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Background: Accurate thymoma staging via computed tomography (CT) images is difficult even for 
experienced thoracic doctors. Here we developed a preoperative staging tool differentiating Masaoka-Koga 
(MK) stage I patients from stage II patients using CT images.
Methods: CT images of 174 thymoma patients were retrospectively selected. Two chest radiologists 
independently assessed the images. Variables with statistical differences in univariate analysis were adjusted 
for age, sex, and smoking history in multivariate logical regression to determine independent predictors of 
the thymoma stage. We established a deep learning (DL) 3D-DenseNet model to distinguish the MK stage 
I and stage II thymomas. Furthermore, we compared two different methods to label the regions of interest 
(ROI) in CT images.
Results: In routine CT images, there were statistical differences (P<0.05) in contour, necrosis, cystic 
components, and the degree of enhancement between stage I and II disease. Multivariate logical regression 
showed that only the degree of enhancement was an independent predictor of the thymoma stage. The area 
under the receiver operating characteristic curve (AUC) of routine CT images for classifying thymoma as 
MK stage I or II was low (AUC =0.639). The AUC of the 3D-DenseNet model showed better performance 
with a higher AUC (0.773). ROIs outlined by segmentation labels performed better (AUC =0.773) than 
those outlined by bounding box labels (AUC =0.722).
Conclusions: Our DL 3D-DenseNet may aid thymoma stage classification, which may ultimately guide 
surgical treatment and improve outcomes. Compared with conventional methods, this approach provides 
improved staging accuracy. Moreover, ROIs labeled by segmentation is more recommendable when the 
sample size is limited.
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Introduction

Thymoma, originating from thymic epithelial cells, is a 
common anterior mediastinal tumor. The Masaoka-Koga 
(MK) staging system, based on the anatomic extent of tumor 
invasion, has been widely used to evaluate the thymoma 
stage (1-9). According to the MK classification criteria, the 
distinction between stage I and II thymoma is if the tumor 
has invaded the capsule. So stage I thymomas are noninvasive, 
whereas invasive for stage II tumors and above (10). 
Extracapsular involvement is proven to be an essential factor 
concerning disease recurrence and patient survival (11-13).

Complete thymectomy includes the excision of the 
lesion and the mediastinal fatty tissue between both phrenic 
nerves. This surgical method is a standard treatment for 
the disease at any stage (14-16). Thymomectomy, defined 
as the resection of the thymoma only, has been performed 
routinely for patients with stage I thymomas. Previous 
studies showed no difference in survival and recurrence 
between patients with stage I thymomas who received 
thymectomy or thymomectomy. In contrast, complete 
thymectomy was still the preferable treatment for stage II 
thymomas (17-20). However, recent reports indicated that 
thymectomy was unnecessary for the MK stage I tumor. 
Moreover, thymomectomy, the less invasive procedure, 
could be the more reasonable option for these patients. 
Because it was associated with shorter operative time, 
less blood loss, and shorter hospital stay (21-23). Thus, 
it is crucial to distinguish the MK stage I from stage II 
thymoma preoperatively. Enhanced computed tomography 
(CT) is a standard examination for preoperative staging 
by The International Thymic Malignancy Interest Group  
(ITMIG) (24). Marom et al. suggested that CT imaging 
features could distinguish between MK stage I/II and MK 
stage III/IV thymomas (25). However, it is challenging 
to identify extracapsular invasion on CT images by visual 
inspection. In most cases, postoperative histopathological 
examination of the surgical specimen was essential for 
staging (25,26). Most thoracic surgeons make these surgery 
decisions based on clinical experience, which are sometimes 
inaccurate and might lead to overtreatment.

Artificial intelligence (AI) has the potential to assist in 
making medical diagnoses and clinical decisions (27-29). 
Deep learning (DL), an AI method, is an approach that 
utilizes a convolutional neural network (CNN) to enable 
feature extraction from accurately labeled images and to 
generate classifications as output (30-32). DL extracts 
image information with high data throughput (33). The 

densely connected convolutional network (DenseNet) 
(34,35) required less computational power, less model 
complexity, and yielded significant improvement over a 
conventional CNN. However, like any other CNN model, 
DenseNet had to learn each parameter from scratch, and a 
large volume of data was required. So for diseases with low 
incidences, transfer learning (TL) enabled the addressing 
of less information by using a feed-forward approach (36).  
TL transferred knowledge from a previous model to 
another when the latter one had only a limited amount of 
training data (37,38). TL proved to be a highly effective 
DL technique for model generalization. Nevertheless, the 
usefulness of DenseNet with TL for thymoma staging 
remained unclear.

In this study, we developed and validated a 3-dimensional 
(3D)-DenseNet DL model based on preoperative enhanced 
CT images for classifying thymoma as MK stage I or 
MK stage II. The technique may provide a more accurate 
assessment of tumor stage, which may ultimately facilitate 
the guidance for surgical treatment and improved clinical 
outcomes.

Methods

Patients

The records of 174 patients diagnosed with MK stage I or 
MK stage II thymoma by preoperative CT imaging were 
retrospectively reviewed and analyzed in this study. All 
patients received complete thymectomy or thymomectomy 
at the Department of Thoracic Surgery, the First Affiliated 
Hospital of Sun Yat-sen University from January 1, 2011, 
to June 31, 2018. The disease stage was based on the 
postoperative pathological examination of the surgical 
specimen. Patients with MK stage III or IV were excluded 
from this study. The Institutional Ethics committee of the 
First Affiliated Hospital of Sun Yat-sen University approved 
the study protocol.

A standardized data form was created to retrieve the 
clinical characteristics of the patients, including age, sex, 
smoking history, tumor size, World Health Organization 
(WHO) histological classification, surgical approach, and if 
the patient also had myasthenia gravis (MG).

Enhanced CT examination

Two radiologists with more than ten years of experience 
in chest imaging assessed the enhanced CT image 
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characteristics separately. Both of whom were blinded 
to the pathological examination results. Seven imaging 
characteristics were evaluated: shape (round, oval, lobulated 
or irregular), contour (smooth or irregular), necrosis/
cystic component (indicating components without 
enhancement, and classified as 0–25%, 26–50%, 51–75%, 
75–100% according to the volume percentage), degree 
of enhancement in Hounsfield units (HU) (indicating 
degree of enhancement of the solid components excluding 
necrotic/cystic components within the lesion), enhancement 
(homogeneous or heterogeneous enhancement of the lesion 
as a whole), the presence of calcifications, and the presence 
of an effusion (pleural/pericardial).

CT scanning was performed with a Toshiba Aquilion 64 
spiral CT volume scanner. The tube voltage was 120 kV, the 
tube current was 200 mAs, and the slice thickness and the 
slice spacing were 1 mm. Iopromide (300 mgI/mL, Schering 
Pharmaceutical Ltd.) was used as the contrast agent, and 
80–100 mL was injected at a flow rate of 3 mL/s.

Image preprocessing with two different methods

Raw CT images required preprocessing before being 
input into the deep neural network, and thus regions of 
the thymomas were extracted. CT images were labeled by 
two methods using labeling software ITK-SNAP 3.4.0. 

As shown in Figure 1, the first row included a bounding 
box (the red rectangle) that located the thymoma region 
with surrounding tissue, while the second row labeled only 
the thymoma itself (the red-colored region). Both the red 
rectangle and red-colored region in Figure 1A indicate the 
desired region of interest (ROI). Figure 1B shows the final 
extracted thymoma region used for analysis.

The  en t i re  CT image  da ta  were  ana lyzed  by 
the two labeling methods described above. Then a 
3D-reconstruction of the extracted thymoma region was 
established (Figure 1C; first and second row, respectively). 
Next, the extracted 3D image of the thymoma was 
randomly placed in a cube of a fixed size and used as 
input for the neural network. The size of the cube was 
160×160×64 pixels, based on statistical data of the size of 
a common thymoma (Figure 1D). These steps allowed the 
neural network to process the data directly. None of the 
imaging technicians responsible for labeling was aware of 
the final pathological diagnosis.

Development of the DL 3D-DenseNet model

Since our dataset was relatively small, data augmentation 
was applied to expand the size of the training dataset and 
avoid overfitting. By introducing random factors, such as 
random cropping, more data with different directions were 

64

160

160

A B C D

Figure 1 Preprocessing of raw CT images. (A) Datasets labeled with bounding box (first row) and segmentation (second row). (B) Extracted 
thymoma region. (C) 3D-reconstruction of all the CT slices contained the thymoma region. (D) The final input for the deep learning-a cube 
with a fixed size.
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created. TL was then applied to speed up the learning 
process by making full use of the pre-trained parameters. 
In the 3D-DenseNet model, there were direct connections 
between any two layers in a feed-forward fashion. That is 
to say, each input layer of the network was the union of all 
previous output layers (Figure 2).

Cross-validation of the DL 3D-DenseNet model

We evaluated our model by 5-fold cross-validation because 
of the computational efficiency yielded by the 3D-DenseNet. 
Rather than randomly located, the tumor was placed in the 
center of the specified cube in the validation dataset. Batch 
normalization rectified linear unit (ReLu), and softmax 
functions were applied to activate layers, and computed the 
probability of each sample. The loss function of our model 
was binary cross-entropy, which was optimized by stochastic 
gradient descent (SGD) with a mini-batch size of 16. Cosine 
annealing was used to schedule our learning rate for a total of 
720 steps by setting the initial learning rate to 1.2e−5, and the 
minimum learning rate to 1e−7.

The dataset was randomly divided into five groups 
without overlapping, and each group had the same 
proportion of the MK stage I and II data. During the 
process of 1-fold, we split the data into a validation cohort 
and a training cohort. Finally, the evaluation result was the 
average of the 5-fold validations.

Implementation and evaluation metrics

The DL model was implemented under the MXNet (version 
1.2.0, Apache Software Foundation, Forest Hill, MD 
USA) framework, using Python programming language 
(version 2.7.12). We trained our model on four NVIDIA 
GeForce GTX 1080 GPUs (NVIDIA, Beijing, China). The 
performance of the DL model was evaluated based on four 

metrics: the area under the receiver operating characteristic 
curve (AUC), accuracy (ACC), specificity (SP), and 
sensitivity (SN).

Statistical analyses

Statistical analyses were performed using SPSS version 22.0 
software (IBM, USA). Variables were grouped based on 
the MK stage I or II. Categorical variables were compared 
using the chi-square test. Continuous variables were 
compared using the t-test or Mann-Whitney U test for 
variables with a non-normal distribution. Variables with 
statistical differences (P<0.05) in univariate analysis were 
adjusted for age, sex, and smoking history, and input into 
multivariate logical regression to determine independent 
predictors of the thymoma stage. Values of P<0.05 were 
considered statistically significant. The AUC was calculated 
for evaluating the accuracy of models, and we regarded an 
AUC ≥0.7 as a good predictive performance.

Results

Clinical characteristics of patients

Of the 174 patients included in the study, 48.3% (84/174) 
were MK stage I, and 51.7% (90/174) were MK stage 
II. There was an apparent correlation between the MK 
stage and WHO histological classification. There were no 
significant differences between the two groups concerning 
age, sex, tumor size, smoking history, the presence of MG, 
operation time, and blood loss. Patient characteristics are 
summarized in Table 1.

Imaging characteristics

Imaging characteristics used in this study are listed in Table 1. 

Input
160X160X64

Conv + Pool
40x40x16

Dense Block
40x40x16

Transition Layer
20x20x8

Dense Block
20x20x8

Transition Layer
10x10x4

3D DenseNet

MK Stage I
MK Stage II

Prediction for
MK Stage

Dense Block
10x10x4

Transition Layer
4x4x2

Dense Block
4x4x2

Pool + Linear
1x1x1

Figure 2 The development of the 3D-DenseNet model. The input is the 3D image of the extracted thymoma region, and the output is the 
prediction for MK stages. MK, Masaoka-Koga.
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Table 1 General clinical and image characteristics of patients with thymoma (n=174)

Variables
MK stage

P
I II

General clinical characteristics

Age† (year) 50.35±12.53 48.82±12.70 0.427

Gender, n (%) 0.537

Male 52 (61.90) 58 (64.44)

Female 32 (38.10) 32 (35.56)

Tumor size (cm)† 5.07±2.58 5.42±2.72 0.376

Smoking history, n (%) 0.735

No 75 (89.29) 78 (86.67)

Yes 9 (10.71) 12 (13.33)

WHO histologic classification, n (%) 0.001*

A 15 (17.85) 7 (7.78)

AB 22 (26.19) 14 (15.56)

B1 11 (13.10) 10 (11.11)

B2 32 (38.10) 37 (41.11)

B3 4 (4.76) 16 (17.78)

C 0 (0) 6 (6.67)

Combine with MG, n (%) 0.611

No 43 (51.19) 49 (54.44)

Yes 41 (48.81) 41 (45.56)

Surgical approach, n (%) 0.000*

Thymoma resection 20 (23.81) 11 (12.22)

Thymectomy 13 (15.48) 18 (20.00)

Extended thymectomy 51 (60.71) 61 (67.78)

Surgery under VATS, n (%) 0.000*

No 57 (67.86) 64 (71.11)

Yes 27 (32.14) 26 (28.89)

Operation time (min)† 118.45±48.53 121.14±48.18 0.714

Blood loss (mL)† 75.73±64.87 78.30±47.97 0.769

Image characteristics

Shape, n (%) 0.209

Round or oval 45 (54.57) 42 (46.67)

Lobulated 21 (25.00) 18 (20.00)

Irregular 18 (21.43) 30 (33.33)

Table 1 (continued)



Yang et al. Deep learning for staging of thymoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(6):287 | http://dx.doi.org/10.21037/atm.2020.02.183

Page 6 of 10

Table 1 (continued)

Variables
MK stage

P
I II

Contour, n (%) 0.045*

Smooth 79 (94.05) 77 (85.56)

Irregular 5 (5.95) 13 (14.44)

Necrosis/cystic component, n (%) 0.000*

0–25% 25 (29.76) 38 (42.22)

26–50% 50 (59.52) 30 (33.33)

51–75% 6 (7.14) 7 (7.78)

75–100% 3 (3.57) 15 (16.67)

Degree of enhancement (HU)† 37.12±22.49 27.88±19.66 0.004*

Enhancement, n (%) 0.383

Homogeneous 43 (51.19) 42 (46.67)

Heterogeneous 41 (48.81) 48 (53.33)

Calcification, n (%) 0.455

No 70 (83.33) 71 (78.89)

Yes 14 (16.67) 19 (21.11)

Effusion (pleural/pericardial), n (%) 0.407

No 83 (98.80) 86 (95.56)

Yes 1 (1.2) 4 (4.44)
†, data are mean ± standard deviation; *, P<0.05 was considered as statistically significant. MK, Masaoka-Koga.
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Figure 3 The ROC results of the Logistic regression of routine 
CT images in the prediction of Masaoka-Koga stage I or II (AUC 
=0.639, 95% CI: 0.556–0.721). AUC, area under the receiver 
operating characteristic curve.

There were statistical differences between the two groups in 
contour (smooth/ irregular), necrosis or cystic component, 
and degree of enhancement. There were no significant 
differences between the tumors from MK stage I and MK 
stage II patients in shape, enhancement (homogeneous/
heterogeneous), the presence of calcifications, and the 
presence of effusion (pleural/pericardial). Multivariate 
logical regression showed that only degree of enhancement 
was an independent predictor of the thymoma stage, with 
an AUC =0.639 (Figure 3).

MK stage classification by the 3D-DenseNet model

The 3D-DenseNet model was applied to predict the MK 
stage I or II for each image. The AUC for the training 
dataset using segmentation labels and bounding box labels 
was 0.966 and 0.951, respectively. The average AUC for the 



Annals of Translational Medicine, Vol 8, No 6 March 2020 Page 7 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(6):287 | http://dx.doi.org/10.21037/atm.2020.02.183

5-fold cross-validation dataset from the two labels was 0.773 
and 0.722, respectively. The training dataset and cross-
validation results are shown in Table 2 and Figure 4.

Comparison of model performance with the two different 
data labeling methods

To further investigate whether the data labeling form 
affected the model performance, we compared the results 
of the two training datasets. As Figure 1A,B showed, ROI 
was extracted from segmentation labels (the second line) 
and bounding box labels (the first line). In the training 
dataset, both forms of data can fit well using the proposed 
DL method. In the validation dataset, the averaged results 
show that the segmentation labeled data outperforms 
the bounding box labeled data. The average AUC for 
the final validation dataset using segmentation labels and 
bounding box labels was 0.773 and 0.722, respectively 
(P=0.017). Also, the model performance was higher when 
using segmentation as compared with using the bounding 
box in ACC (P=0.00141) and SP (P=0.0026) (Table 2 and 
Figure 5). These results indicated that segmentation yield 
higher accuracy than the bounding box in thymoma stage 

classification.

Discussion

Currently, enhanced chest CT is the preferred preoperative 
examination for evaluating thymomas. We aimed to 
distinguish between the MK stage I and II thymomas 
via preoperative CT images, which might influence the 
selection of surgical procedures and clinical outcomes.

For routine CT image features, we found that the degree of 
enhancement and the presence of a necrosis/cystic component 
were significantly different between the two groups, 
demonstrating that CT image characteristics play a pivotal 
role in MK staging. Similar findings were reported in other 
studies (39,40). A recent study found correlations between 
preoperative CT imaging features and the biologic behavior of 
thymomas (41). However, our multivariate logical regression 
analysis showed that only the degree of enhancement was 
an independent predictor of the stage, with a relatively low 
AUC (AUC =0.639). A retrospective study (42) indicated that 
routine CT imaging was not adequate for determining the MK 
stage. In the study, 437 patients with thymic epithelial tumors 
were included, in which 51% of stage III thymomas were 

Table 2 Mean cross-validation results of both training dataset and validation dataset in Masaoka-Koga staging across the two data forms

Label
Training dataset Validation dataset

AUC ACC SN SP AUC ACC SN SP

Segmentation 0.966 0.914 0.917 0.924 0.773 0.771 0.766 0.776

Bounding box 0.951 0.905 0.886 0.923 0.722 0.690 0.703 0.682
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Figure 4 AUC for the 5-fold cross-validation dataset from segmentation (A) labels and bounding box (B) labels were 0.773 and 0.722, 
respectively. The ROC results showed that the proposed 3D-DenseNet model had achieved good performance in the prediction of 
Masaoka-Koga stage I or II. AUC, area under the receiver operating characteristic curve.
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Figure 5 This figure illustrates the differences between the two groups on average accuracy, sensitivity, and specificity across a range of 
thresholds (we chose 0.48–0.51) of the five-fold cross-validation results. The result shows that the model trained with data in segmentation 
form outperforms model trained with data labeled with the bounding box. There were significant differences in ACC (P=0.00141) and SP 
(P=0.0026). ACC, accuracy; SP, specificity.

misclassified as stage I or II, and 37% stage I or II thymomas 
as stage III.

In order to improve the identification of stage I and stage 
II thymomas, we used a DenseNet model, which achieved 
a significant advantage over the state-of-the-art CNN (34). 
However, DenseNet was used mostly for 2-dimensional 
(2D) images; thus, we sought to improve the algorithm by 
developing a 3D-DenseNet model for 3D CT images of 
thymoma. Besides, we adopted a 5-fold cross-validation 
procedure to reduce variance caused by splitting data, 
preventing overfitting, and maximizing data utilization. 
The 3D-DenseNet model predicted MK stage I thymomas 
with a higher AUC (AUC =0.773) in the validation set, 
which indicated that DL algorithms greatly enhanced 
the ability to classify thymomas as MK stage I or II. The 
emerging technique of DL enables automated feature 
extraction, which has the advantage of evaluating features 
that cannot be observed by visual observation, and is not 
limited to evaluate the “interesting image features” only (30).  
This technique holds great promise for more accurate 
preoperative thymoma staging.

We also compared the results based on two different types 
of image labeling methods, which are most common, apart 
from mere classification. Bounding box labels could spatially 
constrain the objects in a fixed form for analysis (43,44). 
However, segmentation labels describe the contour of tumors 
more precisely and are more recommended when the training 
sets are limited. Our results showed that ROIs outlined by 
segmentation labels displayed more accurate performance 
than bounding box labels for predicting the MK stage. Our 
study is the first to explore model performance for predicting 
disease stage based on different data extraction forms. Based 

on our findings, segmentation labels are preferable when the 
sample size is relatively small, with low disease incidence and 
will lead to a more reliable result.

Our study had its limitations. First, our study is a 
retrospective study from a single-center, which might cause 
selection bias. A large sample size and multicenter study 
is required to validate these results. Second, regarding the 
labeling methods, when the training set is relatively large, 
the segmentation method might take more time and effort. 
Thus bounding box labels might be more applicable for 
saving time on image processing. Third, patients’ long-term 
prognosis and clinical trials (45) need to be supplemented 
before applying this model to clinical practice in the future.

In summary, this is the first study to examine the DL 
approach for thymoma staging, and the results suggest that 
the method holds promise for more accurate preoperative 
staging of thymomas.

Conclusions

DL has a great potential for the preoperative staging 
of thymomas. Compared with visual observation, it 
dramatically improves the identification between the MK 
stage I and stage II thymomas. When the sample size of the 
training set is small, using segmentation labels for the ROIs 
results in better performance. The results of this study 
suggest that further studies of DL models for thymoma 
staging are warranted.
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