strong strikes 
the previous study and give us more consideration about 
the credibility of mitochondrial transfer therapy. Therefore, 
what bioprocesses happen after transferring and why 
reverse results can be received by the similar operations 
will be highly concerned in the next few years. Here, we 
will describe the potential mechanism for mitochondria 
involving in oocyte quality and the future of mitochondria-
related therapy.

Mitochondrial dynamics: power to maintain 
normal oocyte and embryonic development

In human, quantity of mitochondria suffer from a great 
variation during oocyte maturation. Mitochondria in 
mature oocyte have been increased 1,000 times from only 
few dozens to more than 100 thousand ones comparing 
to primary follicles (17,18). Then, mitochondria are 
averagely distributed to each blastomere during embryonic 
development, but the total number is relatively stable before 
the blastocyst stage (19). Likewise, mitochondrial activity is 
also relatively stable before the blastocyst stage. Although 
reasons of this appearance are still obscure, disorder of 
mitochondria activation can certainly cause serious oocyte 
dysplasia (20,21). Mitochondria in mammalian oocytes are 
transcriptionally and bioenergetically silent (22), especially 
in immature eggs (23). This quiescent state is believed 
to be important to keep minimal mitochondrial DNA 
(mtDNA) mutations, because these mutations will then 
be passed down to the embryo (24). The energy required 
for oocyte maturation is mainly provided by surrounding 
granulosa cells and cumulus cells (25,26). Along with the 
accomplishment of fertilization and the ensuring embryonic 
development, mitochondria-derived energy gradually come 
to dominate (9,27,28). When the embryo develops to the 
blastocyst stage, mitochondria in the embryo have become 

slender, the structure of ridges is intact, and the mtDNA 
is largely replicated, indicating that mitochondria have 
completed the transition from quiescence to activation 
(29,30). Thus, mitochondrial dynamics are involved in 
protecting oocyte from oxidative damage and support early 
embryonic development. Decline in oocyte mitochondrial 
reserve will trigger the energic shortage during pre-
implantation which may induce embryo arrested. For the 
purpose of rescuing poor oocyte, injection of function 
mitochondria during intracytoplasmic sperm injection may 
be effective to compensate maternal mitochondria deficient, 
then reconstructing mitochondrial activation.  

Mitochondrial metabolites: affect oocyte quality 
on epigenetic modification

Increasing evidences have demonstrated that age-related 
decline in oocyte quality partly ascribes to alter epigenetic 
modification (11,31-33) (Figure 1). The inducements 
of epigenetic alteration are intricate, but the role of 
mitochondria in these progresses is worth being focused 
on. Actually, previous data has revealed that metabolites 
produced by mitochondria could remodel chromatin then 
regulating genetic expression (11). For instance, citrate 
could be cracked into acetyl-CoA which would donate the 
acetyl groups for histone acetyltransferases (HATs) (34).  
Certainly, content of acetyl-CoA is mitochondria-
dependent  in  mos t  pa r t s .  When  mi tochondr i a l 
metabolism is high, acetyl-CoA levels will increase, 
then advancing histone acetylation to drive gene 
expression by chromatin loose or vice versa (35). 
Mitochondrial generated α-Ketoglutarate (α-KG) is 
also a crucial accessory factor of histone methylation. 
It could be a key co-factor to initiate the function 
of histone demethylases (HDMs) to identify special 
substrates and undock methyl groups from histones (36).  
Simultaneously, S-adenosyl methionine (SAM) engages 
most parts of histone methyltransferases (HMTs) to 
activate methyl group transfer (37). And synthesis of SAM 
relies on folate cycle and ATP which are both controlled 
by mitochondria. Importantly, ATP-dependent chromatin 
remodeling complexes require mitochondrial ATP to 
support necessary energy for chromatin modulating, 
then binding to genes specially (38). Previous research 
found levels of SAM is a key regulator for naïve-primed 
transition of human embryonic stem cells (hESCs) (39). 
This data imply that mitochondria are critical in modifying 
epigenetics on human early embryos and even oocytes. 
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Experience on mouse reveals that lysine acetyltransferase 
8 (KAT8, one kind of HATs and depend on acetyl-CoA) is 
essential for oocyte maturation and follicular reserved (40). 
What’s more, mitochondrial heteroplasmy might increase 
the risk of preterm birth by interaction with nucleus (41). 
These evidences clue us that mitochondrial dysfunction 
and mtNDA mutation are likely to affect the expression of 
nuclear genes by modifying the whole epigenetic landscape 
then inducing many extremely serious consequences in 
oocyte and pre-plantation development.

Mitochondria-related signaling pathway: 
threshold of oocyte survivals

The amounts of matured oocyte in each menstrual cycle 
is controlled by apoptosis strictly, where only less than 
one percent germ cells can strive into survival at last (42). 
Mitochondria play a critical role in apoptosis via regulating 
many signal factors involving in apoptosis such as Ca2+, 
cyclic adenosine monophosphate (cAMP), reactive oxygen 
species (ROS), etc. (43) (Figure 1). There are two major 

Figure 1 The role of mitochondria in metabolism, apoptosis and gene expression. For caspase activation by mitochondria, multiple 
signal factors (such as Ca2+, cAMP and ROS) can modify permeability of mitochondrial membrane by activating Bax then releasing cyt c 
from mitochondria into the cytosol. Thereby, cyt c triggers caspase-9 and initiates the proteolytic cascade that culminates in apoptosis. 
Simultaneously, caspase-8 can also activate Bax by slicing Bid, which results in the similar apoptosis pathway. Additionally, mitochondria 
could provide enough energy for cell by synthesize ATP via ETC. Mitochondrial metabolites of TCA cycle (such as ATP, α-KG and citrate) 
could also regulate gene expression via remodeling chromatin. ATP synthesis is dependent on mitochondria oxidative phosphorylation 
driven by the ETC and ATP synthase. SAM is one of metabolites of methionine and folate cycles that supported by mitochondrial one-
carbon cycle. While SAM synthesis requires ATP to support necessary energy for chromatin modulating and then binding to genes specially. 
mtDNA, mitochondrial DNA; ETC, electron transport chain; TCA, tricarboxylic acid cycle; SAM, S-adenosyl methionine; cAMP, cyclic 
adenosine monophosphate; ATP, adenosine triphosphate; cyt c, cytochrome c; α-KG, α-ketoglutaric acid.
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mechanisms in apoptosis, the intrinsic and the extrinsic 
pathways (44). For the intrinsic pathway, mitochondrial 
membrane permeabilization (MMP) can be altered by 
apoptosis signals then releasing pro-apoptotic factors such 
as cytochrome c (cyt c) from mitochondria (45,46). As a 
result, apoptosis-dependent effectors such as caspase-3 will 
be activated and fragment nucleus DNA then resulting 
in apoptosis. Calcium is one of the most important 
factors in cellular homeostasis, which can be regulated 
by mitochondria. Mitochondria can absorb calcium by 
anion-selective channels or transporters to maintain 
calcium homeostasis (47). When mitochondria dysfunction 
happen, balance of calcium will be broken out and high 
concentration of Ca2+ in cytoplasm will disturb MMP then 
inducing apoptosis (48). And relationship between oocyte 
ageing and calcium homeostasis mess has been identified 
in mice (49). Additionally, mitochondrial dysfunction will 
increase the production of ROS. Increasing ROS level have 
been identified strong relationship with oocyte ageing, 
which can intensify apoptosis in oocyte (50) and lower 
fertilization rates (51). What’s more, mitochondria remain 
relatively low activity until developing to the blastocyst 
stage proposal for reducing superfluous ROS (52). It has 
been identified that healthy cells can rescue apoptotic 
cells via transferring mitochondria (53). Coincidentally, 
mitochondrial transfer has capacity to provide against 
oxidative stress-mediated mitochondrial dysfunction (54). 
Looking ahead, it’s possible to presume that replenishing 
mitochondria in a suitable degree might be a selective 
method to cope with mitochondrial decline in ageing 
oocyte.

Practice of the “mitochondrial therapy”: 
overhastiness

Based on the well therapeutic use by ooplasmic transfer  
(OT) (55), we know that compromised oocyte may have 
deficiency in ooplasmics (56). Additionally, preciousness 
of benign MII oocyte and problem of “3 parents babies” 
both press people to find out the effective ingredient 
in ooplasmics. According to the context, mitochondria 
are the most expected targets. If assumed, transferring 
autogenous mitochondria (AUGMENGT) is suitable to 
improve oocyte quality for avoiding above problem caused 
by OT (57). The general processes of AUGMENGT 
are that: (I) prepare autologous cell germlines such as 
oogonial stem cells, granulosa cells or mesenchymal stem 
cells from diverse tissue; (II) isolate mitochondria from 
them; (III) inject isolated mitochondria to MII oocyte 
by microinjection (Figure 2). This technology is led by 
OvaScience Inc., who annotated they had rescued poor 
oocyte by AUGMENT in 2014 (58). Since emergence 
of  AUGMENT, trends  of  fo l lowing were  ra i sed 
overwhelming the world rapidly. Observations from some 
international fertility clinics show that the successful rates 
of AUGMENT range from 25% to 53% and pregnancy 
rates are increased greatly (between 3- and 18-fold increase 
compared to control group) (59). There is no doubt that 
it’s a bold attempt and may be good news for those people 
with poor oocyte quality. But in some ways, this strategy 
seems too much radical. It’s unadvisable to experience this 
technology on patients in the absence of firm support from 
completed basic and clinical trials. A recent prospective 

Figure 2 Technological process of mitochondrial transfer therapy (AUGMENT). Mitochondria were isolated from autologous cells 
germlines such as granular and cumulus cells, oogonial stem cells or mesenchymal stem cells from diverse tissues, and injected into oocyte 
with a sperm by ICSI to form a reconstructed zygote. ICSI, intracytoplasmic sperm injection. 
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study demonstrated that AUGMENT technique does 
not seem to improve embryo quality in infertile patients 
with premature ovarian ageing and a background of poor 
embryo quality in previous in vitro fertilization (IVF) 
cycles. Moreover, there were no significantly difference 
in the ratio of euploid embryos obtained per injected 
MII and per fertilized oocyte between experimental and 
control groups (16). So far, Food and Drug Administration 
of American has forbidden this technology to perform 
on clinic, and the pioneer, OvaScience, have turn to join 
other researches (59).

Generally speaking, AUGMENT has some advantages. 
Firstly, compared with nucleus transfer, AUGMENT 
can overcome the inherited bottleneck which is in case 
of making so-called “three parents” baby. Secondly, 
transferring functional mitochondria to sluggish oocyte 
could provide enough energy for them to develop as 
normal. And diverse mitochondrial-related metabolites can 
be adjusted to the regular levels. What’s more, cell survival 
pathway is proposed to be activated after transferring, 
then initiating the quiescence mitochondria and prevent 
oocyte from apoptosis. However, this technology now 
is still immature. On one hand, autologous stem cells 
are uneasy to acquire. More importantly, technologies 
for isolating and authenticating functional mitochondria 
from cell cultures are puerile. It’s difficult for us to 
analyze the number and completed function of isolated 
mitochondria, while the dosage and quality of transferring 
mitochondria are definitive to the success. Previous studies 
demonstrated that overfull replication of mtDNA could 
reduce early embryo activity and implantation potential (60).  
On another hand, the detailed internal mechanism of 
this therapy is now yet not clear. It’s unclear about how 
the complementary mitochondria work in low-quality 
oocyte and how mitochondria cooperate with nucleus to 
regulate cellular proliferation and to refresh oocyte. Thus, 
it is recommended that mitochondrial transfer therapy is 
unsuitable to use for curing infertility in current conditions, 
and the efficacy and safety of this technology are need to be 
investigated further. 

Perspectives and conclusion

Beyond mitochondrial replacement therapy (i.e., nucleus 
transfer), much interest in this field has concerned on 
AUGMNET as a potential therapeutic option for rescuing 
compromised oocyte. The development of this technology 
seems rough, but it’s only limited on clinical application. 

Basic research of discovering the relationship between 
mitochondria and oocyte quality and potential effective 
factors involving in OT are much more intriguing. 
What’s more, sufficient evidences on basic researches 
is fundamental to advance AUGMENT in stability and 
efficiency. Emerging data suggest that mitochondrial 
metabolism is significantly important to prevent oocyte 
from death (61), but directly injecting purified mitochondria 
doesn’t work well. The reasons for failure may be attributed 
to the following points: (I) exfoliate mitochondria from 
endoplasmic reticulum (ER) which is essential to keep 
mitochondrial function (62); (II) too much cell debris 
containing in isolated mitochondria may cause overload 
metabolism in poor oocyte; (III) discard multiple other 
functional small molecular that is potential to benefit 
oocyte quality. Therefore, advancing in the technologies of 
isolating and optimizing scheme of transferring may make 
revolution in this scope. Once its effectiveness and safety are 
appropriately confirmed, mitochondrial transfer therapies 
will have great potential to be used as a novel treatment in 
assisted reproduction. Although alternative and innovative 
approaches are being proposed, it still remains in a very 
early stage. Nevertheless, search for an effective solution to 
improve oocyte quality will be continuous. 
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