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Background: Abnormal methylation is associated with the survival of colon cancer. This study intended to 
discover a significant model based on methylation-driven genes (MDGs) and screen relative risk loci to assist 
with determining the prognoses of colon cancer patients.
Methods: We downloaded transcriptome expression profiles and 450K methylation data from the TCGA 
database. We then collected the two normalized profiles and utilized the MethylMix package to identify a 
significant signature showing the aberrantly methylated events highly correlated with expression levels. Also, 
functional enriched pathway analysis based on the ConsensusPathDB database was conducted to further 
explore the underlying cancer-related crosstalk among the identified MDGs. To find the significant MDGs 
for prognosis, we applied a univariate Cox regression model, and the hub signature was identified based 
on the stepwise regression method. A risk model based on MDGs was constructed from the multivariate 
Cox analysis, and a receiver operating characteristic (ROC) curve was drawn to assess the predictive value 
of the MDG signature. Additionally, the Kruskal-Wallis (K-W) test was conducted to compare differential 
distributions of risk scores across groups of clinical variables. Furthermore, the methylation sites relating to 
the hub genes were screened out and the prognostic genes were searched using the Cox regression method. 
Last, we carried out gene set enrichment analysis (GSEA) with the risk score levels serving as the phenotype 
base on the JAVA platform.
Results: A total of 514 colon cancer samples with transcriptome profiles, including 473 tumor samples and 
41 matched normal samples, were downloaded. We also obtained 351 methylation profiles comprising 314 
tumor samples and 37 normal samples. The 320 MDGs identified by MethylMix were enriched in the generic 
transcription pathway, RNA polymerase II transcription, activation of SMO, or glutathione metabolism. 
Furthermore, a 10-MDGs signature was selected as the hub prognostic marker, and the risk model was 
constructed from the multivariate Cox regression results. We also discovered multiple specific methylated sites 
that were highly associated with survival. Finally, the GSEA results suggested that several enriched pathways 
were associated with the identified risk drivers, including extracellular matrix (ECM) receptor interaction, 
chemokine receptor interaction, and pathways in cancer, as well as calcium signaling pathways.
Conclusions: We conducted a comprehensive investigation of the molecular mechanisms in colon 
cancer by discovering the risk methylation-driven signature combined with relative methylated sites and 
constructing a risk model to predict prognosis. 
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Introduction

Colon cancer, a highly common malignant tumor with 
a high mortality globally (1), arises from accumulated 
genetic and epigenetic alterations (2). Although a great 
number of studies have examined the progression of colon 
cancer, the exact mechanism underlying its pathogenesis 
remains unknown. DNA methylation can lead to epigenetic 
changes (3,4), in the transcription and expression of some 
specific genes, which contribute to colon carcinogenesis. 
DNA methylation in specific CpG islands has been proved 
to contribute to tumor initiation and progression (5,6). 
Therefore, detecting CpG island methylation in human 
DNA may hold promise in relation to early diagnosis of 
colon cancer (7,8). However, to the best of our knowledge, 
few studies have been conducted about methylated 
differentially expressed genes (MDEGs) across the whole 
genome and the prognoses of colon cancer patients (3,9).

For this study, we conducted an analysis based on high-
dimensional data obtained from The Cancer Genome Atlas 
(TCGA) to compare colon cancer patients with healthy 
individuals, selected different methylation subtypes, and 
carried out an analysis on cis- and trans-regulation of 
DNA methylation and gene expression. Following this, 
we built a novel risk score system based on MDEGs that 
could predict patients’ prognoses and potentially inform a 
tailored course of colon cancer treatment. The hub genes 
related to prognosis were analyzed by the Cox regression 
method.

Methods 

Data acquisition and reprocessing

The transcriptome data of 447 tumor samples were 
downloaded from TCGA database (https://portal.gdc.
cancer.gov/) via GDC tool. Then, the normalization 
of expression profiles was conducted using edgeR 
package. Methylation data (of 295 tumor samples and 56 
corresponding normal samples) based on the Illumina 
Infinium HumanMethylation450 platform were obtained 
via the TCGA-Assembler tool. The 450K methylation 
profiles contained comprehensive biological information, 
covering over 480K human genome methylated sites (10). 
We collected the methylation matrix, where the β value 
represented the ratio of the methylation probe data versus 
total probe intensities. The normalization was conducted 
using limma package and the average DNA methylation 

value for all CpG sites associated with a certain gene was 
estimated by TCGA-Assembler. In addition, we extracted 
the patients’ clinical information including age, gender, 
pathological stage, TNM stages and prognostic data. 
MethylMix, an algorithm implemented in R to identify 
disease specific hyper and hypomethylated genes was 
performed: First, the correlation cutoff value was defined 
as correlation coefficient =−0.3 with FDR =0.05 to identify 
significant methylation events that led to alterations in 
gene expression; Then, a β mixture model was established 
based on colon cancer samples to identify methylation 
states which were then compared with the normal DNA 
methylation state; Finally, the Wilcoxon rank-sum test was 
performed to compare the differential methylation levels in 
colon cancer and corresponding normal samples. 

Differential analysis and enriched pathways for 
methylation-driven genes (MDGs)

MethylMix package was utilized to find differentially 
expressed signature related to methylated alterations and the 
cluster analysis of tumor and normal samples was performed 
using heatmap package. The ConsensusPathDB database, 
a comprehensive biological database for interaction 
networks, was used to estimate the enrichment pathways 
that the methylated drivers might participate in. Humancyc, 
Reactome, Kegg, Smpdb, Wikipathways, Signalink and 
Biocarta were used for enriched analysis with P=0.05 as the 
cutoff value. 

Construction of MDGs risk score and associations with 
clinical variables

Univariate Cox regression was exploited to select the 
significant prognostic methylation signature associated with 
survival outcomes and P<0.05 was set as the cutoff value. 
Subsequently, multivariate Cox analysis was conducted to 
identify the hub MDGs via stepwise regression analysis, 
in which the optimal model was determined when the 
Akaike information criterion (AIC) reached the minimum 
value. Accordingly, we obtained the coefficient (β) of hub 
MDGs signature from the multivariate Cox results. Then, 
the MDGs risk score was calculated using the following 
formula: risk score = Ʃ (βi * Expi), in which Exp represented 
the expression value of signature and i meant the identified 
number of MDGs. Hence, the 447 patients were classified 
as high-risk or low-risk based on the median cutoff data. 
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The receiver operating characteristic curve (ROC) was 
drawn by survival package to assess the predictive value of 
established MDGs risk score. Last, Kaplan-Meier analysis 
with log-rank test was used to compare the differential 
survival outcomes between high-risk and low-risk groups by 
survival package.

To further explore the underlying associations between 
MDGs risk score and clinical features, the clinical data 
from 447 patients in TCGA cohort were obtained and the 
risk score was merged with other risk variables, including 
AJCC-TNM stage and pathological stage. Wilcoxon rank-
sum test was used to compare the difference between the 
two groups, while Kruskal-Wallis (K-W) test was suitable 
for evaluating the differential distributions of risk score 
across three or more groups. 

Screening of risk methylated loci associated with overall 
survival (OS)

Since the hub MDGs signature has been identified, we 
detected the potential risk methylated sites. Using the Perl 
scripts, the methylation data associated with the hub MDGs 
signature were extracted and collected into one matrix. After 
integrating the survival information with the methylated value 
of loci, we conducted univariate Cox analysis to identify the 
risk loci. The survival analysis was also performed to assess 
the differential OS between hypo- and hypermethylation 
state of risk methylated sites (Figure 1). Last, we conducted 
a joint survival analysis combining the methylation level and 
corresponding expression data of one gene to determine the 
survival outcomes in colon cancer patients. 

Gene set enrichment analysis (GSEA)

We downloaded the GSEA software from the GSEA home 
(http://software.broadinstitute.org/gsea/index.jsp) and ran 
it on the JAVA platform. The risk score based on MDGs 
was defined as the phenotype. Then, we obtained the “c2.
cp.kegg.v6.2.symbols.gmt gene sets” the MSigDB (http://
software.broadinstitute.org/gsea/downloads.jsp) database as 
the reference gene sets. Last, we set the false discovery rate 
(FDR) < 0.25 and |enriched score| > 0.35 as thresholds. 

Statistical analysis 

Cox regression model or Kaplan-Meier analysis were 
conducted by survival packages. Differential analysis was 

conducted by limma package. The Student’s t-test was 
chosen for continuous variables, while categorical variables 
were estimated by Chi-square test. Wilcoxon rank-sum 
test was used to compare the two groups and K-W test was 
probable for three or more groups. Correlation analysis was 
evaluated by Pearson coefficients. All statistical analyses 
were performed in R studio (version 3.5.2), and P<0.05 was 
defined as significant.

Results 

Screening of methylation drivers in colon cancer 

We obtained transcriptome expression profiles of 514 
samples, including 473 tumor samples and 41 matched 
normal samples. The normalization process was then 
conducted, and 12,693 differentially expressed genes were 
identified based on the edgeR package with FDR <0.05. In 
addition, a total of 351 methylation profiles comprising 314 
tumor samples and 37 normal samples were collected and 
normalized with the limma package. With the two prepared 
files of expression and methylation data, MethylMix 
was implemented to assess the correlations between 
methylation levels and abnormal gene expression (Figure S1). 
Additionally, we acquired 320 methylation drivers defined 
by |logFC| >0, |Cor| >0.3, and P<0.05 (http://cdn.
amegroups.cn/static/application/44086414d60d8fd88778d
bbb9d6c61a2/atm.2020.02.94-1.pdf). Since the mix models 
were established using MethlMix, we illustrate the top 
hyper and hypo-methylation of MDGs in Figure 2. The top 
100 signatures are exhibited in Figure 3, where the heatmap 
reveals the differential methylated levels between tumor 
and normal samples. The specific clinical features of colon 
cancer patients are summarized in Table 1. The mean age 
was 67.23±13.00, and the percentage of males and females 
was 52.49% and 47.51, respectively. 

Functional pathway analysis based on ConsensusPathDB 
database

Given that 320 methylation drivers were identified by the 
MethylMix package, to uncover the potential pathways 
that these epigenetic drivers might participate in, we 
performed functional enrichment pathway analysis, which 
revealed several significant cancer-related pathways, 
including generic transcription pathway, RNA polymerase 
II transcription, activation of SMO, and glutathione 
metabolism. The most relative pathways are shown in 
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Figure 1 Joint survival analysis consisted of methylation state and expression profiles for top 6 genes.

Figure 4. The other crosstalk with statistical results is 
summarized in Table 2.

Construction of MDGs risk score and associations with 
clinical variables

A univariate Cox regression model was utilized to select 
prognostic MDGs in colon cancer based on the survival 
package with P<0.05. Multivariate Cox regression analysis 
was then conducted to identify the hub MDGs. According 
to the stepwise regression model, the minimum AIC was 
894.9. The 10-MDGs signature is shown with hazard ratio 
and 95% CI in Table 3. The risk score was calculated using 
the following formula: (risk score = 0.12573 × EPHX3 + 
0.40776 × FAM179B + 0.08758 × GSTM1 + 0.16666 × 
HSPA1A − 0.26252 × MPC2 − 0.14311 × RP11 − 543D5.1 + 
0.19234 × RP4 − 584D14.6 + 0.12715 × TFAP2C + 0.23671 
× TMEM88 + 0.10748 × VWDE). 

We then divided the 447 colon cancer patients into 
groups according to risk: high (n=223) and low (n=224) 
groups. We observed that the dead cases showed higher 

distributions in patients with higher risk scores (Figure 5A).  
The AUC of the ROC plot was 0.747, representing a 
superior power in OS prediction (Figure 5B). The patients 
with higher risk scores showed poor survival outcomes, with 
P<0.001 (Figure 5C). 

The K-W test also suggested that the higher risk score 
based on the 10-MDGs signature was correlated with 
higher T stage (P=0.007), N stages (P<0.001), metastasis 
(P=0.012), and advanced pathological stage (P=0.003), as 
presented in Figure 5D,E,F,G. 

Screening of risk methylation loci with survival and joint 
survival analysis 

Based on the 10-MDGs signature identified in the above 
analysis, we further explored the specific methylated loci 
harboring the risk methylation genes that were highly 
associated with survival outcomes. We wrote the Perl scripts 
to extract the whole β value of methylated loci related to 
the 10-MDGs signature and merged them into one matrix 
(http://cdn.amegroups.cn/static/application/98c8308732b
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Figure 2 Mixture models established to search significant MDGs via MethylMix package. Methylation states of genes were exhibited in the 
histogram pot, where the histograms meant the tumor samples and black line represented the methylation level in normal samples. (A,B,C) 
Top three hypomethylated MDGs. (D,E,F) Top three hypermethylated MDGs. 

26aad6a03a9d12a64b031/atm.2020.02.94-2.pdf). The data 
of 130 methylated sites were integrated with prognostic 
information to conduct the univariate Cox regression 
model. A total of 25 methylated risk loci were found to be 
associated with survival outcomes with P<0.05 (Table 4). 

The Kaplan-Meier plots of the top methylated sites are 
shown in Figure 6. The joint survival analysis, combined 
with methylation status and levels of expression of the 
10 hub MDGs signature, showed more associations with 
survival in 461 patients (Figure 1). 
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Figure 3 The top 100 MDGs were selected to reveal the differential distributions of methylated state by heatmap, in which alterations from 
hypomethylation to hypermethylation were illustrated by colors ranging from blue to red.

GSEA between the two groups

We carried out GSEA with the MDGs risk score serving 
as the phenotype base on the JAVA platform. Several 
significant pathways that were enriched, including 

extracellular matrix (ECM) receptor interaction, chemokine 

receptor interaction, and pathways in cancer, as well as 

calcium signaling pathways, were associated with the 

identified risk drivers (Figure 7). 
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Table 1 Clinical features of all eligible 461 patients with colon 
cancer from TCGA included in this study

Variables Count

Status 

Alive 372 (80.69)

Dead 89 (19.31)

Follow-up (y) 1.92±1.97

Age 67.23±13.00

Gender

Female 219 (47.51)

Male 242 (52.49)

AJCC-T

Tis 1 (0.22)

T1 11 (2.39)

T2 78 (16.92)

T3 311 (67.46)

T4 57 (12.36)

Missing 3 (0.65)

AJCC-N

N0 273 (59.22)

N1 104 (22.56)

N2 81 (17.57)

Missing 3 (0.65)

Table 1 (continued)

Table 1 (continued)

Variables Count

AJCC-M

M0 338 (73.32)

Mx 49 (10.63)

M1 64 (13.88)

Missing 10 (2.17)

Pathologic stage

I 78 (16.92)

II 180 (39.05)

III 125 (27.11)

IV 64 (13.88)

Missing 14 (3.04)

Tumor grade

G1/G2 Missing

G3/G4 Missing

Risk score 

Low 224 (48.59)

High 223 (48.37)

Missing 14 (3.04)

Data are shown as n (%). AJCC, American Joint Committee on 
Cancer; TCGA, The Cancer Genome Atlas.

Discussion 

Epigenetics focuses on the features and modification of 
the genome (8), including post-translational modifications 
of histones, cytosine modifications of DNA, nucleosome 
positioning and interactions of spatial conformation between 
genomic regions and accessible genomic loci2 (11,12). As 
a crucial part of epigenetics (13,14), DNA methylation 
was found to be involved in malignant progression (15). In 
several reports, the aberrant methylation of DNA has been 
demonstrated to affect the cell cycles of genes involved in 
DNA damage (16), cell cycle (17). Besides, other studies 
have found methylation to bear correlation with poor 
prognoses in patients with early-stage gastrointestinal 
cancer (18,19). With this in mind, bioinformatics analysis 
and the prognostic value of methylation DNA can offer 

guidance for clinical treatments.
In our research, we carried out an analysis of DNA 

methylation and gene expression data about colon cancer. 
The top 100 MDGs were found to investigate the differential 
distributions of methylated state, showing that methylation 
was negatively correlated with gene expression. Gene 
enrichment revealed that certain pathways and hub genes 
were affected by methylation, which could offer some insight 
to assist with unraveling the pathogenesis of colon cancer. 
Analysis conducted on enrichment in the KEGG pathway 
database uncovered significant enrichment in pathways 
such as cytokine-cytokine receptor interaction, calcium 
signaling pathway, and ECM-receptor interaction. The risk 
score was based on the hub MDGs from the Cox regression 
models, and the ROC curve was 0.747, which translates 
to risk score having better predictive accuracy. Nine risk 
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Figure 4 Functional enrichment pathway analysis for 320 MDGs based on the ConsensusPathDB database with FDR <0.05. 

sites were displayed with P-value, discovering methylated 
risk loci related to survival outcomes. The combined use 
of methylation sites could provide more opportunities to 
perform more sensitive and specific tests for the prognoses 
of colon cancer patients. There is an increasing amount of 
evidence-based on bioinformatics analysis which suggests that 
abnormal DNA methylation is related to tumor formation 
and development (20,21). The survival analysis also 
discovered the link between methylation and the expression 
of key genes. For these key genes, we carried out further 
exploration of the relationship between the expression and 

methylation levels of the sites, finding that several sites had 
a negative association with levels of gene expression. This 
could be caused by variable methylation of the sites, resulting 
in expression dysregulation and affecting the progression of 
cancer and prognosis for patients (22,23). Besides, the link 
between aberrated methylated sites and gene expression was 
investigated to determine a more accurate target for related 
experiments and further verification (24,25). Despite this 
being a comprehensive study relating to epigenetic changes, 
experiments remain an important way of verifying specificity 
and sensitivity.
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Table 2 Potential crosstalk enriched for MDGs in colon cancer

Pathway Source P value

Generic transcription pathway Reactome 0.0000000

RNA polymerase II transcription Reactome 0.0000000

Gene expression (transcription) Reactome 0.0000000

Robo4 and VEGF signaling pathways crosstalk Wikipathways 0.0023531

NLR proteins Wikipathways 0.0068259

Activation of SMO Reactome 0.0068259

PTF1A related regulatory pathway Wikipathways 0.0082731

Cell adhesion molecules (CAMs) KEGG 0.0100893

Familial lipoprotein lipase deficiency SMPDB 0.0115380

Glycerolipid metabolism SMPDB 0.0115380

Glycerol kinase deficiency SMPDB 0.0115380

Passive transport by aquaporins Reactome 0.0115380

Platinum pathway, pharmacokinetics/pharmacodynamics PharmGKB 0.0115380

Glycosaminoglycan biosynthesis KEGG 0.0133490

Glycosphingolipid biosynthesis KEGG 0.0152746

TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway Reactome 0.0194572

BDNF NetPath 0.0208117

Intestinal immune network for IgA production KEGG 0.0220269

Notch-mediated HES/HEY network PID 0.0232801

C-MYB transcription factor network PID 0.0233913

Apoptosis modulation by HSP70 Wikipathways 0.0240609

Aquaporin-mediated transport Reactome 0.0245713

glutathione-mediated detoxification HumanCyc 0.0317044

Glutathione metabolism - Homo sapiens (human) KEGG 0.0346700

tumor suppressor arf inhibits ribosomal biogenesis BioCarta 0.0372589

Proteoglycans in cancer—Homo sapiens (human) KEGG 0.0442667

Glycosphingolipid biosynthesis—lacto and neolacto series KEGG 0.0462251

Basal cell carcinoma KEGG 0.0465928

Wnt signaling network PID 0.0493726

Table 3 Identification of 10 MDGs signature from the stepwise regression method 

Gene coef exp(coef) se(coef) z P

EPHX3 0.12573 1.13398 0.08071 1.558 0.1193

FAM179B 0.40776 1.50345 0.16150 2.525 0.0116

GSTM1 0.08758 1.09153 0.03996 2.192 0.0284

HSPA1A 0.16666 1.18135 0.08145 2.046 0.0407

MPC2 −0.26252 0.76911 0.17011 −1.543 0.1228

RP11-543D5.1 −0.14311 0.86666 0.07272 −1.968 0.0491

RP4-584D14.6 0.19234 1.21208 0.10831 1.776 0.0758

TFAP2C 0.12715 1.13559 0.05842 2.177 0.0295

TMEM88 0.23671 1.26708 0.13439 1.761 0.0782

VWDE 0.10748 1.11347 0.04959 2.168 0.0302
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Figure 5 Construction and assessment of risk score based on the hub MDGs from the Cox regression models. (A) Distributions of vital 
status based on the risk scores in colon cancer. (B) The AUC of ROC curve was 0.747, representing the better predictive accuracy of risk 
score. (C) Kaplan-Meier analysis with log-rank test revealed that patients with high risk scores suffered poor survival outcomes. (D,E,F,G) 
The Kruskal-Wallis test showed that higher risk score was associated with higher T stages (P=0.007), N stages (P<0.001), metastasis (P=0.012) 
and advanced pathological stages (P=0.003).
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Table 4 Identification of 25 risk methylated loci for patients with colon cancer

Locus Related genes HR z P value

cg24888257 HSPA1A 0.1879317 −3.2191822 0.0012856

cg05194618 FAM179B 0.2549287 −2.8763535 0.0040230

cg21122656 HSPA1A 0.2461564 −2.5833853 0.0097836

cg12883479 HSPA1A 0.3793917 −2.5194482 0.0117539

cg01340952 FAM179B 0.2543431 −2.4924641 0.0126860

cg00660989 FAM179B 0.2671080 −2.4857380 0.0129283

cg10598353 HSPA1A 0.3767782 −2.4503290 0.0142726

cg13413286 HSPA1A 0.3678025 −2.4158149 0.0157000

cg15174834 HSPA1A 0.3552811 −2.4082982 0.0160271

cg01639032 HSPA1A 0.3397432 −2.3830306 0.0171708

cg21096966 FAM179B 0.2549344 −2.3743623 0.0175793

cg17494781 HSPA1A 0.3706008 −2.3661902 0.0179722

cg20428713 RP11-543D5.1 4.7110274 2.3639744 0.0180801

cg19677203 HSPA1A 0.3859483 −2.3587502 0.0183366

cg11485463 HSPA1A 0.2437277 −2.3540192 0.0185717

cg02704535 HSPA1A 0.3726674 −2.3469669 0.0189269

cg22847691 HSPA1A 0.3784078 −2.3457206 0.0189903

cg18466674 HSPA1A 0.2805209 −2.3065997 0.0210771

cg00929855 HSPA1A 0.3165496 −2.2395801 0.0251182

cg11353380 HSPA1A 0.0995467 −2.2305598 0.0257103

cg22715094 HSPA1A 0.3150061 −2.0778347 0.0377246

cg20607287 VWDE 0.3626509 −2.0293871 0.0424189

cg23285774 FAM179B 0.0000000 −2.0174200 0.0436517

cg12643366 HSPA1A 0.3310439 −1.9812005 0.0475688

cg15185479 HSPA1A 0.3276886 −1.9620509 0.0497566
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Figure 6 Screening of risk methylated loci related with survival outcomes. (A,B,C,D,E,F,G,H,I) Selection of 9 risk sites to exhibited with 
estimated P value. 
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Figure 7 Gene set enrichment analysis for exploration of potential pathways associated with hub signature using the MDGs risk score as the 
phenotype.
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Figure S1 Correlation between DNA methylation and gene expression in 10 hub signatures via Pearson correlation analysis.
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