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In a study of patients with clear cell renal carcinoma from 
the Cancer Genome Atlas (TCGA) database, Zhang et al.  
evaluated whether tumour mutational burden (TMB) was 
associated with reduced patient survival and increased 
immune infiltrates (1).

The importance of immunity in cancer has been 
recognised as far back as circa 1,550 BC (2). In the 19th 
century, Coley produced the first immunological cancer 
therapy by injecting sarcoma patients with heat killed S. 
pyogenes and S. marcecsens, and this led to remission in some 
patients (3). More recent work has elucidated a mechanism 
for this phenomenon, namely that pathogen-associated 
molecular patterns can elicit an anti-tumour response 
through shared pattern recognition receptors (4). It may be 
possible to treat cancer by promoting pattern recognition 
receptor signalling, and use checkpoint inhibitors to 
prevent ‘exhaustion’ of the immune system (5,6). Indeed, 
a recent systematic review of 25 randomised control trials 
demonstrated that checkpoint inhibition conferred longest 
overall survival for patients with metastatic renal cell 
carcinoma (RCC) (7). These newly developed checkpoint 
inhibitors are now a first line agent in the treatment of  
RCC (8), and activation of the immune system plays a key 
role in the treatment of renal cancer.

Optimal management of renal cancer is important for a 
number of reasons. It is one of the most common cancers 
with 400,000 individuals diagnosed globally each year (9). 
The incidence of RCC appears to be increasing, possibly 
due to increased incidental detection (10), and 17% of 

patients have metastatic disease at diagnosis (11). While 
treatment has improved, 175,000 patients die of renal 
cancer annually (9).

Clear cell RCC (ccRCC) is the most common subtype 
of RCC, and one of its distinctive features is immune 
infiltration (12,13). In other cancers, immune cell 
infiltration has been linked to prognosis and treatment 
efficacy (14). Kamal et al. demonstrated that primary 
metastatic ccRCC had a higher level of immune infiltration 
when compared to non-metastatic ccRCC (15). These types 
of analysis are confounded by the differing roles of the wide 
variety of immune cells present in the micro-environment, 
be they pro- or anti- tumourigenic. Şenbabaoğlu et al. 
analysed ccRCC immune infiltrates, transcriptomic and 
proteomic profiles and found infiltration with Th17 and 
CD8+ T cells improved survival, whereas infiltration with 
Th2 and regulatory T cells worsened survival (16). Similarly, 
McDermott et al. demonstrated that in metastatic RCC 
effector T cell and myeloid inflammatory gene expression 
was associated with survival and treatment response (17).

Intuitively, one might expect a strong correlation 
between high levels of cytotoxic T cells levels and the 
number of neo-antigens expressed by tumour cells. The 
easiest measurable surrogate for neo-antigen presentation is 
TMB. However, neo-antigen presentation not only depends 
on the number, but also the type of somatic mutations 
acquired by the tumour. Compared to other solid cancers, 
ccRCC has a low mutational burden (18), occurring at a 
rate of 1–2 per Mb, whereas for instance melanoma and 
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non-small cell lung cancer have around 10–400 per Mb (18).
However, ccRCC have relatively high prevalence of 

indels compared to single nucleotide variants, which may 
produce a greater array of neo-antigens, possibly explaining 
the relatively high sensitivity to immune-checkpoint 
inhibition (19).

TMB has been shown to affect treatment efficacy as 
well as survival in other cancers (20,21). Samstein et al. 
demonstrated that TMB was associated with progression 
free survival after checkpoint inhibitor treatment (20). 
These findings were not however corroborated by 
McDermott (17), nor has TMB previously been found to be 
associated with the level of immune infiltration in RCC (16).

Immune infiltration can also be estimated using a number 
of histological processes such as immuno-histochemistry. 
More recently, modern computational histopathology 
methods have been demonstrated to estimate tumour 
micro-environment composition from haematoxylin and 
eosin stained tissue slides without the need for additional 
tissue processing. Deep transfer learning, where a computer 
is taught how to do one task and then uses that knowledge 
to complete a different but related task, was used by Fu 
et al. to accurately identify different cancer types and 
normal tissue. The authors were then able to use these 
learned histopathogical features to predict whole genome 
duplications, amplifications and deletions, and even driver 
gene mutations through deep transfer learning (22).

In this journal, Zhang et al. analysed 336 patients with 
ccRCC from TCGA. They estimated the TMB for each 
patient and categorised their cohort into lower low-TMB, 
and high-TMB samples. Using this stratification, they 

demonstrated that high-TMB was significantly associated 
with poorer survival, as well as higher tumour stage and 
grade. Although TMB was not associated with higher T, N, 
M stage (1).

They determined that nine genes were associated 
with low- and high-TMB and found that high-TMB was 
associated with MAPK and Wnt signalling pathways (1).

The authors then used the CIBERSORT algorithm 
to determine the immune profiles of samples. They 
demonstrated that lymphoid and myeloid immune infiltrates 
were lower in the high-TMB group compared to the low-
TMB group. Additionally, they identified that low CD8+ T 
cell and macrophage infiltrates were negatively associated 
with survival (1).

There are some doubts as to the widespread applicability 
of the conclusions from this study as we know that tumour 
mutational burden is both correlated with age (18), and anti-
correlated with immune infiltration (23). In clonal tumours 
without stromal contamination we observe that we can 
relatively accurately estimate the true tumour mutational 
burden if the average sequencing coverage is 30× or higher 
(Figure 1A). However, with higher levels of stromal or 
immune infiltration the effective coverage drops, and with 
it the estimated TMB, even if the tumour is sequenced at 
60× (Figure 1B). Without accounting for patient age and 
effective coverage in this data it becomes difficult to infer 
the biological relationship between TMB and outcome. 
This relationship may explain why the association between 
TMB with survival in ccRCC unclear.

We note that using algorithms such as CIBERSORT 
to estimate the relative abundance of immune cells based 

Figure 1 Relationship between the sensitivity of calling mutations with depth of sequencing and degree of stromal contamination. (A) 
Accurate estimation of tumour mutational burden is possible in clonal tumours without stromal contamination if the average sequencing 
coverage is 30× or higher. (B) Effective coverage decreases with higher levels of stromal or immune infiltration, and with it the estimated 
TMB, even if the tumour is sequenced at 60×.
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on reference immune datasets could be improved in future 
studies. Many such cell state estimating algorithms force a fit 
to the reference data and do not account for a transcriptional 
profile that is not provided by the reference set. We suggest 
that in future studies, either a reference of all the cell types 
expected in RCCs is used (24), or an algorithm that can 
account for cell types not provided in the reference, to avoid 
overinflating the presence of some cell types.

Large scale genomic resources such as TCGA provide 
a vast amount of information for many cancer types. For 
most cases a wide variety of data is provided. They can 
be used to provide data on whole exome sequences which 
can then be used to identify mutations; single nucleotide 
polymorphisms for copy numbers; and RNA sequencing for 
gene expression (25). This data can also be used to identify 
DNA methylation, protein expression, and non-coding 
mutations. Using this data can help influence precision 
medicine as genetic signatures associated with survival and 
response to treatment can inform management choices (25).

It is time that all cancer sequencing studies regardless 
of sponsorship are made publicly available in repositories 
such as TCGA, particularly those studies that measure the 
response of tumours to different therapies. Only by sharing 
and making such data publically available can we ensure that 
the research that comes out of them has the highest impact 
for the patients who have donated their tissue and others 
that follow them.
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