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Review Article

Gene-gene interaction: the curse of dimensionality
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Abstract: Identified genetic variants from genome wide association studies frequently show only modest 
effects on the disease risk, leading to the “missing heritability” problem. An avenue, to account for a part of 
this “missingness” is to evaluate gene-gene interactions (epistasis) thereby elucidating their effect on complex 
diseases. This can potentially help with identifying gene functions, pathways, and drug targets. However, the 
exhaustive evaluation of all possible genetic interactions among millions of single nucleotide polymorphisms 
(SNPs) raises several issues, otherwise known as the “curse of dimensionality”. The dimensionality involved 
in the epistatic analysis of such exponentially growing SNPs diminishes the usefulness of traditional, 
parametric statistical methods. With the immense popularity of multifactor dimensionality reduction 
(MDR), a non-parametric method, proposed in 2001, that classifies multi-dimensional genotypes into one- 
dimensional binary approaches, led to the emergence of a fast-growing collection of methods that were 
based on the MDR approach. Moreover, machine-learning (ML) methods such as random forests and neural 
networks (NNs), deep-learning (DL) approaches, and hybrid approaches have also been applied profusely, 
in the recent years, to tackle this dimensionality issue associated with whole genome gene-gene interaction 
studies. However, exhaustive searching in MDR based approaches or variable selection in ML methods, still 
pose the risk of missing out on relevant SNPs. Furthermore, interpretability issues are a major hindrance for 
DL methods. To minimize this loss of information, Python based tools such as PySpark can potentially take 
advantage of distributed computing resources in the cloud, to bring back smaller subsets of data for further 
local analysis. Parallel computing can be a powerful resource that stands to fight this “curse”. PySpark 
supports all standard Python libraries and C extensions thus making it convenient to write codes to deliver 
dramatic improvements in processing speed for extraordinarily large sets of data.
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The single nucleotide polymorphism (SNP) is the key 
genetic unit that is utilized in genome-wide association 
studies (GWASs) to unravel the genetic basis of complex 
human diseases. Thousands of GWASs have been reported 
in the GWAS Catalog (1), each of which recounts several 
genetic variants associated with a disease of interest. 
However, the identified genetic variants frequently show 
only modest effects on the disease risk, which is referred 
to as the “missing heritability” problem (2). Among 

other factors, this “missingness” is attributed to genetic 
heterogeneity, epistasis (gene-gene interaction), and gene-
environment interaction and is an impediment to accurate 
prediction of disease risk from genetic information (3,4). 
Epistasis occurs when 2 or more genes interact to affect 
the phenotype of an organism (5). Given the complexity 
of biomolecular interactions (biological epistasis) (6) in 
gene regulation and metabolic systems, the relationship 
between DNA variants and clinical endpoints (statistical 
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epistasis) (6) is likely to involve gene-gene interactions. 
Moreover it has been predicted that epistasis could drive 
the evolution of recombination frequencies among genes 
on the same chromosome, thereby altering gene order. 
Therefore a negative correlation between epistasis and gene 
distance potentially evolves leading to them having similar 
expression profiles (7).

Accounting for the effect of genetic interactions can 
help with identifying gene functions, pathways, and drug 
targets. These interactions include synthetic, suppressive, 
and epistatic types. Synthetic interaction occurs when two 
genes from parallel pathways produce a phenotype, so the 
phenotype can still be observed even if one of the genes 
gets inactivated (knocked out); however, if both genes are 
knocked out, the phenotype will be altered. Suppressive 
interaction occurs when the phenotypic defects caused 
by a mutation in a particular gene are rescued by a 
mutation in a second gene. Finally, epistatic interaction 
occurs between two genes if one allele of the first gene 
masks the expression of an allele of the second gene. In 
a nutshell, epistatic genes mask each other’s presence or 
combine to produce an entirely new trait (8). In the last  
2 decades, numerous studies have been attempted to better 
understand genetic interactions and their contribution to 
missing heritability (9).

A lot of challenges are associated with conducting 
gene-gene interaction analysis. It becomes challenging to 
conduct whole genome gene-gene interaction analysis, as 
the number of potential interactions exponentially increases 
with the increasing number of SNPs. Multi-level analysis 
has been implemented in prior studies to address this issue 
of dimensionality. For example, in numerous studies, many 
SNPs are excluded through quality control measures. 
Also, most GWASs are limited to common variants (10), 
focusing on only SNPs with a minor allele frequency (MAF) 
(>5%). It has also been shown that low-frequency (1%≤ 
MAF <5%) and/or rare (MAF <1%) variants account for 
part of the missing heritability (11). In rare Mendelian 
disorders, causal rare variants tend to show high penetrance, 
whereas in complex disorders, the penetrance levels of 
rare variants are mostly moderate to low. Also, within the 
extensive worldwide efforts aimed at creating reference 
genomes with millions of SNPs (12-14), epistasis studies 
are overwhelmingly difficult because of the problem of 
dimensionality. High dimensionality, together with multiple 
polymorphisms, exponentially increases the computational 
complexity of traditional statistical approaches, not to 
mention the time.

One of the most famous strategies for reducing the 
dimension of high order variables, which has been used 
profusely, is a non-parametric approach, first proposed 
by Ritchie et al., known as the multifactor dimensionality 
reduction (MDR) method (15). The fundamental idea of 
MDR is to classify multi-dimensional genotypes into one- 
dimensional binary approaches by pooling genotypes of 
multiple SNPs using the ratio of cases and controls. Many 
variations of MDR have been proposed over the years. A 
roadmap of MDR showing the temporal development of 
MDR and MDR-based approaches has been developed by 
Gola et al. (16). For instance, generalized MDR, proposed 
by Lou et al., uses a score-based residual on both binary and 
continuous phenotypes to classify multi-level genotypes 
into high and low risk (17). Other variations include model-
based MDR (18), odds ratio-based MDR (19), and robust 
MDR (20). Two variations of MDR survival prediction 
models, surv-MDR (21) and Cox-MDR (22), have also 
been proposed. The former uses a log-rank test statistic 
with survival time instead of case-control ratios to identify 
survival associated with multi-way SNP interactions; 
however, it cannot adjust for covariate effects, whereas the 
latter uses a martingale residual classifier to adjust for the 
covariate effects. Another modification of such a survival-
based MDR method is AFT-MDR (23), which utilizes the 
normalized difference between observed and expected log 
survival times as the standardized residual for classifying 
gene-gene interactions into high and low risk. AFT-MDR 
has also been combined with unified model MDR, which 
uses a non-central chi-square test to find the significance 
of gene-gene interactions for all possible pairs of SNPs 
without any intensive permutations (23). In spite of the 
popularity of MDR, its basic structure eliminates useful 
SNPs due to exhaustive searching, which might exclude 
important SNPs.

Machine learning (ML) methods are a powerful 
alternative to traditional methods for the analysis of gene-
gene interactions. They are usually model-free and able 
to detect nonlinear interactions in high-dimensional 
datasets through supervised learning. Random Forests (24) 
is one such method that captures interactions between 
SNPs based on decision tree modeling on non-linear 
associations; however, it fails if neither of the SNPs have a 
marginal effect on the disease of interest. Therefore, it was 
followed by other methods that addressed this limitation, 
such as SNPInterforest (25) and EpiForest (26). Another 
method, the support vector machine, has been applied 
to separately interacting and non-interacting SNP pairs 
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using a hyperplane (27), but it suffers from very high type-
I-errors. Some variations of neural networks (NNs), such 
as the grammatical evolution NN (28), conduct both 
variable selection and statistical modeling to detect genetic 
interactions. Genetic programming NNs (29) and other 
methods, where graphs consist of nodes and arcs, have 
been proposed, the nodes and arcs denoting the SNPs 
and SNP interactions, respectively. The NN layers are a 
series of nonlinear statistical models, similar to regression 
models. NNs can be expressed as a weighted linear 
combination of inputs. However, no single computational 
or statistical method is optimal for every dataset. Moreover, 
the efficiency of ML methods is enhanced by limiting the 
number of input features, which is why it is very important 
to perform variable selection before searching for epistasis. 
Hence, there still exists the risk of missing important SNPs 
in the variable selection step.

In the deep-learning (DL) field, deep structured learning 
models are applied to high-throughput genetic data to 
detect and classify multi-locus SNPs. Such models provide 
stability, generalization, and scalability to big data through 
high prediction accuracy. One such DL method that has 
been applied to gene-gene interactions was proposed by 
Uppu et al., where a deep feed-forward NN was trained 
by three hidden layers, thus displaying an improvement in 
the prediction accuracy from previously reported popular 
models (Random Forest, Logistic Regression, naive Bayes, 
and Gradient Boosted Machines), when applied to multiple 
simulated datasets (30). Each layer from the hidden layers 
was trained with 50 computational units and the method 
processed 1,000 epochs per 1,000 iterations on 10 compute 
nodes. The entire data was processed, by default, on every 
node locally by shuffling the training samples in each 
iteration. The model took 17.658 seconds to run 320,000 
samples, which were used for training. The training speed 
of the model was estimated as 8,122.098 samples/second. 
The validation error of the model was 0.294. The error of a 
subsequent test set of the model was estimated as 0.661. The 
best DL model that was chosen by n-fold cross-validation 
was evaluated on a published breast cancer dataset, which 
predicted two-locus SNPs and SNPs with main effects 
that were highly associated with breast cancer. However, 
a major drawback of DL methods is that they are highly 
specialized to a specific domain, and reassessment is needed 
to solve issues that do not pertain to that identical domain. 
Also, such models are unable to understand the context of 
the data that they are trained with, which could be an issue 
while interpreting the results. A different route could be 

to use DL techniques by unifying them with traditional 
statistical methods or other ML methods to maximize the 
predictive accuracy. Incorporating prior information about 
regulatory genetic elements enabled the identification of a 
majority of the variants associated with amyotrophic lateral 
sclerosis (ALS); this strategy used a two-step hybrid of the 
Promoter-CNN and ALS-Net methods and yielded good 
classification results and high accuracy (0.67) on genome-
sized data by focusing on the promoter regions (31). In this 
case, the dimensionality issue disappeared, as the identified 
regions of the genome were those that are relevant to 
classification of ALS patients versus healthy controls.

In the future, handling dimensionality issues will 
be synonymous with switching to parallel computing, 
which would allow the distribution of the data on several 
processors, thus minimizing the loss of useful and 
meaningful loci. PySpark, based on Python is a great 
language that could be used to create more scalable 
analyses and pipelines. The Spark data frame can be 
analogized with a table distributed across a cluster 
that has meaningful functionality. One of the major 
strengths of Spark is its compatibility with multiple 
different programming languages. For data scientists and 
analysts familiar with Python, the PySpark application 
programming interface makes it easy to write code that 
takes advantage of Spark to deliver dramatic improvements 
in processing speed for large sets of data. The future 
solution to dimensionality issues is tools such as PySpark, 
which makes it easy to take advantage of distributed 
computing resources in the cloud, and then bring 
back a smaller subset of data for further local analysis. 
Furthermore, because PySpark supports all standard 
Python libraries and even C extensions, existing code 
in other computing languages can take advantage of the 
power of Spark with only minimal modifications.
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