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Elucidating the molecular signaling pathways of WAVE3
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Abstract: Cancer metastasis is a complex, multistep process that requires tumor cells to evade from 
the original site and form new tumors at a distant site or a different organ, often via bloodstream or the 
lymphatic system. Metastasis is responsible for more than 90% of cancer-related deaths. WAVE3 belongs to 
the Wiskott-Aldrich syndrome protein (WASP) family, which regulate actin cytoskeleton remodeling as well 
as several aspects of cell migration, invasion, and metastasis. In fact, WAVE3 has been established as a driver 
of tumor progression and metastasis in cancers from several origins, including triple negative breast cancers 
(TNBCs), which are classified as the most lethal subtype of breast cancer, due to their resistance to standard 
of care therapy and highly metastatic behavior. In this review, we will attempt to summarize the recent 
advances that have been made to understand how WAVE3 contributes to the molecular mechanisms that 
control cancer progression and metastasis. We will also review the signaling pathways that are involved in 
the regulation of WAVE3 expression and function to identify potential therapeutic options targeted against 
WAVE3 for the treatment of patients with metastatic tumors.
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Introduction

The Wiskott-Aldrich syndrome protein (WASP) family 
includes two subfamilies, WASP (WASP and N-WASP) 
and WASP family verprolin-homologous WAVE proteins 
(WAVE1/SCAR1, WAVE2 and WAVE3) (1,2). The WASP 
and WAVE proteins play a major role in cell motility 
through the activation of filopodia and lamellipodia 
formation at the leading edge of migrating cells (3-7) by 
regulating actin polymerization through binding to the 
Arp2/3 protein complex (4,5,8-12). The formation of these 
membrane filament (filopodia) and ruffle (lamellipodia) 
structures is regulated by molecular switches that are a 
part of the Rho family of GTP-exchange factors: (RhoA, 
Cdc42, and Rac) (13-15). While the WASP and NWASP 

are regulated by Cdc42, WAVE1, 2 and 3 are regulated 
downstream of Rac (1,2,7,13,15,16). The WAVE regulatory 
complex (WRC) is a five-subunit protein complex that 
regulates the activity of the WAVE proteins and it plays 
an important role in regulating actin polymerization. 
The WAVE proteins were shown to be sequestered in an 
inactive state through the formation of a complex with the 
four other protein members of the WRC, PIR121, Nap125, 
HSPC300, and Abi1 (17-19). WRC is activated by Rho 
GTPase Rac1 and sends information to the actin nucleator 
Arp2/3 complex (20-24). Among the various WASP and 
WAVE proteins, WAVE3 has been established a major 
driver of the invasive and metastatic phenotypes in several 
types of cancers, including the one generating for the breast 
(3,25). WAVE3, like WAVE1 and WAVE2, contains several 
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functional domains (I) an N-terminal basic region (BR); 
followed by (II) a proline-rich domain (PRD) that binds and 
activates SH2- and SH3-containing proteins kinases such 
as c-Abl and PI3K-p85; and (III) a verprolin-cofilin-acidic 
(VCA) domain that binds the Arp2/3 complex and activates 
actin polymerization (26). Several studies have reported that 
WAVE3 is found to be present on the leading edge and in 
the tips of pre-mature and mature filopodia (11,16). This 
was also demonstrated by immunostaining the filopodia 
with anti-WAVEs and actin filaments with rhodamine (16). 
However, WAVE3 is distributed in a discrete manner on 
the leading edge of lamellipodia and tips of filopodia (27) 
as opposed to WAVE1 which demonstrated continuous 
distribution (16). High WAVE3 expression is related to 
cancer invasion and metastasis (9,28). Loss of WAVE3 
inhibits the formation of invadopodia (27), thereby further 
inhibiting cell migration, invasion, and extracellular 
matrix (ECM) degradation (5). Ji et al. (29) showed that 
knockdown of WAVE3 inhibits cell migration and invasion 
in hepatocellular carcinoma (HCC) cells. WAVE3 is largely 
concentrated in the nucleus and cytoplasm (6). It is found 
to be upregulated in breast (27), prostate (15), liver (3,29), 
pancreas (30), and ovarian cancers. Furthermore, it was 
shown that WAVE3 is co-localized with actin structures 
in the lamellipodia (6). Reports have shown that WAVE3 
protein levels are correlated to different grades of tumor 
(5,8,31). However, the expression of WAVE3 varies with 
cell lines. For example, Taylor et al. (32) demonstrated 
that there was high expression of WAVE3 in breast cancer 
cell lines such as MDA-MB 231 and BT-549. Similarly, 
the expression of WAVE3 was upregulated in PANC-
1, a pancreatic cancer cell line (30). In another study, 
Lu et al. (31) showed that SKOV3 cells showed highest 
WAVE3 expression among five different human ovarian 
cancer cell lines whereas A2780 had the lowest expression. 
The expression levels of WAVE3 upregulated in HCC 
tissues than adjacent non-cancerous tissues. It was also 
demonstrated that silencing WAVE3 causes decreased 
expression of COX-2, VEGF, nuclear factor-kappa B 
(NFκB) and p38 mitogen-activated protein kinase (MAPK) 
in SKOV3 cells and elevated expression causes high 
expression of the same in A2780 cells (31).

One of the tumors where WAVE3 has been heavily 
investigated is breast cancer. Breast cancer is the second 
leading cause of cancer-related deaths in women in the 
United States and worldwide (32-35). Breast cancer 
causes more than 40,000 deaths in the United States 
annually (33,36,37). The most abysmal type of breast 

cancer is triple negative breast cancer (TNBC) which is 
also disproportionally higher in the African-American 
population (38-41). Cancer metastasis requires tumor cells 
to evade from a primary site and form new tumors at a 
distant site or a different body part, often via bloodstream 
or the lymphatic system (5,8,9,42,43). Almost 90% of 
deaths are caused due to metastases (32,44-46). TNBC cells 
lack estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2/
neu) (32,47-52). Due to the highly metastatic behavior of 
these tumors, they are classified as the most lethal subtype 
of breast cancer (32,33,36). Cancer stem cells (CSCs) 
have been involved in tumor initiation, development, and 
metastatic dissemination, especially in TNBCs. They 
exhibit resistance to chemotherapy and radiotherapy and 
are capable of self-renewal, often causing recurrence (53-56).  
Reports have shown that WAVE3 is enriched in the 
population of CSCs and silencing WAVE3 might reduce 
chemoresistance in TNBC cells (36).

In this review, we will discuss about the advances made in 
WAVE3 in the last few decades. We believe that targeting 
WAVE3 can be one of the approaches for potential 
therapeutic strategies for treating patients with cancer, 
especially breast cancer.

Genetic approaches to target WAVE3 expression 
and activity in cancer cells

There are different approaches to target a specific 
protein: direct biochemical methods, genetic interaction 
and genomic methods, and computational inference  
methods (57). In this section, we describe the various 
approaches that have been used to successfully target and 
inhibit WAVE3. Ji et al. (29) reported using short interfering 
RNAs (siRNA) targeting of WAVE3 in HepG2 cells. The 
expression of WAVE3 protein significantly decreased 
in si-WAVE3 transfected HepG2 cells than controls. 
Similarly, Zhu et al. (3) found out that the WAVE3 protein 
significantly decreased after using siRNA to knockdown 
the proteins in another liver carcinoma cell line, CC-LP-1 
cells. All characteristics of a tumor cells such as migration, 
invasion and proliferation were inhibited after the WAVE3 
knockdown using siRNAs (3). The siRNA-mediated 
knockdown of gene expression is, however, transient since 
the knockdown effect cannot be sustained beyond 96– 
120 hours post transfection. Therefore, long-term 
biological effect of gene knockdown cannot be assessed 
using siRNAs, including in vivo effects. Accordingly, Lu 
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et al. (31) used short hairpin RNA (shRNA) technique to 
knockdown WAVE3 in ovarian cancer cells. In another 
study, Sossey-Alaoui et al. (5) used shRNA to overcome 
the limitation of siRNA. Stable shRNA-mediated WAVE3 
knockdown in human MDA-MB-231 and murine 4T1 
breast cancer cells was found to significantly inhibit 
tumor growth and metastasis in mouse models for breast  
cancer (36). In another study, knockdown of WAVE3 in 
PC-3 and DU-145 prostate cancer cell lines was carried out 
using ribozyme transgene method (15,58). The authors also 
demonstrated that there was a decrease in invasion of the 
cells after WAVE3 was knocked down using this method. 
Both studies reported that this technique did not affect 
the cell adhesion with matrix whereas invasion through 
Matrigel decreased significantly (8).

CRISPR/Cas9 technology has been used as an efficient 
and versatile tool to permanently target and edit specific 
gene at precise locations. CRISPR/Cas9 has proved to be 
competent than other prevailing gene editing approaches 
such as siRNA and shRNA. Bledzka et al. (36) used CRISPR/
Cas9-mediated knockout of WAVE3 where single-guide 
RNAs (sgRNAs) were used to target exon 2 and exon 3  
of the human WAVE3 gene. The number of invadopodia 
formed and the total area of ECM degradation decreased 
significantly in WAVE3 knockout cells compared to control 
(Scram CRISPR) MDA-MB 231.

Another technique to target WAVE3 is achieved by 
genetic knockdown of CYFIP1 with stapled peptides known 
as WASF helix mimics (WAHM). Genetic knockdown of 
CYFIP1 eventually reduces WAVE3 levels, preventing the 
invasion. Peptide-mediated inhibition of WAVE3 could be 
a promising therapeutic approach for suppressing tumor 
invasion and metastasis. However, the level of suppression 
of invasion by this method is not as much of as compared to 
the shRNAs (46). Taken together, these studies suggest that 
the genetic approaches used to knockdown WAVE3 causes 
inhibition of invasion and migration of cells.

WAVE3 and microRNAs

Small non-coding RNA molecules,  also known as 
microRNAs, are responsible for RNA silencing and post-
transcriptional regulation of gene expression (28,59,60). 
Out of all the miRNAs, nine of them are tumor suppressive 
in breast cancer. They are miR-30a, miR-30c, miR-31, 
miR-126, miR-140, miR146b, miR200c, miR-206, and 
miR-335 (61). miR200 microRNAs are responsible for the 

expression of WAVE3 protein and regulation of epithelial-
mesenchymal transition (EMT) during tumor progression 
and metastasis (8). WAVE3 expression is suppressed when 
the miR200 directly targets the 3’-untranslated regions. 
Invasive and non-invasive cancer cells showed that miR200 
and WAVE3 are inversely correlated (28). Mesenchymal 
cell types such as MDA-MB 231 and PC-3 do not express 
miR200 whereas epithelial cell types such as MCF7 and 
HT29 shows overexpression of miR200 (28). Moreover, 
there is a decrease in miR-200c because of loss of p53. 
However, loss of WAVE3 causes increase in p53 levels. On 
the other hand, the downstream protein of p53, Bcl-2 was 
decreased because of inhibition by p53. It has been reported 
that downregulation of microRNA miR-31, a metastasis 
suppressor gene (59), promotes invasion-metastasis cascade 
(28,60). Furthermore, Sossey-Alaoui et al. (8) also showed 
that there is an inverse correlation between WAVE3 and 
miR-31 expression level, especially in human breast cancers.

WAVE3 and matrix metalloproteinases (MMPs)

MMPs have been found to be involved in cell invasion 
and migration (27,62) and they are an essential part of 
invadopodia (27). MMPs are enzymes that are involved 
in the breakdown of ECM. Malignant cells use MMPs 
to enzymatically degrade the ECM through p38 MAPK 
pathway to facilitate invasion and metastasis (9,63). 
MMPs play a vital role in different steps of tumor 
growth and metastasis, angiogenesis, and wound healing 
(64,65). Previous studies have demonstrated that averting 
metastasis is possible by targeting and inhibiting the MMPs  
activity (31). Nuclear factor NFkB, a protein complex 
involved in invasion and metastasis of cancer, plays a key 
role in the production of MMPs (MMP-1, MMP-3, and 
MMP-9) (66). Loss of WAVE3 does not affect MMP-2  
but inhibits the expression levels of MMP-1, MMP-3, 
and MMP-9 (7). However, treatment with MMP activator 
phorbol myristate acetate (PMA) can bring back the MMP 
production without altering siRNA-mediated WAVE3 
knockdown. Moreover, downregulation of p38 and MMP 
production is mediated by WAVE3 (7). Low expression 
of MMP-2 and MMP-9 was observed after WAVE3 
knockdown in SKOV3 cells whereas the expression of 
MMP-2 and MMP-9 was high in A2780 cells. Similarly, 
there was low expression of MMP-2 in PC-3 cells (58). 
Further, knockdown of WAVE3 phosphorylation causes 
decrease in MMP-2 and MMP-9 activity (27).
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Pathways contributing to cancer progression 
and metastasis

WAVE3 and c-Abl

c-Abl, a non-receptor tyrosine kinase, is found in the 
nucleus and cytoplasm. c-Abl is responsible for the 
regulation of cell motility and localization of focal adhesions 
and lamellipodia (67). Sossey-Alaoui et al. (4) showed that 
WAVE3 is downstream of c-Abl tyrosine kinase. Further, 
treatment with platelet-derived growth factor (PDGF) 
causes phosphorylation of WAVE3 (6). Interaction of 
WAVE3 with Ableson (Abl) non-receptor tyrosine kinase 
promotes the tyrosine phosphorylation. On the other hand, 
the Abl-mediated phosphorylation of WAVE3 is blocked 
by STI-571, a specific inhibitor of Abl kinase activity (4). 
Both WAVE3-Abl interaction and Abl-kinase activity 
are necessary for the Abl-mediated phosphorylation of  
WAVE3 (28).

WAVE3 and phosphatidylinositol 3-kinase (pI3K)

Phosphatidylinositol 3-kinases (PI3Ks), also known as 
phosphoinositide 3-kinases, are enzymes that regulates 
cellular functions like cell growth, motility, and survival 
(68,69). PI3K signaling pathway is found to be dysregulated 
in almost all cancers, including breast cancer (70,71). 
Targeting this pathway can be a potential therapeutic 
option for treating TNBC patients (72,73). Reports have 
shown that PI3K is upstream of WAVE3 (6). Sossey-Alaoui 
et al. (5) demonstrated that knockdown of WAVE3 using 
siRNA decreases the ability to form lamellipodia at the 
migrating edge of breast cancer cells. Moreover, LY294002, 
an inhibitor of PI3K, prevents the formation of lamellipodia 
and cell migration. Thus, PI3K is essential for WAVE3 
activity (6). Further, lamellipodia formation and WAVE3-
mediated cell motility in breast cancer cell line (MDA-
MB-231) is induced by PDGF which was confirmed by 
wound healing and migration assays. It was further reported 
that knockdown of WAVE3 using the same technique causes 
inhibition in the formation of PDGF-induced lamellipodia 
in breast cancer cells (6). Direct physical interaction of 
p85, the regulatory subunit of PI3K, with WAVE3 may be 
required for WAVE3-mediated lamellipodia formation, cell 
migration, and invasion. This interaction is facilitated by 
the BR domain of WAVE3 and the C-terminal SH2 domain 
of p85. Thus, it is confirmed that PI3K is imperative for the 

regulation of WAVE3-mediated lamellipodia formation and 
cell migration (6).

WAVE3 and AKT pathway

Protein kinase B (AKT) has been implicated in a variety of 
cellular functions such as cell proliferation and migration 
(74,75). AKT is a downstream effector of PI3K (76). 
PI3K plays a role in cancer progression and metastasis 
through both AKT-dependent and AKT-independent 
mechanisms (77). Inhibition of AKT prevents the formation 
of invadopodia in breast cancer cells (9,76). There is an 
increase in phosphorylation of AKT due to overexpression 
of WAVE3. Knockdown of WAVE3 does not affect the 
AKT, ERK 1/2, or JNK. NFKB activates AKT signaling 
and if the AKT is inhibited using AKT inhibitor (MK-2206),  
NFKB is negatively affected (13). This was proved by 
treating MDA-MB-231 cells with MK-2206, whereby, 
there was a significant reduction in phospho-AKT and 
phospho-p65 whereas total AKT or total p65 levels were 
not affected (9).

WAVE3 and transforming growth factor-β (TGF-β)

TGF-β, a multifunctional cytokine (32), plays a dual role in 
breast cancer, acting both as a tumor-promotor and tumor 
suppressor (78-80). It has been reported that high TGF-β 
contributes to tumor suppression during early stages of 
tumor. On the other hand, they lose the growth inhibitory 
effect, become malignant and aid in promoting tumor 
towards the later stages (79,81,82). However, the switch of 
TGF-β from tumor suppressor to tumor promoter remains 
unelucidated (83,84). Reports have shown that p53 is 
involved in the switch of TGF-β from tumor suppressor in 
pre-malignant cells to tumor promotor in cancer cells (83). 
The tumor suppressor protein p53 inhibits TGF-β induced 
EMT through activation of miR-200c (85). Taylor et al. (32) 
found out that TGF-β is upstream of WAVE3 and there was 
an upregulation of WAVE3 by TGF-β in metastatic breast 
cancer cells (MDA-MB-231 and BT549). However, there 
was only a slight upregulation detected in non-metastatic 
cells (MCF7 and T47D). TGF-β receptors not only activate 
Smads, but they activate other signaling pathways as well. 
Activation of several receptors such as epidermal growth 
factor (EGF) through signal transducer and activator of 
transcription (STAT) and NFkB by tumor necrosis factor-α 
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(TNF-α) causes inhibition of TGF-β (86). Taylor et al. (32) 
further reported that Smad2 and β3 integrin are important 
to induce WAVE3 expression in TNBCs by TGF-β.

WAVE3-p38 pathway

p38 MAPKs belongs to the MAPK family and they 
are responsible for regulating cellular activities such as 
proliferation, differentiation, migration, and survival  
(87-89). They are activated by cellular stress and cytokines. 
TGF-β  activates other signaling pathways such as 
p38 MAPK pathway (86,90). Knockdown of WAVE3 
expression using siRNAs causes decrease in cell motility 
and metastasis-invasion cascade, especially in breast cancer 
cells. Further, there was a decrease in p38 MAP kinase 
phosphorylation because of downregulation of WAVE3. 
Further, it was interesting to note that WAVE3-mediated 
downregulation of p38 activity does not alter the expression 
levels of WAVE1 and WAVE2 genes even after knockdown 
of WAVE3 (7,28). Studies have reported that p38 MAPK 
is downstream of WAVE3 in cell migration and invasion 
(5,7). Sossey-Alaoui et al. (7) further demonstrated that 
knockdown of WAVE3 decreases phosphorylation levels of 
p38 MAPK levels whereas the activity of AKT, ERK1/2, 
and JNK remains unchanged. It was further demonstrated 
that Rac1 activates both WAVE3 and p38 MAPK. Thus, 
WAVE3 is essential for Rac1-dependent activation of p38 
MAPK pathway. Reports have indicated that WAVE3 
regulates the MMP activity via p38 pathway (7). Overall, 
WAVE3 may play an important role in cancer cell invasion 
and metastasis through MMP production and p38 MAPK 
pathway. Furthermore, WAVE3 phosphorylation by Abl 
tyrosine kinase is important for MMPs activity.

WAVE3 and NFκB pathway

NFκB is a vital signaling pathway that is involved in 
pathogenesis as well as invasion and metastasis of several 
cancer types (91-93). Davuluri et al. (9) showed that there is 
a correlation between WAVE3 and NFκB signaling. They 
further highlighted the importance of WAVE3 for NFκB 
activation and demonstrated that knockdown of WAVE3 in 
MDA-MB 231 causes inhibition of NFκB activity and vice 
versa. Furthermore, the authors also showed that TNFα-
induced stimulation of NFκB signaling activates Akt, and 
thereby causes cancer cells to undergo apoptosis and finally 
leads to cell death. In another study, it was revealed that 

either basic rich or PRD of WAVE3 is required for NFκB 
signaling (66). The authors showed that loss of WAVE3 
in MDA-MB-231 cells causes inhibition of NFκB. This 
is because there is a nuclear translocation of NFκB. It 
appears that NFκB activates the production of MMPs, 
including MMP-1, MMP-3, and MMP-9. WAVE3-
mediated modulation of NFκB, in addition to Akt signaling, 
is essential for formation of invadopodia as well as MMP9 
expression. Additionally, phosphorylation of transcription 
factor p65 subunit and nuclear translocation are required 
for NFκB-mediated activation (9). Moreover, WAVE3 
phosphorylation is important for the nuclear translocation 
as well as MMP-9 activation (27). Hence, WAVE3 plays a 
vital role in the regulation of NFκB signaling.

Cytoplasmic vs. nuclear function of WAVE3 and the role of 
WAVE3: YB1 interaction in the regulation of CSCs

Y-box-binding protein-1 (YB1), also known as Y-box 
transcription factor, is present in the cytoplasm as well 
as the nucleus of a cell (94,95). The role of YB1 is to 
regulate mRNA translation in the cytoplasm and regulate 
expression of CSC genes in the nucleus. YB1 expression is 
found to be elevated in various human cancers, especially 
aggressive breast cancer cell lines (96). A recent study 
has shown that WAVE3 binds to YB1 through its PRD 
and translocate YB1 to the nucleus, thereby activating 
CSC genes. It was also established that WAVE3 and YB1 
work together to regulate the breast CSC population 
and gene expression. Therefore, a novel and never 
previously described function of WAVE3 in the nucleus, 
has been found to implicate WAVE3 in the regulation and 
maintenance of CSCs in breast cancer. Thus, WAVE3 
may act as a potential biomarker for CSCs, and preventing 
WAVE3/YB1 binding may be a novel therapeutic target to 
treat TNBC (36).

Conclusions

Several signaling pathways have been shown to be 
associated with WAVE3 in the development, progression, 
and metastasis of several cancers, as well as the maintenance 
of CSCs in breast cancer (Figure 1). Therefore, targeting 
WAVE3 may serve as potential therapeutic strategy for 
treating cancer patients, including those with TNBC 
tumors. However, the domain of WAVE3 responsible for 
activating the signaling pathway has not been elucidated. 
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Identifying the specificity of the different WAVE3 domains 
is crucial in the regulation of the different molecular 
signaling pathways and the modulation of the invasion-
metastasis cascade.
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Figure 1 Model representing the molecular signaling pathway of WAVE3 contributing to cancer progression and metastasis.
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