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Background: Colon adenocarcinoma (COAD) is one of the most commonly diagnosed cancers, and it is 
closely related to the immune microenvironment. Considering that immunotherapy is not effective for all 
COAD patients, it is necessary to identify the effective population before administering treatment. In this 
study, we established an independent prognostic index based on immune-related genes (IRGs), in order to 
evaluate the clinical outcome of COAD.
Methods: The gene expression profiles and IRGs taken from The Cancer Genome Atlas (TCGA) and 
Immunology Database and Analysis Portal (ImmPort), respectively, were integrated in order to identify the 
differentially expressed IRGs. Functional enrichment analysis was conducted and the prognostic value of 
survival-related IRGs was determined. Based on Cox regression analysis, the IRG-based prognostic index 
(IRGPI) was established, and the model was evaluated and applied.
Results: A total of 51 differentially expressed survival-related IRGs were identified. The most significant 
signaling pathway was “cytokine-cytokine receptor interaction”. The index established herein was based 
on 12 survival-related IRGs, and it was highly accurate in monitoring prognosis. Moreover, the IRGPI was 
significantly correlated with multiple clinicopathologic factors, as well as with the infiltration of immune 
cells.
Conclusions: An independent IRGPI was established in order to assess the immune status and tumor 
prognosis in COAD patients. This index can serve as a robust biomarker in clinical prognosis applications, 
including cancer immunotherapy.
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Introduction

According to the Global Cancer Report released at the end 
of 2018, colon adenocarcinoma (COAD) is one of the most 
commonly diagnosed cancers, and one of the top three 
malignant tumors in terms of morbidity and mortality (1). 
Considering that the early symptoms are not visible, most 

patients diagnosed with COAD are in the middle or late 
stages of the disease, which impedes treatment and timely 
surgical intervention. Therefore, despite the increasing 
number of targeted drugs (2,3), the 5-year average 
survival rate of COAD patients in China is only 57%. To 
improve this rate, the prognosis status of patients should 
be monitored closely, and the treatment plans should be 
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timely adjusted. This necessitates the development of an 
independent prognostic index that allows for the evaluation 
of COAD clinical outcomes.

Evidence of the close relation between the immune 
microenvironment and tumor development has substantially 
increased over the past few years (4-7). Consequently, tumor 
immunotherapy has emerged as a promising technique 
of treatment, and it has garnered the attention of many 
researchers (8,9). This technique relies on the activation of 
immune cells that can trigger anti-tumor immune responses, 
leading to the elimination of tumor residual lesions, the 
inhibition of tumor growth, and the breaking of immune 
tolerance (10). Unfortunately, immunotherapy is not effective 
for all tumor patients. Therefore, clinical research efforts 
are currently focused on the identification of patients who 
can be efficiently treated using immunotherapy techniques. 
This may be accomplished by determining the type and 
proportion of immune cells and factors in the tumor 
immune microenvironment, which are in turn controlled 
by gene expression. The recent progress in gene sequencing 
technology has allowed for the design of new and sensitive 
gene-based biomarkers (11,12) that may be used to improve 
the prognosis of COAD. The comprehensive analysis of the 
relevance between the immune-related genes (IRGs) and 
survival is conducive to elucidating the potential prognostic 
value of these genes. For example, an immuno-genomic study 
of tumor immune microenvironment has previously shown 
that mRNA-seq is effective in predicting clinical response (5).

In this study, we identified the differentially expressed 
IRGs in COAD patients by relating the gene expression 
profiles to the IRGs from different online databases. The 
functional enrichment analysis and prognostic value of the 
survival-related IRGs were also determined. The prognostic 
index was finally established based on Cox regression 
analysis, followed by model evaluation and application. In 
theory, the robust prognostic biomarker reported herein 
can be used to predict the clinical outcomes of therapeutic 
methods, including cancer immunotherapy.

Methods

Acquisition of gene expression data and IRGs

The RNA-seq data of COAD samples was taken from 
The Cancer Genome Atlas (TCGA) database (13) that 
is published in the Genomic Data Commons (GDC) 
portal (https://portal.gdc.cancer.gov/) (14), and the 
clinical information of these samples was downloaded and 
extracted by Perl. The collected dataset is comprised of 

473 COAD samples and 41 adjacent normal samples. In 
addition, a comprehensive list of IRGs (1,811 in total) was 
downloaded from the Immunology Database and Analysis 
Portal (ImmPort) (https://www.immport.org/home) (15). 
These genes were divided into 17 categories based on their 
molecular functions (MFs) (e.g., cytokine, interleukin, and 
natural killer cell cytotoxicity).

Identification of differentially expressed genes (DEGs)

The DEGs were identified by comparing the COAD and 
adjacent normal samples using R package “limma” (16). 
Specifically, the genes exhibiting |log2(fold change)| >1 and 
false discovery rate (FDR) <0.05 were considered as DEGs. 
Afterwards, the differentially expressed IRGs were extracted 
from the list of identified DEGs. Heat maps and volcano 
plots of DEGs and differentially expressed IRGs were 
generated by R package pheatmap and ggplot2, respectively 
(17,18).

Screening of survival-related IRGs and evaluation of their 
prognostic value

A survival analysis of all of the differentially expressed 
IRGs was performed using the R package “survival” (19),  
and the survival-related IRGs were determined by 
univariate Cox analysis (P<0.05). In order to explore 
the potential molecular mechanisms of differentially 
expressed IRGs and survival-related IRGs, functional 
enrichment analysis were conducted on the basis of 
Kyoto encyclopedia of genes and genomes (KEGG) 
and gene ontology (GO) database, including biological 
process (BP), MF and cellular component (CC) (20,21), 
using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) 6.8 (22). The GO terms 
and KEGG signaling pathways were enriched with 
an adjusted P value of <0.05. Moreover, the top 10 
KEGG signaling pathways were drawn into a bubble 
chart using the R package “ggplot2” (18). To determine 
the prognostic value of survival-related IRGs, a forest 
plot of these genes was constructed using the hazard 
ratio (HR) as an indicator, based on univariate Cox  
analysis.

Development of the IRG-based prognostic index (IRGPI)

Survival-related IRGs were submitted for multivariate 
analysis to develop the IRGPI, and integrated IRGs was 
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kept as independent prognostic indicators. Specifically, the 
IRGPI was established by multiplying the expression values 
with the Cox regression coefficient (23). It should be noted 
that the survival-related IRGs included in the IRGPI are 
referred to as hub IRGs.

Assessment of IRGPI and genetic alteration analysis

Patients were divided into high- and low-risk groups, 
depending on whether their IRGPI values are greater or 
less than the median value, respectively. The corresponding 
Kaplan-Meier (K-M) survival curves were constructed to 
demonstrate the overall survival (OS) within different risk 
groups. The ROC curve was also established in order to 
assess the sensitivity and specificity of the model. Additionally, 
univariate and multivariate analyses of survival were carried 
out for both IRGPI and clinicopathologic factors. These 
analyses were performed using the R package “survival” (19). 
We also explored the correlation between the expression 
of hub IRGs and the clinicopathologic factors. Moreover, 
genetic alteration analysis of hub IRGs was conducted on 
cBioPortal (https://www.cbioportal.org/) (24).

Evaluation of immune cell infiltration in tumors

The Tumor Immune Estimation Resource (TIMER) was 
used to systematically analyze immune cell infiltration in 23 
types of cancer listed in the TCGA (25). Statistical methods 
were adopted to estimate the abundances of six immune 
cell infiltrates, including B cells, CD4+ T cells, CD8+ T 
cells, neutrophils, macrophages, and dendritic cells. The 
obtained results were validated by pathological estimations. 
Subsequently, the immune cell infiltration levels in COAD 
samples were downloaded, and the correlation between 
IRGPI and immune cell infiltration was calculated based on 
Pearson correlation analysis.

Construction of the transcription factor (TF)-mediated 
regulatory network

TFs play an essential role in controlling gene expressions, 
including IRG, and thus, they can affect the immune 
function of the body. Consequently, it is necessary to 
identify the particular TFs that can potentially regulate hub 
IRGs. For this purpose, the list of TFs was first downloaded 
from the Cistrome Cancer database (http://cistrome.org/
CistromeCancer/) (26). Then, the differentially expressed 
TFs were extracted from all DEGs. Subsequently, we carried 

out the correlation analysis of differentially expressed TFs 
and hub IRGs using the R software. The correlativity was 
considered reliable if |correlation value| >0.6 and P<0.05. 
As a result, we submitted them to build a TF-mediated 
regulatory network via Cytoscape software. To screen for the 
most important TF in this network, topological analysis was 
performed using the Network Analyzer plug-in (27).

Statistical analysis

To evaluate IRGPI effectiveness, the R package “survival” 
was used to calculate the area under curve (AUC) of the 
receiver operating characteristic (ROC) curve (28), and the 
R package “ggplot2” was used to generate boxplots (18). 
An independent t-test was conducted to test the differences 
among diverse clinical parameters. These differences were 
considered to be statistically significant if P<0.05.

Results

Acquisition of differentially expressed IRGs

In order to identify the DEGs, the genomic data of 473 
COAD and 41 adjacent normal samples were compared 
using R package “limma”. Based on the cut-off criteria of 
|log2(fold change)| >1 and FDR <0.05, a total of 6,477 
DEGs were detected, including 4,561 up-regulated genes 
and 1,916 down-regulated genes (Figure 1A,B). With the list 
of IRGs, 467 differentially expressed IRGs were extracted 
from all DEGs, including 179 up-regulated IRGs and 288 
down-regulated IRGs (Figure 1C,D).

Functional enrichment analysis of differentially expressed 
IRGs

To explore the biological functions of differentially 
expressed IRGs, functional enrichment analysis was 
conducted using the DAVID 6.8. The results illustrated 
in Figure 2A show that “immune response”, “extracellular 
region”, and “antigen binding” are the most relevant BP, 
CC, and MF of genes, respectively. Furthermore, the 
KEGG enrichment analysis presented in Figure 2B indicates 
that the differentially expressed IRGs are mostly correlated 
with “cytokine-cytokine receptor interaction”.

Functional enrichment analysis of survival-related IRGs

As key prognostic indicators in applications of clinical 
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Figure 1 Differentially expressed IRGs. The heatmap (A) and volcano plot (B) of genes that are differentially expressed in COAD samples, 
compared to adjacent normal samples; red and blue dots represent up-regulated and down-regulated DEGs, respectively; the heatmap (C) 
and volcano plot (D) of differentially expressed IRGs. Red and blue dots represent up-regulated and down-regulated differentially expressed 
IRGs, respectively. IRGs, immune-related genes; COAD, colon adenocarcinoma; DEGs, differentially expressed genes; FDR, false discovery 
rate.
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tumor surveillance, molecular biomarkers related to IRGs 
could be used to evaluate the therapeutic efficiency of 
cancer immunotherapy. Based on univariate Cox analysis, 
51 survival-related IRGs were distinguished (P<0.05). 
As shown in Figure 3A, the most relevant BP, CC, and 
MF terms of these genes are “regulation of response to 
stimulus”, “extracellular space”, and “receptor ligand 
activity”, respectively. Again, “cytokine-cytokine receptor 
interaction” was found to be the most significant signaling 
pathway (Figure 3B).

Prognostic values of survival-related IRGs

In order to better define the characteristics of survival-
related IRGs, the prognostic values of these genes were 
calculated. The resulting forest plot presented in Figure 4  
demonstrates that 40 genes are characterized by HR >1, 
whereas 11 genes have HR <1. This suggests that most 
survival-related IRGs were risk factors affecting the 
prognosis of COAD.

Development of IRGPI

In view of the results of the multivariate Cox regression 
analysis, the IRGPI was developed. This index was based 
on the following formula: risk score = [expression level 
of CD1B × (–2.09883)] + [expression level of SLC10A2 
× 0.718209] + [expression level of FGF2 × 0.354982] + 
[expression level of CCL28 × (–0.1162)] + [expression level 
of IGHV4-31 × 0.00944] + [expression level of IGKV1-
6 × 0.006782] + [expression level of ESM1 × 0.199876] + 
[expression level of TNFSF12 × 0.09248] + [expression level 
of UCN × 0.376204] + [expression level of VIP × 0.066404] 
+ [expression level of GLP2R × (–4.08525)] + [expression 
level of IL1RL2 × 0.156916]. Depending on the scores and 
on the survival time, the patients were divided into high- 
(IRGPI > median value) and low-risk (IRGPI < median 
value) groups. As shown in Figure 5, the high-risk group 
exhibits more deaths than the low-risk one.

Evaluation of IRGPI

The calculated IRGPI values were used to determine 
the survival probability of COAD patients. As shown in  

Figure 6A, the OS of high-risk group patients was found to 
be less than that of the low-risk group patients (P<0.001). 
To assess the predictive accuracy of the IRGPI established 
herein, the ROC curve was generated, and the AUC was 
calculated (Figure 6B). This area was found to be 0.855, 
which indicates that the proposed IRGPI has excellent 
potential in monitoring prognosis. Moreover, the results 
of both univariate and multivariate analyses (Table 1) 
demonstrate that IRGPI is significantly correlated with 
survival, and thus, it can be used as an independent 
indicator when multiple clinicopathologic factors are taken 
into account.

To further assess the clinical value of IRGPI, the 
relationships between the hub IRGs implicated in IRGPI 
and the clinicopathologic factors were analyzed. As shown 
in the results of Table 2, tumor status and M stage involved 
the expression of more genes. Besides, as an independent 
indicator, IRGPI had statistically significant difference in 
pathological stage (Figure 7A), T stage (Figure 7B), N stage 
(Figure 7C), and M stage (Figure 7D), which suggested 
that IRGPI could make an accurate prediction in different 
pathological stages of COAD tumors. However, IRGPI 
showed no significant difference in age (Figure 7E), gender 
(Figure 7F) and tumor status (Figure 7G).

Mutation landscape of hub IRGs included in IRGPI

Considering the significant clinical value of hub IRGs, their 
molecular characteristics were comprehensively explored. 
Specifically, genetic alteration analysis of these genes was 
carried out using the cBioPortal. The obtained results 
indicate that the most frequent type of genetic alteration 
is the elevated expression of mRNA (Figure 8A). For most 
IRGs (75%), the genetic alteration rate was found to be 
≥5%, with the ESM1 and IL1RL2 genes showing the 
highest alteration frequencies (Figure 8B).

Clinical application of IRGPI

In order to estimate whether the IRGPI could accurately 
reflect the status of tumor immune microenvironments, 
we analyzed the relationship between IRGPI and the 
abundance of immune cell infiltration. The obtained results 
demonstrate that IRGPI is significantly correlated with 5 
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Figure 4 Prognostic values of survival-related IRGs. P values <0.05 are considered to be statistically significant. IRGs, immune-related 
genes.
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types of immune cells, including B cells (Figure 9A), CD4 
T cells (Figure 9B), dendritic cells (Figure 9C), macrophages 
(Figure 9D), and neutrophils (Figure 9E). Moreover, there 
was no significant correlation between IRGPI and CD8 T 
cells (Figure 9F).

TF-mediated regulatory network

In order to explore the molecular mechanisms of hub IRGs, 
we studied their regulatory mechanism. Knowing that 
TFs play a key role in regulating the molecular network, 

the expression profiles of 318 TFs were examined, and 68 
differentially expressed TFs were identified (Figure 10A,B).  
As a result, a TF-mediated regulatory network was 
constructed based on 15 TFs and 8 hub IRGs (Figure 10C). 
Afterwards, we performed a topological analysis on these 
TFs based on three centrality algorithms, including degree 
centrality, betweenness centrality and closeness centrality. 
As shown in Table 3, MAF, MYH11, and NR3C1 ranked 
the top 5 TFs in all three centrality analyses, and thus, they 
were considered as key TFs in the TF-mediated regulatory 
network.
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Figure 5 Development of the IRGPI. (A) Risk scores of patients in different groups; (B) survival status of patients in different groups; (C) 
heat map of hub IRG expression profiles. IRGPI, immune-related genes-based prognostic index.

Figure 6 The evaluation of the IRGPI. (A) The K-M survival analysis of the IRGPI. Patients with high-risk scores showed poor OS, 
compared to those with low-risk scores; (B) survival-dependent ROC curve validation of the prognostic value of the IRGPI. The X-axis 
represents the false positive rate, while Y-axis represents the true positive rate. IRGPI, immune-related genes-based prognostic index; K-M, 
Kaplan-Meier; OS, overall survival; ROC, receiver operating characteristic; AUC, area under curve.
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Table 1 Univariate and multivariate analysis of COAD

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.024 (0.994–1.055) 0.117 1.029 (0.996–1.063) 0.090

Gender (male/female) 1.020 (0.524–1.987) 0.953 1.102 (0.528–2.299) 0.795

Tumor status (with tumor/tumor free) 2.673 (1.153–6.198) 0.022 1.662 (0.673–4.105) 0.271

Pathological stage 2.686 (1.804–3.998) <0.001 0.727 (0.197–2.687) 0.633

T stage 3.637 (1.890–7.000) <0.001 2.612 (1.157–5.895) 0.021

M stage 6.103 (3.110–11.976) <0.001 5.443 (0.858–34.516) 0.072

N stage 2.143 (1.430–3.211) <0.001 1.408 (0.689–2.879) 0.348

IRGPI 1.339 (1.226–1.463) <0.001 1.354 (1.212–1.513) <0.001

COAD, colon adenocarcinoma; HR, hazard ratio; IRGPI, immune-related genes-based prognostic index.

Discussion

The deve lopment  o f  t a rgeted  drugs  and  cancer 
immunotherapy has shifted COAD treatment from surgery 
and chemoradiotherapy to precise and individualized 
therapies (29). However, due to the limitations of 
immunotherapy treatments, it is necessary to identify 
the effective population and predict the clinical outcome 
beforehand. This may be accomplished by analyzing the 
immune genes and prognostic status of patients. In this 
study, we established an IRGPI that may be used to evaluate 
immune response in COAD patients, and thus, serves as a 
new biomarker for cancer immunotherapy.

Our results demonstrate that the most relevant BP of 
differentially expressed IRGs is “immune response”, and 
that the survival-related IRGs are highly associated with 
“the regulation of response to stimulus”. Based on KEGG 
enrichment analysis, the survival-related IRGs were 
significantly correlated with “cytokine-cytokine receptor 
interaction”, which suggested that the response of the 
immune system to stimuli is related to the expression of 
IRGs and patients’ survival. Furthermore, assessments of 
the prognostic efficiency of survival-related IRGs showed 
that most genes are characterized by high HR values, and 
thus, they affect the prognosis of COAD patients. This 
explains the variations in the efficacy of the same treatment 
between different patients.

Currently, the methods used to identify potential 
mechanisms and prognostic biomarkers are based on 
different types of bioinformatic analyses. For example, 

Dalerba et al.  used the bioinformatics approach in 
combination with clinical-grade diagnostic assays to 
show that a subgroup of patients benefits from adjuvant 
chemotherapy (30). Other researchers used gene expression 
signatures based on mRNA, miRNA, or lncRNA expression 
profiles to predict the prognosis of COAD (31-33). In this 
study, we propose a biomarker based on IRGs, which is the 
most suitable way to reflect the immune status and tumor 
prognosis in patients. To establish this biomarker, the 
expression levels of survival-related IRGs were integrated 
using Cox regression analysis. Ultimately, 12 of 51 extracted 
genes were used to construct the predictive model that was 
used to calculate the risk scores of COAD patients. Based 
on these scores, the patients in the analyzed sample were 
divided into high- and low-risk groups.

The model was also used to establish an IRGPI. The 
reliability and efficiency of this index in terms of survival 
prediction was confirmed by ROC curve analysis. Univariate 
and multivariate analyses further prove the significant 
correlation between IRGPI and survival. Although the 
univariate analysis yields 5 independent indicators, only one 
(IRGPI) could be used in multivariate analysis. To test the 
feasibility of the IRGPI, the relationship between hub IRGs 
and multiple clinicopathological factors was also analyzed. 
The results indicate that as a comprehensive index, IRGPI 
exhibits stronger correlation with multiple pathological 
stages than single genes. Furthermore, the index is capable 
of accurate survival prediction in the pathological, T, N, 
and M stages.
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Considering that cancer and immunity are closely 
associated, clinical treatments must take tumor immune 
microenvironments into account. Assessments of the 
correlation between the IRGPI and immune cell infiltration 
can be used to reflect the status of such microenvironments. 
Herein, we show that the IRGPI is significantly correlated 
with the infiltration levels of B cells, CD4+ T cells, 
dendritic cells, macrophages, and neutrophils (P<0.05). 
These immune cells play a very important role in COAD 
prognosis. For example, Gu et al. have recently shown 
that the elimination of pathogenic CD4+ T-cells and the 
induction of antitumor CD8+ T-cell activity can suppress 
colon carcinogenesis (34). Also, Vo et al. demonstrate that 
dendritic cell and lenalidomide combination therapy can 
effectively enhance antitumor immunity in a mouse COAD 
model (35). Moreover, according to Vinnakota et al., M2-
like macrophages induce COAD cell invasion via matrix 
metalloproteinases (36).

To explore the molecular mechanisms underlying hub 
IRGs activity, a TF-mediated regulatory network was 
established. This network is comprised of several TFs that 
can simultaneously regulate the expressions of multiple 
IRGs, such as MAF, MYH11, and NR3C1. The available 
research indicates that c-MAF is capable of controlling 
immune responses by regulating disease-specific gene 
networks and repressing IL-2 in CD4+ T cells (37). As for 
MYH11, it exhibits significantly different expressions in 
tumor samples, compared to normal tissues, and thus, it is 
considered as a potential tumor biomarker (38). Finally, the 
NR3C1 gene expressed during CD8+ T cell differentiation 
regulates the formation of memory-precursor cell fates (39).  
Other studies have also investigated the role of TFs in 
COAD prognosis. For instance, Wei et al. established a 
regulatory network of TF-miRNA-target genes to analyze 
disease progression and optimize treatment strategies (40). 
However, Mullany et al. showed that TF expression and 
related miRNAs influence the survival of patients diagnosed 
with colorectal cancer (41). Based on these studies and 
on our own results, we believe that TFs may play an 
important role in regulating the IRG expressions in COAD 
patients. Further investigation is needed to confirm this  
hypothesis.

Considering that the IRGPI established herein may be 
applied to accurately assess the immune status and monitor 
COAD prognosis in patients, it is actually an outstanding 
biomarker of the disease. This robust biomarker can be 
used in clinical prognosis applications, including cancer 
immunotherapy.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vinnakota K%5BAuthor%5D&cauthor=true&cauthor_uid=28098359
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Figure 8 Genetic alterations associated with hub IRGs. (A) The total alteration frequency of hub IRGs; (B) the landscape of genetic 
alterations of hub IRGs in COAD patient. IRGs, immune-related genes; COAD, colon adenocarcinoma.

Figure 9 Relationships between the prognostic index and the abundance of immune cell infiltration. (A) B cells, (B) CD4 T cells, (C) 
dendritic cells, (D) macrophages, (E) neutrophils, and (F) CD8 T cells.
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Figure 10 TF-mediated regulatory network. The heatmap (A) and volcano plot (B) of differentially expressed TFs. Red and blue dots 
represent up-regulated and down-regulated differentially expressed TFs, respectively; (C) the regulatory network. Green triangles represent 
TFs, whereas red and blue circles represent high-risk and low-risk IRGs, respectively. IRGs, immune-related genes; TF, transcription factor.
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Table 3 The topological analysis of TFs in regulating the hub IRGs

TF name Degree centrality TF name Betweenness centrality TF name Closeness centrality

MAF 4 MAF 0.202086 KLF4 1

MYH11 4 MYH11 0.129743 MAF 0.487805

NR3C1 4 FOXP3 0.114229 MYH11 0.465116

CBX7 3 IRF4 0.1 FOXP3 0.444444

FOXP3 3 NR3C1 0.094054 NR3C1 0.444444

EPAS1 2 CBX7 0.079211 CBX7 0.444444

IRF4 2 EPAS1 0.038571 EPAS1 0.408163

BHLHE40 1 BHLHE40 0 BRCA1 0.377358

BRCA1 1 BRCA1 0 CENPA 0.377358

CENPA 1 CENPA 0 EZH2 0.377358

EZH2 1 EZH2 0 LMO2 0.377358

KLF4 1 KLF4 0 NCAPG 0.377358

LMO2 1 LMO2 0 BHLHE40 0.307692

NCAPG 1 NCAPG 0 IRF4 0.28169

PBX1 1 PBX1 0 PBX1 0.266667

TF, transcription factor; IRGs, immune-related genes.
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