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Background: Psychological resilience is an important personality trait whose decrease is associated with 
many common psychiatric disorders, but the neural mechanisms underlying it remain largely unclear. In this 
study, we aimed to explore the neural correlates of psychological resilience in healthy adults by investigating 
its relationship with functional brain network flexibility, a fundamental dynamic feature of brain network 
defined by switching frequency of its modular community structures.
Methods: Resting-state functional magnetic resonance imaging (fMRI) scans were acquired from 41 
healthy adults, whose psychological resilience was quantified by the Connor-Davidson Resilience Scale (CD-
RISC). Dynamic functional brain network was constructed for each subject, whose flexibility was calculated 
at all the global, subnetwork and region-of-interest (ROI) levels. After that, the associations between CD-
RISC score and brain network flexibility were assessed at all levels by partial correlations controlling for age, 
sex, education and head motion. Correlation was also tested between the CD-RISC score and modularity of 
conventional static brain network for comparative purposes.
Results: The CD-RISC score was significant negatively correlated with the brain network flexibility at 
global level (r=−0.533, P=0.001), and with flexibility of the visual subnetwork at subnetwork level (r=−0.576, 
corrected P=0.002). Moreover, significant (corrected P<0.05) or trends for (corrected P<0.10) negative 
correlations were found between the CD-RISC score and flexibilities of a number of visual and default-mode 
areas at ROI level. Meanwhile, the modularity of static brain network did not reveal significant correlation 
with CD-RISC score (P>0.05).
Conclusions: Our results suggest that excessive fluctuations of the functional brain community structures 
during rest may be indicative of a lower psychological resilience, and the visual and default-mode systems 
may play crucial roles in such relationship. These findings may provide important implications for improving 
our understanding of the psychological resilience.
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Introduction

Psychological resilience is an important personality 
character that is defined as one’ ability to positively cope 
with stress, adversity, and negative events in life (1-3). A 
decrease in psychological resilience has been found to 
be associated with many common psychiatric diseases, 
such as the schizophrenia (4), bipolar disorder (5), 
major depressive disorder (6), and posttraumatic stress  
disorder (7). Investigating the neural correlates of 
psychological resilience, therefore, may provide important 
clinical implications for understanding the pathological 
mechanisms underlying these diseases. 

The application of functional neuroimaging techniques in 
the past decades, such as the functional magnetic resonance 
imaging (fMRI) and electroencephalography (EEG), 
has provided promising and non-invasive approaches 
to characterize the intrinsic functional organization of 
human brain in different spatial/temporal scales (8-10). 
In recent years, there have also been some efforts to link 
the psychological resilience to brain functions using fMRI 
or EEG in various populations such as the normal adults 
(11,12), fire-fighters (13) and posttraumatic stress disorder 
patients (7). For example, using fMRI, it has been reported 
that the brain activity during rest as measured by regional 
homogeneity (ReHo) in the dorsal anterior cingulate cortex 
negatively predicted psychological resilience in healthy 
young adults (11). However, the number of studies which 
have reported a potential association between altered brain 
functions and changes in psychological resilience is still very 
limited, and the neural substrates of psychological resilience 
remain largely unclear compared with some other personal 
traits (12).

One of the reasons why the findings in previous studies 
regarding the relationship between brain functions and 
psychological resilience were limited, as suggested by some 
recent work (12,14), may be that they only focus on the 
“static” features of brain. Generally, most conventional 
functional neuroimaging studies were performed based on 
the assumption that the features of brain functions never 
change over time. It has been newly proved that, however, 
the functional organization of brain fluctuates even during 
rest, and much important information about the brain may 
be lost when using conventional static analysis methods 
(15,16). Therefore, to characterize the “dynamic” features 
of human brain has become an emerging topic in recent 
functional neuroimaging studies (17,18). One of these novel 
features, for example, is the brain network flexibility which 

is defined by all brain regions’ average rate of switching 
between different modules in the framework of dynamic 
network model (19,20). Such flexibility of dynamic brain 
network has been suggested to be an important fundamental 
feature of brain function (21), and has been reported 
to be associated with learning (20), cognition (22,23), 
emotion (24), as well as multiple mental diseases such as 
the major depressive disorder (25) and schizophrenia (26). 
Importantly, in a most recent study, a lower flexibility of 
EEG source-space brain network was found to be related 
with a higher psychological resilience in healthy adults, 
while no significant relationships were found between 
the psychological resilience and conventional static brain 
network metrics (12). These findings highlighted the 
importance of the dynamic reconfiguration of functional 
brain network, as measured by network flexibility, in the 
neural substrates of psychological resilience (12). 

There are some limitations, however, to the above 
findings in recent EEG-based dynamic brain network 
study. Firstly, they only focused on the brain network 
flexibility at a temporal scale of milliseconds, and whether a 
negative relationship between brain network flexibility and 
psychological resilience exists in other temporal scales (e.g., 
a scale of seconds) remains unknown to our knowledge. 
Secondly, the EEG-based approaches were limited by 
relatively low spatial resolution and inability to satisfactorily 
capture the regional alterations of brain activity, especially 
for the deep brain areas such as subcortical structures (27). 
These limitations could be partly overcome by verifying the 
results in fMRI-based brain networks, since the fMRI has a 
larger temporal scale (typically a scale of seconds), a much 
higher spatial resolution and a greater ability to measure 
deep brain structures compared with EEG (27). However, 
whether the fMRI-based brain network flexibility is also 
related to psychological resilience remains unknown to our 
knowledge. 

For the above concerns, the present study aimed to 
investigate the possible relationship between psychological 
resilience and brain network flexibility, which is a novel 
and important dynamic feature of the brain functional 
organization, using the resting-state fMRI approaches 
for the first time. To reach this goal, a group of healthy 
adults were recruited and their psychological resilience was 
quantified by a widely-used and validated scale (28); resting-
state fMRI data were scanned from each subject and the 
brain network flexibility was calculated following previous 
publications (21-25,29); the psychological resilience score 
was then correlated with brain network flexibility at both 
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global and regional levels. In addition, the association 
between psychological resilience and the modularity 
of conventional static brain network was also tested for 
comparison. It was anticipated that the results would 
provide important complementary information to previous 
findings in EEG-based studies, and further improve our 
understanding of the neural mechanisms underlying 
psychological resilience.

Methods

Participants

Using the Structured Clinical Interview for DSM-
IV, Non-patient Version (SCID-I/NP) (30), a total of 
48 healthy adult participants were recruited from the 
Second Xiangya Hospital in Changsha, China based on 
the following inclusion criteria: (I) 18–35 years of age and 
had been educated for at least 9 years; (II) right-handed, 
Han Chinese; (III) had no history or family history of any 
psychiatric disorder; (IV) had no history of other severe 
disorders or any contraindication to fMRI scanning. All 
participants completed the Information (WAIS-I) and 
Digit Symbol (WAIS-DS) subtests of the Wechsler Adult 
Intelligence Scale (WAIS) (31) to assess their cognitive 
functions (4,32). The study was approved by the Ethics 
Committee of Second Xiangya Hospital, and written 
informed consent was obtained from all subjects.

Since fMRI data of seven participants were excluded 
from the analysis because of poor quality (see later), the final 
analyzed sample included 41 subjects [mean age: 22.39±2.66 
(SD); gender: 22 males/19 females; mean years of education: 
14.63±1.83 (SD); mean WAIS-I score: 22.01±4.73 (SD); 
mean WAIS-DS score: 90.10 ± 13.87 (SD)].

Measures of psychological resilience

To measure psychological resilience, all participants 
completed the Chinese version of Connor-Davidson 
Resilience Scale (CD-RISC) (28), which is a validated 
and widely-used scale for psychological resilience 
(4,33,34). Briefly, it is a 25-item self-rating scale with the 
scores of each single item ranging from 0 to 4, and the 
score of the full scale ranging from 0 to 100. A higher 
CD-RISC score then indicates a higher psychological  
resilience (28). The mean CD-RISC score of all participants 
in the final analyzed sample (including 41 subjects) was 
70.56±12.29 (SD).

Imaging data acquisition and preprocessing 

Resting-state fMRI and T1-weighted structural images 
were acquired from each subject using a 3.0 T Philips MRI 
scanner. The fMRI images were obtained by gradient echo-
planar imaging sequence (repetition time/echo time = 
2,000/30 ms; slice number =36; thickness/gap =4.0/0 mm; 
field of view =240×240 mm2; acquisition matrix =64×64; 
flip angle =90°; number of time points =250), and the T1-
weighted images were obtained by three-dimensional 
fast spoiled gradient recalled sequence (repetition time/
echo time =7.5/3.7 ms; slice number =180; thickness/gap 
=1.0/0 mm; field of view =240×240 mm2; acquisition matrix 
256×200; flip angle =8°).

The imaging data preprocessing was performed using 
the standard pipeline provided by the DPARSF software 
(35,36). Briefly, it included removing the first 10 volumes, 
slice-timing, head motion realignment, brain tissue 
segmentation, spatial normalization, temporal filtering 
(0.01–0.10 Hz), and regressing out signals from the white 
matter and cerebrospinal fluid as well as the Friston-24 head 
motion parameters (37). Moreover, two and five subjects 
were excluded from the analysis for excessive head motion 
[as defined by mean framewise-displacement (FD) (38)  
>0.2 mm] and poor image quality (as determined by a 
manual checking), respectively.

Flexibility of dynamic brain network 

After preprocessing, the brain network flexibility of each 
subject was calculated following some previous publications 
(21-25,29), which was summarized as follows (and also see 
Figure 1):

(I) Dynamic network construction: a total of 90 brain 
regions of interest (ROIs) were firstly defined 
by the Automated Anatomical Labeling (AAL) 
atlas (39). The mean time series of each ROI 
was extracted and then divided into T=12 non-
overlapping time windows of 20 time points (40 s)  
each (Figure 1A). Such a window length was 
chosen because it was suggested to be able to 
produce relatively robust results, and has been 
widely used in the fMRI studies investigating 
brain network flexibility (18,24,25). For each of 
the 12 windows, a 90×90 connectivity matrix was 
calculated by the Pearson correlation coefficients, 
to evaluate the functional connectivity between 
each pair of ROIs. As the result, these time-
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ordered matrices formed a dynamic brain network  
G = (Gt)t = 1, 2, 3, …, 12, where Gt is the tth connectivity 
matrix representing the “snapshot” of brain 
functional organization within the tth time window 
(Figure 1B). 

(II) Dynamic community structure detection: to 
calculate the flexibility of obtained dynamic 
networks, a dynamic community detection method 
as described by Mucha et al. (40) was implemented 
with an open-source Matlab code package (https://
github.com/GenLouvain/GenLouvain) (41). 
Briefly, the dynamic community structures were 
identified by maximizing a Louvain-like modularity 
function (Q) as

1( , ) [( ) ( , ) ( , ) ] ( , )
2 2

is js
ijsr ijs s is js jrs is js

s

k k
Q A M M i j M M

m
γ ω γ δ δ ω δ

µ
= ∑ − ⋅ ,

 where the two free parameters γ and ω were 
both set at a default value of 1 (24,29); Aijs is the 
correlation coefficient between ROIs i and j in 
the sth connectivity matrix; kis and ms are the node 
degree of ROI i and the sum degree of all ROIs in 

the sth connectivity matrix, respectively; δ(Mis, Mjs) 
and δ(Mis, Mjr) equal to 1 when the corresponding 
ROIs belong to the same module, and equal to 0 
when not (21,40). Before community detection, 
all negative correlation values in the connection 
matrices were set to zeros as in previous studies, 
since the interpretation of negative correlations 
is still debating (21,22). As the final output 
of community detection, a time-dependent 
community assignment matrix was acquired for 
each subject (Figure 1C). 

(III) Network flexibility calculation: the brain network 
flexibility was then calculated at both global and 
regional levels, based on the above acquired 
dynamic community assignment matrices. Briefly, 
the flexibility of a ROI i (fi) was defined by its 
frequency of changing the community as fi = ni/N, 
where ni is the number of times it changed its 
community assignment, and N is the maximum 
possible number of changes (equaled to T − 1 = 11 
here) (22,25). Such calculations were performed 
using the Network Community Toolbox (http://

Figure 1 The procedures for constructing dynamic networks and calculating network flexibility. (A) The whole fMRI signals were divided 
into a number of non-overlapping windows; (B) time-ordered connectivity matrices were calculated for each window, which formed a 
dynamic brain network; (C) a dynamic community structure detection algorithm was performed to produce the community assignment 
matrix; (D) the flexibility of each ROI was calculated based on its frequency of changing community assignment. See more details in the part 
of Methods. ROI, regions of interest; fMRI, functional magnetic resonance imaging.
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commdetect.weebly.com). Since individual runs 
of the community detection algorithms could 
produce slightly different results, the procedures 
of community detection and flexibility calculation 
were run for 100 times, and the final values of 
flexibility were obtained by averaging these 100 
runs (12,22,25). The obtained flexibility for each 
ROI ranged from 0 to 1, with a higher value 
indicating a higher frequency of changing its 
community affiliation (Figure 1D). After that, 
flexibility of the whole brain network was obtained 
by averaging all the 90 ROIs.

(IV) Flexibility of individual subnetworks: based on 
previous research (42,43), all ROIs from the AAL 
atlas can be assigned into 9 predefined subnetworks 
including the visual, auditory, default-mode, 
salience, sensorimotor, frontoparietal, cingulo-
opercular, attention and subcortical subnetworks 
(see Table S1 for assignments). Therefore, we 
further calculated the flexibility at subnetwork 
level, by averaging all the ROIs belonging to each 
subnetwork.

Modularity of static brain network

For comparative purposes, we also calculated a validated and 
widely used metric related to conventional static network 
modular structures, the modularity (44-46) for each subject. 
In brief, static weighted brain networks were constructed 
using signals of the whole fMRI scan following common 
procedures (47,48); similar with the dynamic networks, 
connections between each pair of ROIs were estimated 
by Pearson correlations and all negative correlations were 
set to zeros. The calculations were performed using the 
Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet). More detailed information about the definition of 
modularity in static brain networks can be found a previous 
publication (49).

Correlations

The association between psychological resilience (as 
measured by the CD-RISC score) and brain network 
flexibility was assessed using the partial Pearson correlation 
adjusted for age, sex, years of education and head motion 
(as measured by mean FD). This was performed at all the 
global, subnetwork and ROI levels. At global level, the CD-
RISC score was correlated with flexibility of the whole 

brain network. At subnetwork and ROI levels, the CD-
RISC score was correlated with flexibility of each of the 
9 subnetworks as well as each of the 90 ROIs, with false 
discovery rate (FDR) corrections (50) applied for multiple 
tests across the multiple subnetworks/ROIs. Significance 
was set at corrected P<0.5. Here, the ROIs with a trends of 
correlation [as defined by a higher threshold of corrected 
P<0.1 (51)] were also reported. For comparative purposes, 
the modularity of static brain network was correlated with 
CD-RISC score using the same above partial correlation, 
too. The results were visualized using the BrainNet  
Viewer (52).

Follow-up analyses

We further performed several follow-up analyses to see 
if our results were affected by some other factors. Firstly, 
the correlation analyses between CD-RISC score and 
brain network flexibility were repeated using a different 
parcellation scheme based on the Power atlas with 264 
ROIs (43,53), also at all the global, subnetwork (see Table S2 
for ROI assignments) and ROI levels. Secondly, the analyses 
were repeated with the global signal regression (GSR) 
performed, which is a still controversial (54,55) option in 
fMRI data preprocessing and was not performed in our 
primary analyses, to see its possible effects. Lastly, since 
cognitive function has been suggested to be an important 
factor associated with both psychological resilience 
(4,56) and brain network flexibility (23), we correlated 
the WAIS-I/WAIS-DS scores and CD-RISC score/brain 
network flexibility and when a significant correlations 
was observed, we further performed a partial correlation 
between CD-RISC score and brain network flexibility with 
the WAIS-I/WAIS-DS score as an additional covariate.

Results

Correlations

As shown in Figure 2, a significant negative correlation 
was found between the CD-RISC score and brain 
network flexibility at the global level (r=−0.533, P=0.001). 
At the level of subnetworks, the CD-RISC score was 
significantly negatively correlated with flexibility of the 
visual subnetwork (r=−0.576, FDR-corrected P=0.002,  
Figure 3), but not with other subnetworks (all FDR-
corrected P>0.05, Figure 3). At the ROI level, the CD-RISC 
score was significantly negatively correlated with flexibilities 
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of the right superior frontal gyrus (medial orbital) (r=−0.508, 
FDR-corrected P=0.030), right lingual gyrus (r=−0.509, 
FDR-corrected P=0.030), left middle occipital gyrus 
(r=−0.617, FDR-corrected P=0.004), left inferior occipital 
gyrus (r=−0.525, FDR-corrected P=0.030) and right inferior 
occipital gyrus (r=−0.499, FDR-corrected P=0.030), but 
not with other ROIs (all FDR-corrected P>0.05). Trends 
of negative correlations (FDR-corrected P<0.1) were also 
found between the CD-RISC score and a number of ROIs 
belonging to the default-mode and visual subnetworks 
(Figure 4 and Table S3). There was no significant correlation 
between the CD-RISC score and modularity of static brain 
network (r=0.320, P=0.054, Figure 2).

Follow-up analyses

When repeating the analyses with a different parcellation 
scheme based on the Power atlas, or with the GSR performed 
in data preprocessing, negative correlations between the CD-
RISC score and global brain network flexibility remained 
significant (both P<0.05, Figure 5). At the subnetwork level, 
similarly, negative correlations remained significant between 
the CD-RISC score and flexibility of the visual subnetwork 
(both FDR-corrected P<0.05, Figure 5), while no significant 
correlations were found for any other subnetwork (FDR-
corrected P>0.05). At the level of individual ROIs, however, 
no results remained significant after corrections for multiple 
tests (all FDR-corrected P>0.05).

The WAIS-I score was significantly positively correlated 
with CD-RISC score (r=0.440, P=0.004), but not with 
brain network flexibility (r=−0.007, P=0.966); no significant 
correlations were found for the WAIS-DS score (all 

P>0.05). The partial correlation between CD-RISC score 
and brain network flexibility remained significant when 
including the WAIS-I score as an additional covariate 
(r=−0.526, P=0.001). 

Discussion 

To our knowledge, this study explored the possible 
relationship between psychological resilience and brain 
network dynamics in healthy adults using the resting-state 
fMRI approaches for the first time. In specific, we examined 
an important feature of the brain network called flexibility, 
which quantifies the dynamic variations of its modular 
community structures over time. Generally, our results 
revealed that psychological resilience is strongly negatively 
associated with the brain network flexibility at all the global, 
subnetwork and regional levels. Meanwhile, the modularity 
of static brain network did not reveal significant correlation 
with psychological resilience. These results may allow us 
to better understand the neural substrates of psychological 
resilience.

In the present study, we found that the participants’ 
psychological resilience scores were significantly negatively 
correlated with the flexibility of their brain networks 
(Figure 2). A higher flexibility refers to a higher frequency 
of switching between different functional modules for all 
brain regions (21,25). Therefore, our result indicates that 
a temporally less stable functional brain organization may 
be related to lower psychological resilience. Interestingly, 
similar results were obtained in a recent study using 
EEG, which reported a negative correlation between 
psychological resilience and the flexibility of EEG source-
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space brain network across multiple frequency bands (12). 
Considering such previous findings together with our 
results, it can be concluded that the negative relationship 
between brain network flexibility and psychological 
resilience may exist across a wide range of temporal scales 
from milliseconds to seconds. Our results thus not only 
reinforce the newly hypothesis that the brain network 
dynamics play crucial roles in psychological resilience (12), 
but also can be meaningful for better understanding the 
multi-scale topological nature of human brain (57). 

A dynamic neural community structure has been 
suggested to be necessary for the brain system to adapt 
to changing environmental demands (26,58). However, 
the biological significance of an excessive fluctuation 
of functional brain structures during rest remains not 
completely clear (59). One hypothesis is that an excessively 
increased flexibility may indicate a under-constrained 
brain network with overloaded information (21,26). Such a 
under-constrained and “overloaded” brain network may be 
more likely to fail to adapt to changing demands following 
external stress factors (12). These may partly interpret 
why brains of the subjects with a decreased psychological 
resilience are more flexible during rest than resilient ones, 
since psychological resilience refers to a capacity to adapt 

to external stresses and changes (12,60). It is noteworthy 
that in the present study, we found that the dynamic but not 
static brain network metrics related to modularity structures 
could reveal this association between psychological 
resilience and brain functions. Our results thus highlighted 
the critical importance of studying the brain functional 
dynamics in research on psychological resilience. 

At the subnetwork level, we found that psychological 
resilience was significantly negatively correlated with 
flexibility of the visual subnetwork (Figure 3). Moreover, 
significant (or trends for) negative correlations were found 
between psychological resilience and flexibilities of a number 
of visual and default-mode areas at the ROI level (Figure 4 
and Table S3). Based on the hypothesis that increased brain 
network flexibility may indicate increased information 
load (21), an increased flexibility of the visual system may 
be related to a lower ability to sufficiently filter unwanted 
sensory information (61). It may be associated with the 
deficits in processing sensory information which have been 
reported in low-resilient subjects (62). Another point we 
consider is that since the visual system has been proved to 
be one of the most “inflexible” part of the brain compared 
than other sensory systems (24), its flexibility may be most 
sensitive to changes in the information load. The default-
mode areas, on the other hand, are known to mediate one’s 
self-referential and internally-directed processing (63,64). 
Furthermore, increased temporal fluctuations of the default-
mode subnetwork have been suggested to be associated with 
increased frequencies of spontaneous, internally-oriented 
thoughts such as mind-wandering in healthy adults (65,66) 
and negative ruminations in depressive subjects (59,67). 
An increased flexibility of the default-mode areas may then 
be reflective of an exaggerated focus on one’s negative 
internalized experience in the low-resilient subjects (14). 
Our results, therefore, may suggest the importance of the 
visual and default-mode areas in the relationship between 
psychological resilience and brain network dynamics. In fact, 
our findings and hypothesis are supported by the previous 
study applying EEG, which also reported that flexibilities 
of several visual regions were negatively correlated with 
psychological resilience in healthy adults (12); and another 
recent study conducted in children and adolescents, which 
found that participants with higher psychological resilience 
are characterized by shorter duration with the default-mode 
subnetwork activated over time (14). 

It is noteworthy that in our analyses, all correlations 
were performed controlling for age, sex, education and head 
motion. Moreover, the correlation between psychological 

Left Right

Pearson correlation coefficient

FDR-corrected P

–0.3 –0.4 –0.5 –0.6

0.1                        0.01

Figure 4 All the ROIs whose flexibility showed a significant (or 
a trend for) negative correlation with CD-RISC score. See Table 
S3 for detailed results. ACG, anterior cingulate and paracingulate 
gyri; CAL, calcarine fissure; CUN, cuneus; FFG, fusiform gyrus; 
IOG, inferior occipital gyrus; L, left hemisphere; LING, lingual 
gyrus; MOG, middle occipital gyrus; ORBsupmed, superior frontal 
gyrus (medial orbital); R, right hemisphere; SOG, superior occipital 
gyrus; TPOmid, temporal pole of middle temporal gyrus; ROI, 
regions of interest; CD-RISC, Connor-Davidson Resilience Scale.
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resilience score and brain network flexibility remained 
significant when additionally controlling for cognitive 
performance. The main results were robust to changes 
in the parcellation scheme or data preprocessing options, 
too (Figure 5). Therefore, our findings are more likely 
to be associated with the neural mechanisms underlying 
psychological resilience, but not driven by other factors such 
as age, sex, cognition, head motion or data preprocessing 
scheme.

There are several limitations and future research 
directions to be noted. Firstly, although we found a negative 
association between psychological resilience and brain 
network flexibility, the causality between them remains 
unclear based on the current findings. Secondly, the current 
sample size is relatively small. Future studies should verify 

our results in a bigger sample in order to increase the 
reliability and statistical power (68), and to test if differential 
patterns would exist across different subpopulations 
[e.g., male and female participants (69)]. Thirdly, we 
only investigated the relationship between psychological 
resilience and brain network dynamics during rest, and 
future studies may explore such relationship under specific 
tasks to further improve our knowledge on it. Fourthly, 
while we only applied the fMRI approaches, an integrated 
EEG-fMRI study or a functional-structural coupling 
neuroimaging study (70) may provide more insights 
into the neurol basis of psychological resilience. Lastly 
and importantly, confirming our findings in psychiatric 
populations who are known to have decreased psychological 
resilience (4-7), rather than only in healthy populations, 

Figure 5 Results of the follow-up analyses. (A) Results of the repeated analyses with a different parcellation scheme based on the Power 
atlas; (B) results of the repeated analyses with the GSR performed in data preprocessing. The P values for subnetwork-level results were 
FDR-corrected. CD-RISC, Connor-Davidson Resilience Scale; GSR, global signal regression; FDR, false discovery rate.
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may provide much more important clinical implications for 
these findings.

Conclusions

In summary, in the present study, we explored the neural 
correlates of psychological resilience in healthy adults by 
investigating its relationship with brain network flexibility, 
a fundamental dynamic feature of brain network defined by 
switching frequency of its modular community structures. 
Our results revealed that psychological resilience is 
significantly negatively correlated with brain network 
flexibility, but not with modularity of conventional static 
network, at both global and regional levels. Specially, 
those regions showing significant correlations were mainly 
located in the visual and default-mode areas. The results 
suggest that excessive fluctuations of the brain functional 
organization during rest may be indicative of a lower 
psychological resilience, and the visual and default-mode 
systems may play crucial roles in such relationship. These 
findings may provide important implications for improving 
our understanding of the neural mechanisms underlying 
individual differences in psychological resilience and related 
psychiatric disorders.
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Supplementary

Table S1 List of the 90 ROIs defined by the AAL atlas and their subnetwork affiliations 

Index Regions Subnetwork affiliation

1,2 Precentral gyrus Sensorimotor

3,4 Superior frontal gyrus, dorsolateral Frontoparietal

5,6 Superior frontal gyrus, orbital part Frontoparietal

7,8 Middle frontal gyrus Salience/frontoparietal/attention

9, 10 Middle frontal gyrus, orbital part Frontoparietal

11,12 Inferior frontal gyrus, opercular part Cingulo-opercular

13,14 Inferior frontal gyrus, triangular part Salience/frontoparietal/attention

15,16 Inferior frontal gyrus, orbital part None

17,18 Rolandic operculum Auditory/cingulo-opercular

19,20 Supplementary motor area Sensorimotor

21,22 Olfactory cortex None

23,24 Superior frontal gyrus, medial Default-mode

25,26 Superior frontal gyrus, medial orbital Default-mode

27,28 Gyrus rectus None

29,30 Insula Salience/ cingulo-opercular

31,32 Anterior cingulate and paracingulate gyri Default-mode/ salience

33,34 Median cingulate and paracingulate gyri Salience/ cingulo-opercular

35,36 Posterior cingulate gyrus Default-mode

37,38 Hippocampus None

39,40 Parahippocampal gyrus Default-mode

41,42 Amygdala None

43,44 Calcarine fissure and surrounding cortex Visual

45,46 Cuneus Visual

47,48 Lingual gyrus Visual

49,50 Superior occipital gyrus Visual

51,52 Middle occipital gyrus Visual

53,54 Inferior occipital gyrus Visual

55,56 Fusiform gyrus Visual

57,58 Postcentral gyrus Sensorimotor

59,60 Superior parietal gyrus Salience/attention

61,62 Inferior parietal, but supramarginal and angular gyri Frontoparietal/attention

63,64 Supramarginal gyrus Auditory/ cingulo-opercular

65,66 Angular gyrus Default-mode

67,68 Precuneus Default-mode

69,70 Paracentral lobule Sensorimotor

71,72 Caudate nucleus Subcortical

73,74 Lenticular nucleus, putamen Subcortical

75,76 Lenticular nucleus, pallidum Subcortical

77,78 Thalamus Subcortical

79,80 Heschl gyrus Auditory

81,82 Superior temporal gyrus Auditory/attention

83,84 Temporal pole: superior temporal gyrus Cingulo-opercular

85,86 Middle temporal gyrus Default-mode

87,88 Temporal pole: middle temporal gyrus Default-mode 

89,90 Inferior temporal gyrus None

Note that some ROIs were assigned into more than one subnetwork. Odd and even numbers represent left and right hemispheres, 
respectively. ROI, regions of interest; AAL, Automated Anatomical Labeling.



Table S2 List of the 264 regions of interest (ROIs) defined by the Power atlas and their Montreal Neurological Institute (MNI) coordinates/
subnetwork affiliations

Index MNI (x) MNI (y) MNI (z) Subnetwork affiliation

1 –24 –99 –12 None

2 27 –96 –12 None

3 24 33 –18 None

4 –57 –45 –24 None

5 9 42 –24 None

6 –21 –21 –21 None

7 18 –27 –18 None

8 –36 –30 –27 None

9 66 –24 –18 None

10 51 –33 –27 None

11 54 –30 –18 None

12 33 39 –12 None

13 –6 –51 60 Sensorimotor

14 –15 –18 39 Sensorimotor

15 0 –15 48 Sensorimotor

16 9 –3 45 Sensorimotor

17 –6 –21 66 Sensorimotor

18 –6 –33 72 Sensorimotor

19 12 –33 75 Sensorimotor

20 –54 –24 42 Sensorimotor

21 30 –18 72 Sensorimotor

22 9 –45 72 Sensorimotor

23 –24 –30 72 Sensorimotor

24 –39 –18 54 Sensorimotor

25 30 –39 60 Sensorimotor

26 51 –21 42 Sensorimotor

27 –39 –27 69 Sensorimotor

28 21 –30 60 Sensorimotor

29 45 –9 57 Sensorimotor

30 –30 –42 60 Sensorimotor

31 9 –18 75 Sensorimotor

32 21 –42 69 Sensorimotor

33 –45 –33 48 Sensorimotor

34 –21 –30 60 Sensorimotor

35 –12 –18 75 Sensorimotor

36 42 –21 54 Sensorimotor

37 –39 –15 69 Sensorimotor

38 –15 –45 72 Sensorimotor

39 3 –27 60 Sensorimotor

40 3 –18 57 Sensorimotor

41 39 –18 45 Sensorimotor

42 –48 –12 36 Sensorimotor

43 36 –9 15 Sensorimotor

44 51 –6 33 Sensorimotor

45 –54 –9 24 Sensorimotor

46 66 –9 24 Sensorimotor

47 –3 3 54 Cingulo-opercular

48 54 –27 33 Cingulo-opercular

49 18 –9 63 Cingulo-opercular

50 –15 –6 72 Cingulo-opercular

51 –9 –3 42 Cingulo-opercular

52 36 0 –3 Cingulo-opercular

53 12 0 69 Cingulo-opercular

54 6 9 51 Cingulo-opercular

55 –45 0 9 Cingulo-opercular

56 48 9 0 Cingulo-opercular

57 –33 3 3 Cingulo-opercular

58 –51 9 –3 Cingulo-opercular

59 –6 18 33 Cingulo-opercular

60 36 9 0 Cingulo-opercular

61 33 –27 12 Auditory

62 66 –33 21 Auditory

63 57 –15 6 Auditory

64 –39 –33 18 Auditory

65 –60 –24 15 Auditory

66 –48 –27 6 Auditory

67 42 –24 21 Auditory

68 –51 –33 27 Auditory

69 –54 –21 24 Auditory

70 –54 –9 12 Auditory

71 57 –6 12 Auditory

72 60 –18 30 Auditory

73 –30 –27 12 Auditory

74 –42 –75 27 Default-mode

75 6 66 –3 Default-mode

76 9 48 –15 Default-mode

77 –12 –39 0 Default-mode

78 –18 63 –19 Default-mode

79 –45 –60 21 Default-mode

80 42 –72 27 Default-mode

81 –45 12 –33 Default-mode

82 45 15 –30 Default-mode

83 –69 –24 –15 Default-mode

84 –57 –27 –15 None

85 27 15 –18 None

86 –45 –66 36 Default-mode

87 –39 –75 45 Default-mode

88 –6 –54 27 Default-mode

89 6 –60 36 Default-mode

90 –12 –57 15 Default-mode

91 –3 –48 12 Default-mode

92 9 –48 30 Default-mode

93 15 –63 27 Default-mode

94 –3 –36 45 Default-mode

95 12 –54 18 Default-mode

96 51 –60 36 Default-mode

97 24 33 48 Default-mode

98 –9 39 51 Default-mode

99 –15 30 54 Default-mode

100 –36 21 51 Default-mode

101 21 39 39 Default-mode

102 12 54 39 Default-mode

103 –9 54 39 Default-mode

104 –21 45 39 Default-mode

105 6 54 15 Default-mode

106 6 63 21 Default-mode

107 –6 51 0 Default-mode

108 9 54 3 Default-mode

109 –3 45 –9 Default-mode

110 9 42 –6 Default-mode

111 –12 45 9 Default-mode

112 –3 39 36 Default-mode

113 –3 42 15 Default-mode

114 –21 63 18 Default-mode

115 –9 48 24 Default-mode

116 66 –12 –18 Default-mode

117 –57 –12 –9 Default-mode

118 –57 –30 –3 Default-mode

119 66 –30 –9 Default-mode

120 –69 –42 –6 Default-mode

121 12 30 60 Default-mode

122 12 36 21 Default-mode

123 51 –3 –15 Default-mode

124 –27 –39 –9 Default-mode

125 27 –36 –12 Default-mode

126 –33 –39 –15 Default-mode

127 27 –78 –33 Default-mode

128 51 6 –30 Default-mode

129 –54 3 –27 Default-mode

130 48 –51 30 Default-mode

131 –48 –42 0 Default-mode

132 –30 18 –18 None

133 –3 –36 30 None

134 –6 –72 42 None

135 12 –66 42 None

136 3 –48 51 None

137 –45 30 –12 Default-mode

138 –9 12 66 Attention

139 48 36 –12 Default-mode

140 9 –90 –6 None

141 18 –90 –15 None

142 –12 –96 –12 None

143 18 –48 –9 Visual

144 39 –72 15 Visual

145 9 –72 12 Visual

146 –9 –81 6 Visual

147 –27 –78 18 Visual

148 21 –66 3 Visual

149 –24 –90 18 Visual

150 27 –60 –9 Visual

151 –15 –72 –9 Visual

152 –18 –69 6 Visual

153 42 –78 –12 Visual

154 –48 –75 –9 Visual

155 –15 –90 30 Visual

156 15 –87 36 Visual

157 30 –78 24 Visual

158 21 –87 –3 Visual

159 15 –78 30 Visual

160 –15 –51 0 Visual

161 42 –66 –9 Visual

162 24 –87 24 Visual

163 6 –72 24 Visual

164 –42 –75 0 Visual

165 27 –78 –15 Visual

166 –15 –78 33 Visual

167 –3 –81 21 Visual

168 –39 –87 –6 Visual

169 36 –84 12 Visual

170 6 –81 6 Visual

171 –27 –90 3 Visual

172 –33 –78 –12 Visual

173 36 –81 0 Visual

174 –45 3 45 Frontoparietal

175 48 24 27 Frontoparietal

176 –48 12 24 Frontoparietal

177 –54 –48 42 Frontoparietal

178 –24 12 63 Frontoparietal

179 57 –54 –15 Frontoparietal

180 24 45 –15 Frontoparietal

181 33 54 –12 Frontoparietal

182 –21 42 –21 None

183 –18 –75 –24 None

184 18 –81 –33 None

185 36 –66 –33 None

186 48 9 33 Frontoparietal

187 –42 6 33 Frontoparietal

188 –42 39 21 Frontoparietal

189 39 42 15 Frontoparietal

190 48 –42 45 Frontoparietal

191 –27 –57 48 Frontoparietal

192 45 –54 48 Frontoparietal

193 33 15 57 Frontoparietal

194 36 –66 39 Frontoparietal

195 –42 –54 45 Frontoparietal

196 39 18 39 Frontoparietal

197 –33 54 3 Frontoparietal

198 –42 45 –3 Frontoparietal

199 33 –54 45 Frontoparietal

200 42 48 –3 Frontoparietal

201 –42 24 30 Frontoparietal

202 –3 27 45 Frontoparietal

203 12 –39 51 Salience

204 54 –45 36 Salience

205 42 0 48 Salience

206 30 33 27 Salience

207 48 21 9 Salience

208 –36 21 0 Salience

209 36 21 3 Salience

210 36 33 –3 Salience

211 33 15 –9 Salience

212 –12 27 24 Salience

213 0 15 45 Salience

214 –27 51 21 Salience

215 0 30 27 Salience

216 6 24 36 Salience

217 9 21 27 Salience

218 30 57 15 Salience

219 27 51 27 Salience

220 –39 51 18 Salience

221 3 –24 30 None

222 6 –24 0 Subcortical

223 –3 –12 12 Subcortical

224 –9 –18 6 Subcortical

225 12 –18 9 Subcortical

226 –6 –27 –3 Subcortical

227 –21 6 –6 Subcortical

228 –15 3 9 Subcortical

229 30 –15 3 Subcortical

230 24 9 0 Subcortical

231 30 0 3 Subcortical

232 –30 –12 0 Subcortical

233 15 6 6 Subcortical

234 9 –3 6 Subcortical

235 54 –42 21 Attention

236 –57 –51 9 Attention

237 –54 –39 15 Attention

238 51 –33 9 Attention

239 51 –30 –3 Attention

240 57 –45 12 Attention

241 54 33 0 Attention

242 –48 24 0 Attention

243 –15 –66 –21 None

244 –33 –54 –24 None

245 21 –57 –24 None

246 0 –63 –18 None

247 33 –12 –33 None

248 –30 –9 –36 None

249 48 –3 –39 None

250 –51 –6 –39 None

251 9 –63 60 Attention

252 –51 –63 6 Attention

253 –48 –51 –21 None

254 45 –48 –18 None

255 48 –30 48 Sensorimotor

256 21 –66 48 Attention

257 45 –60 3 Attention

258 24 –57 60 Attention

259 –33 –45 48 Attention

260 –27 –72 36 Attention

261 –33 0 54 Attention

262 –42 –60 –9 Attention

263 –18 –60 63 Attention

264 30 –6 54 Attention



Table S3 All the ROIs (based on the AAL atlas) whose flexibility showed a significant (or a trend for) negative correlation with CD-RISC score, 
as well as their subnetwork affiliations

Region of interest Pearson correlation coefficient FDR-corrected P Subnetwork affiliation

Left superior frontal gyrus (medial orbital) –0.460 0.061 Default-mode

Right superior frontal gyrus (medial orbital) –0.508 0.030 Default-mode

Left anterior cingulate and paracingulate gyri –0.439 0.063 Default-mode/salience

Right anterior cingulate and paracingulate gyri –0.420 0.064 Default-mode/salience

Right temporal pole: middle temporal gyrus –0.438 0.063 Default-mode

Right calcarine fissure and surrounding cortex –0.389 0.097 Visual

Right cuneus –0.434 0.063 Visual

Left lingual gyrus –0.423 0.064 Visual

Right lingual gyrus –0.509 0.030 Visual

Left superior occipital gyrus –0.419 0.064 Visual

Right superior occipital gyrus –0.432 0.063 Visual

Left middle occipital gyrus –0.617 0.004 Visual

Right middle occipital gyrus –0.412 0.068 Visual

Left inferior occipital gyrus –0.525 0.030 Visual

Right inferior occipital gyrus –0.499 0.030 Visual

Left fusiform gyrus –0.454 0.061 Visual

ROI, regions of interest; AAL, Automated Anatomical Labeling; CD-RISC, Connor-Davidson Resilience Scale.


