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Background: The world-wide prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a 
threat to the public health. The objective of this study was to determine the epidemiological and molecular 
patterns of KPC-producing Klebsiella pneumoniae (K. pneumoniae) clinical isolates.
Methods: In this study, a total of 82 non-duplicated CRKP isolates were analyzed for the prevalence of 
resistant determinants including carbapenemase, extended spectrum β-lactamase (ESBLs), and AmpC as well 
as integrons and cassette regions by polymerase chain reaction (PCR) and DNA sequencing. The genetic 
relatedness was investigated by pulsed field gel electrophoresis (PFGE) and multi-locus sequencing typing 
(MLST).
Results: Overall, blaKPC-2 (n=75) was the predominant carbapenemase gene, followed by high prevalence 
of blaSHV (92.7%) and blaCTX-M (90.2%). PFGE and MLST analysis revealed that 65 out of 68 KPC-2-
producing CRKP belonged to the ST11 clone and were distributed mainly in the department of neurology 
ICU. Moreover, first report on clonal dissemination of KPC-2-producing CRKP ST48 clone and NDM-
5-producing CRKP ST337 clone was also identified. Class I integron were detected in 17 (20.7%) of 82 
isolates with aadA2 being the most common cassette. And a novel cassette array of integron, aac(6')-II-
blaCARB/PSE-1 was identified.
Conclusions: All in all, KPC-2-producing CRKP ST11 and ST48 clone were widely disseminated in 
multiple departments of our hospital, which triggers the need for active surveillance and implementation of 
infection control measures.
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Introduction

Klebsiella pneumoniae (K. pneumoniae) is one of the most 
opportunistic pathogen responsible for numerous 
infections, including respiratory tract infection, urinary 
tract infection, bacteremia, skin and soft tissue infections. 
Carbapenem has long been regarded as the last resort 
against infections caused by K. pneumoniae resistant to the 
3rd or 4th cephalosporin. However, in recent years, the rapid 
emergence of CRKP isolates poses a great challenge to 
public health because of the limited therapeutic regimen, 
high mortality and healthcare costs (1). Up to date, clonal 
dissemination and outbreak caused by CRKP isolates 
have occurred worldwide due to the endemic clone spread 
and rapid transmission of carbapenemase encoding gene 
mediated by plasmids, integrons and transposons (2,3). It 
has been reported that the production of carbapenemase 
is the predominant mechanism leading to carbapemen 
resistance (4,5), in addition to the presence of extended-
spectrum β-lactamases (ESBLs)/AmpC β-lactamases with 
porin loss combination and the overexpression of efflux 
pumps (6,7). The high-risk clone, ST11, has been reported 
to be the dominant sequence type (ST) in CRKP isolates 
which frequently caused clonal dissemination and outbreaks 
in healthcare settings in China (8-10). Recently, due to 
the rapid evolution of such strain under selective pressure, 
hypervirulent ST11 and ST11 co-producing NDM and 
KPC have also been consistently reported (11). Moreover, 
the emergence of new sequence non-ST11 isolates also 
poses a great challenge to clinicians and microbiologists.

Therefore, more information on the molecular 
characterization of such strains is needed to effectively control 
the transmission of CRKP and prevent the outbreaks. In this 
study, CRKP isolates responsible for clonal dissemination were 
analyzed for resistant determinants and genetic relatedness as 
well as integrons to provide data on CRKP isolates.

Methods

Bacterial isolates 

In total, eighty-two non-duplicated CRKP isolates were 
collected from the Department of Laboratory Medicine of 
the Affiliated Hospital of Xuzhou Medical University from 
June, 2015 to August, 2016. The strains were obtained 
from sputum (n=61), blood (n=9), urine (n=6), pus (n=3), 
secretion (n=1), cerebrospinal fluid (n=1), and catheter (n=1). 
Species confirmation was performed by matrix-assisted laser 
desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF MS, Bruker Daltonics, Bremen, Germany) 
and Vitek 2 Compact system (bioMérieux, France). 
Antimicrobial susceptibility testing towards tigecycline, 
meropenem, imipenem, cefazolin, cefoxitin, cefepime, 
ceftriaxone, aztreonam, amikacin, gentamicin, ciprofloxacin, 
levofoxacin, and piperacillin/tazobactam were also 
performed by the Vitek 2 Compact system according to the 
manufacturer’s instructions. Escherichia coli ATCC25922 was 
used as the quality control. The interpretation of results was 
based on the Clinical and Laboratory Standards Institute 
2016 (12). The breakpoint of Food and Drug Administration 
(FDA) was used for tigecycline. Clinical characteristics on 
clinical features and laboratory tests were retrieved from the 
electronic record. The informed consent was granted by 
all patients and this study protocols were approved by the 
Ethics Committee of Affiliated Hospital of Xuzhou Medical 
University (XYFY2019-KL112-03).

The identification of infection and colonization bacteria 
were based on the clinical symptoms and signs in individual 
patients, imaging findings. Moreover, patients must have had 
fever >38 ℃ without other recognized cause, or abnormal 
white blood cell count [leukopenia (<4,000 WBC/mm3) or 
leukocytosis (≥12,000 WBC/mm3)], and at least two of the 
following: new onset of purulent sputum or change in the 
sputum characteristics, increased respiratory secretions or 
increased suctioning requirements, new onset or worsening 
of a cough or dyspnea or tachypnea, rales or bronchial 
breath sounds, or worsening gas exchange.

Detection of antimicrobial resistance determinants

DNA templates were extracted by absorption column 
method (Tiangen, China). All isolates that exhibited 
resistance to carbapenem (imipenem or meropenem) were 
screened for presence of the resistance genes including 
carbapenemase gene (blaKPC, blaSME, blaGES, blaNDM, blaVIM, 
blaIMP, blaOXA-48-like), extended spectrumβ-lactamase gene 
(blaSHV, blaTEM, blaCTX-M1 group, blaCTX-M2 group, blaCTX-M8 group, 
blaCTX-M9 group) and AmpC β-lactamase genes (blaACC, blaFOX, 
blaMOX, blaDHA, blaCIT/SPM, and blaEBC) by polymerase chain 
reaction (PCR) as previously described (10). All purified 
positive amplicons were sequenced by GENEWIZ 
Company (Suzhou, China) and subtypes of β-lactamase 
genes were aligned on blast database. 

PCR detection of integrons and RPLP analysis of cassette regions

PCR was performed to screen the presence of integrons 
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and integron cassette regions among the isolates using 
degenerate primers as described previously (13). Integrase 
products were digested with HinfI to identify classes of 
integrons. The amplicons of cassettes with the same HinfI 
pattern were considered to contain the same variable 
region. The representative amplicons were selected 
for DNA sequence by GENEWIZ Company (Suzhou, 
China). The results of sequencing were aligned in BLAST 
(http://blast.ncbi.nlm.nih.gov).

Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) was used for 
molecular typing and analysis of clone relatedness. Plugs 
containing genomic DNA were prepared according to 
previous protocol by Pereira et al. (14). The DNA fragments 
digested with restriction endonuclease XbaI (TaKaRa 
Biotechnology, Dalian, China) were separated by PFGE 
on 1% SeaKem Gold agarose (Lonza, Rockland, ME, 
United States) in 0.5× TBE (Vicmad, China) buffer using 
the CHEF Mapper XA PFGE system (Bio-Rad, United 
States) and the electrophoresis conditions were as follows: 
running time for 18 h at 6V/cm, temperature at 14 ℃, and 
electrophoretic switch times from 6 to 36 s. The similarity 
of PFGE patterns was calculated by Dice coefficients, 
and cluster analysis was performed by unweighted pair 
group method with arithmetic averages (UPGMA) by 
the BioNumerics software version 5.10. Isolates were 
considered to be of the same PFGE cluster when their dice 
similarity index was ≥80%.

Multi‑locus sequence typing

MLST was performed according to the protocol shown 
on the Klebsiella pneumoniae MLST website (http://www.
pasteur.fr/mlst/Kpneumoniae.html). Seven housekeeping 
genes (gapA, infB, mdh, pgi, phoE, rpoB and tonB) were 
amplified and sequenced for multilocus sequence typing of 
carbapenem-resistant Klebsiella pneumoniae (CRKP). Alleles 
and STs were identified using the MLST database. 

Results

Clinical characteristics and antimicrobial susceptibility of 
CRKP isolates

The CRKP isolates were obtained from patients admitted 
to 15 wards in our hospital with majority being from 

neurology ICU (30.5%, 25/82), followed by emergency 
ICU (23.2%, 19/82), neurosurgery (11.0%, 9/82), 
critical medicine ICU (8.5%, 7/82), neurology (7.3%, 
6/82), respiratory department (3.7%, 3/82), urology 
(3.7%, 3/82), and neonatal ICU (2.4%, 2/82). The other 
wards were department of bone marrow transplantation 
center (n=1), gastroenterology (n=1), orthopaedics (n=1), 
otorhinolaryngology (n=1), oncology (n=1), geriatric (n=1), 
and cardiology (n=1). 

And all cases were identified as infected with CRKP 
strains.

All CRKP isolates exhibited resistance to penicillins, 
cefazolin, cefoxitin, cefepime, ceftriaxone, piperacillin/
tazobactam, impenem and meropenem, whereas non-
susceptible rates towards levofloxacin, ciprofloxacin, 
amikacin, and gentamicin were 96.6%, 97.7%, 74.7%, and 
92.0% respectively. Furthermore, susceptibility of 100% to 
tigecycline was observed.

Prevalence of antibiotic resistance determinants

Carbapenemase encoding genes were identified in 80 out 
of 82 CRKP isolates. According to DNA alignment results, 
blaKPC-2 (n=75) was predominant followed by blaNDM-5 (n=4), 
and blaNDM-1 (n=1). 2 of 4 NDM-5-producing isolates were 
obtained from neonatal ICU while 2 were from department 
of respiratory and emergency ICU respectively. 1 isolate 
with blaNDM-1 gene was obtained from bone marrow 
transplantation center. 

Analysis of ESBL genes revealed that blaCTX-M, blaSHV, and 
blaTEM were identified in 74, 76, and 65 isolates respectively. 
Of 74 blaCTX-M positive isolates, 55 isolates carried 
blaCTX-M-65, 16 blaCTX-M-15, 3 blaCTX-M-14, 2 blaCTX-M-27, and 1 
blaCTX-M-9. Among 76 blaSHV isolates, the most prevalent 
ESBLs blaSHV gene was blaSHV-12 (n=47) followed by 
b la SHV-2a (n=8). The other non-ESBLs blaSHV genes 
including blaSHV-11 (n=18), blaSHV-1 (n=2) and blaSHV-28 (n=1) 
were also identified, all of which co-existed with ESBLs. 
Moreover, blaTEM-1 subtype was identified in all blaTEM 
isolates (n=65). Screening for AmpC β-lactamase genes 
revealed that blaDHA-1 (n=46) were predominant followed 
by blaCMY-2 (n=1) and blaCMY-42 (n=1). The blaSME, blaGES, 
blaVIM, blaIMP, blaOXA-48-like, blaCTX-M2 group, blaCTX-M8 group, blaACC, 
blaFOX, blaMOX, and blaEBC were not detected.

Seventy-seven isolates co-carried 2 or more resistant 
determinants with the combination of blaKPC-2, blaSHV-12, 
blaTEM-1, blaCTX-M-65 and/or blaDHA-1 being the most common 
type, accounting for 29.8%. Specifically, isolates co-

http://blast.ncbi.nlm.nih.gov
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production of blaKPC-2, blaSHV-12, blaTEM-1, blaCTX-M-65 were 
identified in 13 (56.5%) strains in neurology ICU, 5 (29.4%) 
in emergency ICU, 3 (37.5%) in neurosurgery. 

Integron identification

No class II and class III were detected. Class I of integrons 
were detected in 17 isolates: 14 ST11, 2 ST37, and 1 ST15 
isolate (Table 1). The length of amplicons of 17 fragments 
varied from 0.15 kb to 1.9 kb. The DNA sequence analysis 
of gene cassette arrays revealed 6 distinct profiles with the 
aadA2 (n=8) being the most prevalent array, and dfrA12-
orfF-aadA2 (n=3), dfrA16-aadA2 (n=2), and dfrA17-aadA5 
(n=1) were also identified. Of note, we found a novel 
cassette arrays of integron, aac(6')-II-blaCARB/PSE-1. 
Additionally, we found integron with the amplicon size at 
0.15kb in which not any gene cassettes were present but 5' 
and 3' conserved segments of class I integron.

Molecular typing of CRKP isolates

Seven STs were identified among 82 clinical isolates, and 
ST11 was the most prevalent sequence type accounting for 
82.9%, followed by ST48 (n=7) (Table 1). The remaining 
isolates were identified as ST337 (n=2), ST15 (n=1), ST700 
(n=1), ST1 (n=1), ST37 (n=1), and 1 isolate could not be 
typed. 

PFGE patterns of XbaI-digested genomic DNA of 82 
CRKP isolates revealed 10 different clusters. A predominant 
cluster consisting of 65 KPC-2-producing CRKP ST11 
clone isolates was identified. These isolates were mainly 
obtained from neurology ICU (n=22), emergency ICU 
(n=15), neurosurgery (n=8), critical care medicine ICU (n=5) 
and neurology (n=6) (Figure 1, Table 1). Furthermore, PFGE 
profiles of other 14 non-ST11 CRKP isolates displayed 
six different patterns (Figure 2). Among them, 7 KPC-2-
producing CRKP ST48 clone displayed the same profiles. 
All ST48 CRKP isolates were found to harbor blaKPC-2 and 

Table 1 The distribution of genotypes among 82 CRKP isolates

ST No.
Genotypes [No.]

Integron Ward
Carbapenemase ESBLs Non-ESBLs AmpC

ST 11 68 KPC-2 [65], 
NDM-5 [2], 
NDM-1 [1]

SHV-12 [51], 
SHV-2a [9], 
CTX-M-15 [5], 
CTX-M-65 [60], 
CTX-M-14 [3], 
CTX-M-9 [1], 
CTX-M-27 [1]

SHV-11 [10], 
TEM-1 [70]

DHA-1 [50], 
CMY-42 [1]

aadA2 [8], dfrA16-
aadA2 [2], dfrA17-
aadA5 [1], dfrA12-
orfF-aadA2 [1], aac 
[6’]-II-blaCRAB-1 [1], 
5’CS-3’CS [1]

Neurology ICU 
[22], neurology [6], 
neurosurgery [8]; 
emergency ICU [15]; 
critical care medicine 
ICU [5]; Respiratory 
[3]; urinary surgery [3]; 
othersa [6]

ST 48 7 KPC-2 [7] CTX-M-15 [7] SHV-11 [6], 
TEM-1 [6]

CMY-2 [1] 0 Neurology ICU [2]; 
critical care medicine 
ICU [2]; emergency 
ICU [2]; cardiology [1]

ST 337 2 NDM-5 [2] CTX-M-15 [2] SHV-11 [2], 
TEM-1 [2]

0 0 Neonatal ICU [2]

ST 1 1 0 CTX-M-15 [1] TEM-1 [1] 0 0 Neurology [1]

ST 15 1 KPC-2 [1] SHV-12 [1], 
CTX-M-15 [1]

TEM-1 [1] 0 dfrA12-orfF-aadA2 [1] Geriatrics [1]

ST 37 1 0 SHV-2a [1], 
CTX-M-27 [1]

0 DHA-1 [1] dfrA12-orfF-aadA2 
[1], 5’CS-3’CS [1]

Emergency ICU [1]

ST 700 1 KPC-2 [1] CTX-M-65 [1] SHV-1 [1], 
TEM-1 [1]

0 0 Neurosurgery [1]

a, geriatrics (n=2), gastroenterology (n=1), otolaryngology (n=1), oncology (n=1), and bone marrow transplantation center (n=1) were 
included. CRKP, carbapenem-resistant Klebsiella pneumoniae; ESBLs, extended spectrum β-lactamase.
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Figure 1 Dendrogram of PFGE profiles of XbaI-digested DNA restriction fragments from 68 carbapenem-resistant Klebsiella pneumoniae 
ST11 isolates. The UPGMA algorithm was performed to conduct dendrogram based on the Dice similarity coefficient. Isolates were 
categorized to be of the same cluster when their dice similarity index was ≥80%. NRICU, neurology ICU; EGICU, emergency ICU; NS, 
neurosurgery; CMICU, critical care medicine ICU; NR, neurology; RA, respiratory; UL, urology; BMTC, bone marrow transplantation 
center; GT, gastroenterology; OT, otolaryngology; OL, oncology; OR, orthopaedics; GA, geriatrics.

Dice (Opt: 1.50%) (Tol 1.5%–1.5%) (H>0.0% S>0.0%) [0.0%–100.0%]
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blaCTX-M-15 genes indicating clonal dissemination of isolates 
from neurology ICU (n=2), critical care medicine ICU (n=2), 
emergency ICU (n=3). In addition, 2 NDM-5-producing 
CRKP ST337 clone also shared the same PFGE pattern, 
both of which were isolated from neonatal ICU. 

Discussion

CRKP is of increasing clinical concern due to its high 
transmission capacity and pathogenicity (15). In this study, 
we described the clonal dissemination of KPC-2-producing 
CRKP ST11 and ST48 isolates in multiple departments 
and also provide the first report on clonal spread of NDM-
5-producing CRKP ST337 clone.

All CRKP isolates exhibited resistance to all β-lactams 
and cephalosporins, in addition to high resistance rate 
to amikacin (>70%), which is consistent with a previous 
report in China (16). Moreover, amikacin has been 
reported to show a higher rate of microbiologic clearance 
than polymyxin B or tigecycline (17), which can still be 
considered for the infections caused by amikacin-susceptible 
CRKP isolates. A 100% of sensitivity toward tigecycline 
observed in our study is in accordance with previous study 
indicating that tigecycline may be considered as the basis 
of combination treatments for infections caused by such 
strains although tigecycline-resistant isolates have been 
reported (18). Tigecycline exhibited high susceptibility 
towards carbapenem-resistant K. pneumoniae, however, there 

is still some limitations of tigecycline therapy. Because of 
the wide distribution of tissues and low blood concentration, 
it is often used in combination with other antibiotics.

The high prevalence of blaKPC-2 gene among our 
isolates is in line with previous reports, suggesting that 
blaKPC-2 gene remains to be the most common enzyme 
among carbapenemase in K. pneumoniae isolates (15). 
The success of KPC is based on both gene and plasmid 
dissemination and on the clonal spread of K. pneumoniae 
ST258 and its variants (e.g., ST11). The dissemination 
of mobile elements may be attributed to high prevalence 
of blaKPC-2 gene due to frequently reports presence of 
different sizes of plasmids harboring blaKPC-2 gene (19). 
Moreover, the blaKPC gene is located on a highly mobile 
Tn3-related transposon, Tn4401, that can be carried by 
different transferable plasmids of various incompatibility 
groups (20). Previous studies demonstrated that the 
emergence of blaKPC-2 was characterized by two patterns 
of dispersion: the occurrence of K. pneumoniae harboring 
blaKPC-2 in the IncL/M transferable plasmid, and the clonal 
spread of K. pneumoniae harboring blaKPC-2 in Tn4401 
different isoforms (21). In addition to KPC enzyme, New 
Delhi metallo-β-lactamase (NDM) was the only metallo-
β-lactamase identified in our study, which included blaNDM-1 
and blaNDM-5 subtypes. The NDM-1 enzyme, first identified 
in K. pneumoniae from Swedish patient with history of 
hospitalization in India, could hydrolyze all β-lactams 
besides monobactams (22). To our knowledge, blaNDM-1 

Dice (Opt: 1.50%) (Tol 1.5%–1.5%) (H>0.0% S>0.0%) [0.0–100.0%]
PFGE-xbal

Strains     Samples         Date                Ward              MLST            Resistant genes

PFGE-xbal

60 70 80 90 10
0

Figure 2 Dendrogram of PFGE profiles of XbaI-digested DNA restriction fragments from 14 carbapenem-resistant Klebsiella pneumoniae 
non-ST 11 isolates. The UPGMA algorithm was performed to conduct dendrogram based on the Dice similarity coefficient. Isolates were 
categorized to be of the same cluster when their dice similarity index was ≥80%. NRICU, neurology ICU; EGICU, emergency ICU; 
CMICU, critical care medicine ICU; NICU, neonatal ICU; NS, neurosurgery; GA, geriatrics, NR, neurology; CD, cardiology.
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gene has been frequently detected in different species of 
Enterobacteriaceae from multiple countries such as Spain, 
Dutch, Algeria, and Korea (15). However, the emergence 
of NDM variants that exhibit high resistance poses a great 
challenge to treatment of isolates with blaNDM-1 gene. For 
blaNDM-5, it has been reported that substitutions at positions 
88 and 154 on blaNDM-1 resulted in increased resistance 
to carbapenems and broad-spectrum cephalosporins, 
moreover, it is also reported that blaNDM-5 gene were carried 
by higher virulent strain (23). Noteworthy, blaNDM-5 gene 
has been found to be co-carried with mcr-1 in Escherichia 
coli from Spain (24) and K. pneumoniae from China (25). 
Moreover, isolates co-production of NDM-5 and OXA-
181 enzyme have also been identified in Escherichia coli from 
Egypt (26) and K. pneumoniae from Singapore (27). Thus, 
the prevalence of blaNDM-5 among K. pneumoniae in this 
study increases the awareness and urgency to implement 
surveillance on these strains to avoid the outbreaks, 
especially in the neonatal ICU.

It has been demonstrated that the production of ESBLs/
AmpC β-lactamases in combination with porin loss and 
overexpression of efflux pumps contribute to carbapenem 
resistance. This might have happened in 2 of our isolates 
which co-carried blaSHV and blaCTX genes, although no 
carbapenemase encoding genes were detected. Of note, the 
blaCTX-M-65 gene was the dominant ESBLs gene in our study, 
which is inconsistent with other regions of China, where 
blaCTX-M-15 or blaCTX-M-14 genes were the predominant types of 
blaCTX-M variant (28,29). Although there is a low prevalence 
of blaCTX-M-65 gene in China, outbreak of infection caused 
by CTX-M-65-producing strains has been reported (9). 
Moreover, the prevalence of blaCTX-M-15 gene (18.2%) herein 
is higher than other regions of China (10,28), which is 
similar to those in Europe and America (30), indicating the 
rapid dissemination of blaCTX-M-15. The blaCTX-M-15 gene was 
frequently found to be associated with outbreaks caused 
by multidrug resistant K. pneumonia worldwide (31,32). 
Meanwhile, high prevalence of CRKP-ST11 isolates co-
carrying blaKPC-2, blaSHV-12, blaTEM-1, blaCTX-M-65 and/or blaDHA-1 
in our hospital was in line with previous studies (33), which 
may be mainly attributed to spread of elements such as 
plasmids or clonal dissemination of such strains. Altogether, 
multiple resistance determinants among CRKP isolates 
suggested that rapid spread of mobile genetic elements such 
as plasmids or transposons may play a key role in the resistant 
determinants under the selective pressure produced by the 
widely used antimicrobial agents in clinical therapy.

Furthermore, class I integron is the most common 

and widespread between different genera (34). However, 
this study found a quite lower prevalence of Class I 
integron in CRKP than that found in ESBL-producing 
Enterobacteriaceae in China (35). Existence of atypical 
integrons and regional differences may explain the 
imbalance of this phenomenon. A novel cassette arrays of 
integron, aac(6')-II-blaCARB/PSE-1, as far as we know, has not 
been identified. 

Different from the high prevalence of ST258 in America, 
ST11 is the dominant sequence type in China which spreads 
rapidly around the healthcare settings (36). The ST11 clone 
is a single-locus variant (tonB) from ST258, which has been 
identified worldwide, especially in Asian regions such as 
Singapore, Korea, and Japan. Andrade et al. (11) reported 
that ST11 clone exhibited multidrug resistance phenotype 
with high prevalence of virulence factors favoring the 
colonization, biofilm formation, and defense against 
phagocytosis, which can explain the persistence and clonal 
spread successfully worldwide. Up to date, the outbreaks 
caused by ST11 have been reported in China and abroad, 
with cabapenemase coding gene being central to its rapid 
dissemination, especially blaKPC-2 and blaNDM (37). In our 
study, clonal dissemination of KPC-2-producing CRKP 
ST11 isolates were identified in multiple departments, 
mostly in the department of neurology and ICU, which is in 
line with previous studies (38). Evidence that neurology and 
ICU are the main departments where CRKP isolates spread 
rapidly, which may result from medical equipment used for 
invasive therapy, hence, high-risk wards such as neurology 
and ICU might be the focus of active surveillance. 

Notably, this is the first report on clonal dissemination 
of KPC-2-producing CRKP ST48 clone. Albeit the CRKP 
ST48 clone has been identified in Korea and Thailand (39,40) 
and some of them exhibited tigecycline resistance (41), the 
clonal dissemination of ST48 CRKP isolates have never 
been reported. Furthermore, the clonal dissemination of 
such strains demonstrated that ST48 is a potential high-
risk clone that needs close attention. Noteworthy, a minor 
clonal dissemination of NDM-5-producing ST337 clone 
isolates were also identified in neonatal ICU ward in 
our study, so far, this is the first report, indicating rapid 
evolution of blaNDM gene and CRKP isolates. 

Some limitations of this study exist. Firstly, active 
surveillance was not performed during the study period, 
otherwise the isolation rate of CRKP could be higher than 
we found and the sample size of study could be expanded to 
further realize the clinical characteristics. Moreover, fecal 
samples from healthy carrier were not included in our study, 

https://www.ncbi.nlm.nih.gov/pubmed/27550364
https://www.ncbi.nlm.nih.gov/pubmed/27550364
https://www.ncbi.nlm.nih.gov/pubmed/27048740
https://www.ncbi.nlm.nih.gov/pubmed/27048740
https://www.ncbi.nlm.nih.gov/pubmed/27048740
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which could provide an extensive description of clonal 
dissemination of such strains. 

Conclusions

In summary, the clonal dissemination of KPC-2-producing 
CRKP ST11 clone was identified in multiple departments 
with neurology ICU being the most common, indicating 
extensive cross-transmission of CRKP isolates among 
high-risk departments in our hospital. This first report 
on the clonal dissemination of KPC-2 producing CRKP 
ST48 clone and a minor clonal dissemination of NDM-
5-producing ST337 clone isolates hints at the potential 
occurrence of outbreak caused by such strains. Due to 
limited selective clinical treatment for infections caused 
by these strains in our hospital, active surveillance and 
implementation of infection control measures are therefore 
urgently needed. 
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