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Background: Sepsis is a highly heterogeneous syndrome with diverse immune status and varied bioprocesses 
among individuals. The heterogeneity of sepsis could be associated with N6-methyladenosine (m6A) RNA 
methylation, due to m6A as a common and reversible posttranscriptional RNA modification involved in the 
regulation of whole bioprocesses. Therefore, we aim to identify m6A induced molecular subtypes of sepsis 
and furthermore explore the probable mechanism. 
Methods: Gene expression datasets with 479 consecutive patients admitted for sepsis to the intensive care 
unit (ICU) in the Amsterdam Academic Medical Center were included in present study at first. Secondly, 
twelve m6A methylation regulatory genes were determined via systematic review in published researches. 
Furthermore, we utilized unsupervised clustering (consensus k means clustering) to identify m6A induced 
molecular subtypes in sepsis based on m6A prognostic molecular, and assess the association of these subtypes 
with clinical traits and survival outcomes. Moreover, the probable mechanism and regulatory relationship 
of m6A in sepsis was also explored through Gene Set Enrichment Analysis (GSEA), Weighted gene co-
expression network analysis (WGCNA), Gene Ontology (GO) analysis and Co-expression analysis. 
Results: Three m6A subtypes with different outcome were identified in sepsis cohort through unsupervised 
clustering on m6A prognostic molecular, designated Cluster 1/2/3 (log-rank P=0.004). The best outcome was 
found for patients classified as having cluster 3, and at 28 days, 21 of 144 people with cluster 3 had died [hazard 
ratio (HR) vs. all other clusters 5.42 (95% CI: 0.359–0.819); P=0.011], compared with 57 of 224 people with 
cluster 1 (HR 0.579, 95% CI: 0.364–0.920; P=0.037), and 36 of 112 people with cluster 2 (HR 0.477, 95% 
CI: 0.272–0.833; P=0.003). For exploration of the relationship between m6A subtypes and immunity, the 
GSEA found that patients in cluster 1 suffered from hyper-activated immunocompetent status; patients in 
cluster 2 indicated immunosuppressive status; and patients in cluster 3 showed the moderate immune activity 
(P<0.05). Co-expression analysis furthermore identified 82 immune molecules and 40 autophagy-related 
molecules could be regulated by prognostic m6A RNA methylation regulators (P<0.05) and correlation 
coefficient >0.6. In addition, WGCNA and GO analysis indicated that autophagy was significantly and 
widely activated in patients with cluster 3 (P<0.05). 
Conclusions: According to the heterogeneity in m6A methylation regulatory genes, three distinct subtypes 
in sepsis were identified with different RNA epigenetics, immune status, biological processes and outcomes, 
which initially uncovered that heterogeneity of sepsis may be largely caused by m6A RNA methylation. 
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Introduction

Sepsis is defined as a highly heterogeneous syndrome that 
is associated with a dysregulated systemic inflammatory 
host response to infection and causes organs dysfunction 
(1,2). It is generally believed that the failure of proposed 
sepsis therapies is due to the heterogeneity of sepsis patients 
and the inability to accurately classify sepsis patients at 
the molecular biology level. The identification of distinct 
subtypes of sepsis could adopt appropriate treatment 
regimens for patients with different subtypes, which can 
improve survival in sepsis (3,4).

Previous studies attempted to identify diverse subtypes 
through clinical features or biomarkers. For example, 
Seymour et al. classified sepsis patients to four derived 
phenotypes via 29 clinical features (temperature, mean 
arterial pressure, fluid resuscitation response and central 
venous oxygen saturation, etc.). Using different genes 
between sepsis and health controls, researchers identified 
four subphenotypes of sepsis, among them. However, 
these classification studies of sepsis have not uncovered 
the mechanism of different subtypes. N6-methyladenosine 
(m6A), a chemical modification for RNA regulation, 
accounts for more than 60% of all RNA epigenetics 
(5,6). As m6A is the commonest posttranscriptional 
RNA modification involved in the regulation of whole 
bioprocesses (including immunity, metabolism, proliferation 
and apoptosis), the heterogeneity in sepsis may associate 
with m6A RNA regulations. In addition, since m6A 
emerged as a reversible bioprocess involved in many 
various disease progressions, potential therapeutic targets 
of m6A were widely investigated (7-11). Previous studies 
have demonstrated that m6A regulators were closely 
associated with tumor heterogeneity (12,13). However, 
details of m6A RNA regulatory factors mediating sepsis 
heterogeneity remained largely unknown. Fortunately, the 
public database provides a large number of sepsis-related 
transcriptome data, while the use of RNA omics and RNA-
seq are becoming cheaper and more extensive, helping us to 
perform integrative analysis on m6A RNA methylation and 
sepsis molecules subtypes. 

In this scenario, we systematically analyzed the 
expression of widely reported m6A RNA methylation 
regulators in sepsis based on public database- Gene 
Expression Omnibus (GEO database) (5-16). Firstly, 
we sought to screen prognostic m6A RNA methylation 
regulators in sepsis through univariate Cox’s proportional-
hazards regression. Furthermore, we classified sepsis into 

diverse m6A endotypes through unsupervised clustering 
according to prognostic m6A molecules. In addition, we 
attempted to elaborate the reasons of different prognosis in 
m6A induced subtypes via enrichment analysis. 

Methods

Data sources and study selection

The public database—GEO database was searched for all 
expression microarrays that matched terms of sepsis. The 
datasets collected from clinical studies investigating sepsis in 
adults using peripheral blood within 48 hours after intensive 
care unit admission (ICU) were included. Exclusion criteria 
were as follows: (I) datasets that utilized endotoxin or 
lipopolysaccharide infusion as vitro or animal models for 
sepsis; (II) clinical-gene expression microarray derived from 
sorted cells; (III) without the outcome of 28 day mortality 
or survival curves. The flow-process diagrams for screening 
datasets were shown in Figure S1. 

Collecting m6A RNA methylation regulators via systematic 
review

A systematic literature review of all of the pertinent 
English language studies was undertaken in the PubMed 
databases from inception through December 28, 2019. A 
manual search of the selected articles and relevant review 
articles was performed by two reviews (F Liu and ZS Wu) 
independently. Only m6A RNA methylation regulators 
gene which confirmed by animal or cell experiments will 
eligible to present analysis.

Data preprocessing

All datasets were downloaded as txt files, and outputs 
from mRNA array were normal-exponential background 
corrected and then between-arrays quantile normalized 
using limma R package. For compatibility with microarray 
study, expression was normalized using a weighted linear 
regression, and the estimated precision weights of each 
observation were then multiplied with the corresponding 
log2 to yield final gene expression values.

Screening prognosis-associated m6A RNA methylation 
regulators in sepsis

In order to determine prognostic m6A RNA methylation 
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regulators, the univariate Cox’s proportional-hazards 
regression with Bonferroni correction for multiple 
comparisons was utilized, using survival R package, with 
cut-off value as P<0.05.

Explore m6A induced molecular subtypes of sepsis 

The consensus k means clustering was utilized to perform 
consistent clustering and selecting of m6A subtypes based 
on prognostic m6A RNA methylation regulators expression 
profiles. The clustering was performed using 100 iterations, 
with each iteration containing 80% of samples. The optimal 
cluster number was determined by cumulative distribution 
function (CDF) curves of the consensus score, clear 
separation of the consensus matrix heatmaps, characteristics 
of the consensus cumulative distribution function plots, 
and adequate pair wise–consensus values between cluster 
members.

Assessment for immune heterogeneity among subtypes

Kaplan-Meier (KM) curves would be performed to evaluate 
prognosis of various m6A Subtypes, with cut-off value as 
P<0.05. Differential expression analysis using moderated 
t-tests would be utilized to assess the expression distribution 
of twelve m6A RNA methylation regulators in different 
subtypes. 

We furthermore evaluated the variation of immune status 
among subtypes. Gene Set Enrichment Analysis (GSEA) 
and cell type identification by estimating relative subset 
of known RNA transcripts (CIBERSORT) were utilized 
to evaluate proportions of immune cells. Briefly, GSEA 
calculates separate enrichment scores (ES) for each pairing 
of a sample and gene set (17) via GSVA and GSEABase R 
package. Each GSEA ES represents the degree to which 
the genes in a particular gene set are coordinately up- or 
downregulated within a sample. CIBERSORT algorithm 
could calculate proportions of human immune cells according 
to RNA matrix (https://cibersort.stanford.edu/) (18).  
Immune cells included immune enhancing cells (Th1 cells, T 
cells CD4 activated, NK cells activated and B cells activated) 
and immune suppressive cells (Th2 cells and Treg cells). 
Differential expression analysis using moderated t-tests 
would be utilized to assess the expression distribution of 
pro-inflammatory cytokines and enrichment of immune 
cells among subgroups, P<0.05 was recognized as significant 
results. Pro-inflammatory cytokines included interleukin-
1β (IL-1β), interleukin-6 (IL-6) and Tumor necrosis  

factor (TNF). 

Assessing the heterogeneity of biological function among 
subtypes

There are two steps to implement this analysis. On the one 
hand, we attempted to find gene-sets which significantly 
correlated to m6A subtypes through Weighted gene co-
expression network analysis (WGCNA), using WGCNA R 
package to determine co-expressed genes using all expressed 
genes in microarrays (19,20). Analysis setting included bi-
weight miscorrelation (corType = ‘bicor’) to account for 
outliers, sign of correlations between neighbors (TOM type 
and networkType = ‘signed’), and a more sensitive module 
detection parameter (deepSplit = 3). Module eigengene 
(ME) was calculated as the first principal component of 
gene expression for the module and inter-relatedness of 
each module by eigengene network clustering (Figure S2). 
MEs were compared with m6A subtype information using 
Spearman’s correlation corrected for subtypes, and P values 
were adjusted for multiple comparisons by false discovery 
rate. Genes from modules which highly associated with 
m6A subtypes (the maximum correlation coefficient and 
P<0.05) were selected for further Gene Ontology (GO) 
analysis.

On the other, GO analysis was performed to elaborate 
the functions of selected gene-sets using org.Hs.eg.db, 
clusterProfiler and enrichplot R packages, with cut-off value 
as P<0.05. 

Co-expression analysis was performed to furthermore 
explore the possible downstream molecules regulated 
by m6A RNA methylation, with cut-off value as P<0.05, 
Pearson correlation coefficient >0.6. 

Software and versions

Rx64 3.6.1 was conducted to process data, analyze data 
and plot diagrams; Cytoscape 3.6.1 was performed to plot 
network diagrams. 

Results

Characteristics of datasets and patients

After search strategy and inclusive criteria, one mRNA 
dataset from University Medical Center in Utrecht and 
Academic Medical Center in Amsterdam is finally enrolled 
in current study. A total of 479 patients in this dataset were 

https://cibersort.stanford.edu/
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all older than 18 years and were diagnosed with sepsis. 
Septic shock ratio is 34.8%, and more details are shown in 
Table 1. 

Twelve m6A RNA methylation regulators were collected 
via systematic review

We first collated a list of sixteen m6A RNA methylation 
regulators from published literature (5-16), and then we 
restricted the list to genes with available RNA expression data 
in the GEO datasets. This yielded a total of 12 m6A RNA 
methylation regulators. These m6A RNA regulators included 

m6A writers, m6A readers and m6A erasers. m6A writers 
included KIAA1429, methyltransferase like 3 (METTL3), 
methyltransferase like 14 (METTL14), RNA binding motif 
protein 15 (RBM15) and WT1 associated protein (WTAP). 
m6A readers included HNRNPC, YTH domain containing 
1 (YTHDC1), YTH domain containing 2 (YTHDC2), YTH 
N6-methyladenosine RNA binding protein 1 (YTHDF1) 
and YTH N6-methyladenosine RNA binding protein 2 
(YTHDF2). m6A erasers included alkB homolog 5, RNA 
demethylase (ALKBH5) and FTO alpha-ketoglutarate 
dependent dioxygenase (FTO), shown in Table 2.

The prognosis associated m6A RNA methylation regulators 
in sepsis

According to the univariate Cox regression analyses, 
ALKBH5, HNRNPC, KIAA1429, WTAP and YTHDF2 
are significantly correlated with 28-day cumulative mortality 
(P<0.05). ALKBH5 and WTAP are risky genes with Hazard 
Ratio (HR) >1, and HNRNPC, KIAA1429 and YTHDF2 
are protective genes with HR <1 (Figure 1). The correlation 
results among m6A RNA methylation regulators were 
shown in Figure S2. 

m6A molecular subtypes in sepsis

Based on the expression similarity of m6A RNA methylation 
regulators, k =2 or 3 seemed to be an adequate selection 
with clustering stability increasing from k =2 to 9 in cohort 
(Figure 2 and Figure S3). KM suggested significantly 
different 28-day cumulative mortality among three subtypes 
(P=0.004). However, 28-day cumulative mortality did not 
show an obviously statistic difference between two subtypes 
(P=0.092). In consideration of KM curves and clustering 
stability, patients with sepsis were finally divided into three 
subtypes (cluster 1, cluster 2 and cluster 3). 

In the sepsis cohort, the best outcome was found for 
patients classified as having a cluster 3 , and at 28 days, 21 
(14.6%) of 144 people with a cluster 3 had died (HR vs. 
all other clusters 5.42, 95% CI: 0.359–0.819; P=0.011), 
compared with 57 (25%) of 224 people with a cluster 1 (HR 
0.579, 95% CI: 0.364–0.920; P=0.037), and 36 (23%) of 112 
people with a cluster 2 (HR 0.477, 95% CI: 0.272–0.833; 
P=0.003) .

Immune status heterogeneity among m6A subtypes

Figure 3A showed a distinct expression pattern in the m6A 

Table 1 Demographic and clinical characteristics 

Sample size Total n=479

Male sex 272 (56.8%)

Age, years 63 (18 to 89)

Country Netherlands

Pneumonia diagnoses 183 (38.0%)

Septic shock 167 (34.8%)

28-day mortality 115 (24.0%)

APACHE IV 85 (69 to 103)

Main study Classification for sepsis through 
transcriptomic data

Table 2 Twelve m6A RNA methylation regulators were collected in 
this study

Gene symbol Type

KIAA1429 m6A writers

METTL3 m6A writers

METTL14 m6A writers

RBM15 m6A writers

WTAP m6A writers

HNRNPC m6A readers

YTHDC1 m6A readers

YTHDC2 m6A readers

YTHDF1 m6A readers

YTHDF2 m6A readers

ALKBH5 m6A erasers

FTO m6A erasers
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METTL3

RBM15
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0.0210413257261983

0.495702451034238

0.0257067720266786

0.0322571835057072

0.15119555432831

0.0882208280699606

0.154981526583178
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0.33356466470346
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0.178588855120529

0.0274589497898564

1.657 (1.079–2.543)

0.876 (0.598–1.283)

0.448 (0.221–0.907)

0.532 (0.298–0.948)

0.721 (0.462–1.127)

0.553 (0.280–1.093)

1.587 (0.840–2.998)

1.539 (1.017–2.330)

0.831 (0.570–1.210)

0.992 (0.730–1.348)

0.630 (0.321–1.235)

0.661 (0.458–0.955)

0.0            0.5           1.0            1.5            2.0            2.5
Hazard ratio

P value Hazard ratio

Figure 1 Prognostic m6A RNA methylation regulators. Forest plots of univariate Cox’s proportional-hazards for identification of m6A RNA 
methylation regulators (red forest plots represent risky factors and green forest plots represents protective factors). 

regulators profiles of each subtype (P<0.05). After GSEA 
and CIBERSORT, the obviously heterogeneity of immune 
status among subtypes were identified in Figure 3B,C. 

This heterogeneity of immune status included significant 
difference of enrichment scores in immune cells (Figure 3B), 
and obvious discrepancy of expression in pro-inflammatory 
cytokines (Figure 3C). In cluster 1 (moderate prognosis), 
immune enhancing cells and pro-inflammatory cytokines 
were significantly up-regulated compared with other 
subtypes, companied with immune suppressive cell down-
regulated simultaneously (P<0.05). The distribution of 
immune cells and pro-inflammatory cytokines in cluster 2 
(the worst prognosis) showed diametrically opposed to those 
in cluster 1 (P<0.05). The enrichment score of immune cells 
and expression of pro-inflammatory cytokines in cluster 
3 (the best prognosis) were in the middle of cluster 1 and 
cluster 2.

Heterogeneity of other biological process among subtypes

WGCNA identified 24 modules in the sepsis cohort 
(Figures S4,S5). Cluster 1 positively correlated with 
Seventeen module ( including 1,860 genes) ,  with 

correlation coefficient as 0.73 and P value as 8×10−81. 
Cluster 2 markedly positively associated with One module 
(including 3,423 genes), with correlation coefficient 
as 0.68 and P value as 8×10−70. Cluster-3 significantly 
positively related to Twenty-one (including 251 genes), 
with correlation coefficient as 0.61 and P value as 8×10−51. 
Genes from these strongly relevant modules defined as the 
eigengenes of each subtypes (Figure 4A). 

In order to furthermore explore module biological 
function, GO enrichment analyses were conducted and 
the results were shown in Figure 4B,C,D. The biological 
functions of Seventeen module (correlated with cluster 
1) were mainly enriched in RNA processing and vesicle 
transport; One module (correlated with cluster 2) were 
mainly related to nucleotide repair and extracellular 
matrix; Twenty-one (correlated with cluster 3) were mainly 
associated with autophagy. 

Co-expression analysis furthermore identified 82 immune 
molecules and 40 autophagy-related molecules could be 
regulated by prognostic m6A RNA methylation regulators, 
P<0.05 and correlation coefficient >0.6 (Figure S6).  
The immune molecules and autophagy-related molecules 
were referenced to immunology database (https://www.
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Figure 2 Identification of optimal sepsis subtypes based on the five prognostic m6A RNA methylation regulators. (A) The cumulative 
distribution function (CDF) curves is the integral of probability density function, which can completely describe the probability distribution 
of a real random variable, and established using consensus clustering approach. CDF curves of consensus scores based on different subtype 
number (k =2, 3, 4, 5, 6, 7, 8, 9) and the corresponding color are represented. (B) The CDF Delta area curve of all samples when k =2 or 
3. (C) Survival curves of two subtypes (when k =2). Kaplan-Meier (KM) curves did not showed an obviously statistic difference between 
two subtypes, with P value as 0.092. (D) Survival curves of three subtypes (when k =3). Kaplan-Meier (KM) curves indicated a significantly 
statistic difference among three subtypes, with P value as 0.004.

immport.org/) and human autophagy database (http://www.
autophagy.lu/), respectively. 

Discussion

Sepsis is a clinically common syndrome with high 
heterogeneity. Heterogeneity in patients with sepsis is 
currently considered to be an important cause of treatment 
failure. Therefore, it is very important to find a regulatory 
analysis that affects the heterogeneity of concentration 
and then guide the treatment of sepsis. Current research 
indicates that the expression of RNA methylation, regulators 
of epigenetic, is closely related to the heterogeneity 
and prognosis of sepsis. Three m6A molecular subtypes 
were identified in sepsis, cluster 1/2/3, by consensus 

clustering based on the expression of most aberrant m6A 
regulators. Three m6A subtypes exhibited significantly 
different RNA epigenetics, immune status, biological 
processes and outcomes. We further investigated that the 
moderate immune activated status and potential autophagy 
mechanisms could benefit septic patients, which were 
regulated by RNA methylation. To our knowledge, this was 
the first study on the transcriptome-wide mapping of m6A 
regulators which focuses on investigating the landscapes 
and functions of the reversible RNA modifications in sepsis. 

YTHDF2,  HNRNPC, KIAA1429,  WTAP,  and 
ALKBH5 were proved to be more important in prognosis 
of sepsis. The major mechanism by which m6A exerts its 
effects is by recruiting m6A-binding proteins (m6A readers) 
to target RNAs. Subsequently, a methyltransferase complex 
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Figure 3 The heterogeneity of m6A regulators distribution and difference of host response among subtypes. (A) The distribution of twelve 
m6A RNA methylation regulators among subtypes. (B) The heterogeneity of immune cells among subtypes. Enrichment score of every 
patient was calculated by single sample Gene Set Enrichment Analysis. (C) The expression of pro-inflammatory cytokines among subtypes.  
*, P<0.05; **, P<0.01; ***, P<0.001; ns, P>0.05.

within the nuclear speckle, m6A writers, installs m6A 
modification on targeted RNAs via the methyl groups of 
S-adenosylmethionine (SAM) transferase. Demethylases 
(erasers) were found that removes methyl groups from 
m6A, indicating that m6A is a dynamically reversible RNA 

modification. The previous studies identified YTHDF2 
and HNRNPC as m6A readers, KIAA1429 and WTAP 
as m6A writers and ALKBH5 as m6A eraser (4-14). The 
current study further uncovered the prognostic roles of 
these five m6A regulators in sepsis. The future studies could 
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be conducted to sequentially verify and research these m6A 
elaborate mechanisms in sepsis. 

The current study provided an insight that immune 
heterogeneity of sepsis was largely associated with m6A 
RNA methylation. Patients with same syndrome (sepsis) 
were classified into finer taxa and had differential prognosis 
and distinct immune status. Patients in cluster 2 with worst 
prognosis suffered from immunosuppression; patients 
in cluster 1 with worse prognosis suffered from hyper-
activated immunocompetent status; and patients in cluster 
3 (the best prognosis) had the moderate immune activity. 
The extent of hyper-activated and hypo-activated immune 
response varies among individuals in sepsis, which result in 
immune heterogeneities (3,4). It is well known that hyper-
activated immunocompetent and Immunosuppression 
are both detrimental status in the progression of sepsis 
(5,7), especially immunosuppression. However, for a given 
patient, it is too hard to characterize the immune status 
due to complex and unknown mechanisms of immune 
heterogeneity in sepsis. As immune functions were widely 
regulated by m6A RNA methylation (9,10), three m6A 
subtypes enhanced the comprehension of molecular 
characteristics and subgroup-specific immune status in 
highly heterogeneous syndrome (sepsis). These results 
provided a better understanding of the predicting clinical 
outcomes and valuable research targets in sepsis. 

The molecular characterization of the transcriptome 
of subtypes subsequently indicated that autophagy 
mechanisms, regulated by RNA methylation, could play 
an important role in improvement of outcomes in sepsis, 
which were consistent with previous studies of autophagy 
in sepsis. Autophagy is the regulated process cells use to 
recycle nonessential, redundant, or inefficient components 
and is an adaptive response during times of stress (21). In 
addition to its function in enabling the cell to gain vital 
nutrients in times of stress, autophagy can also be involved 
in elimination of intracellular microorganisms, tumor 
suppression, and antigen presentation (22). Therefore, 
previous studies also confirmed that autophagy-related 
processes were properly activated and accelerated during 
sepsis due to the sepsis induced mitochondrial injury (22). 
Besides, autophagy was widely recognized as protective 
biological processes in sepsis (21-28). Unfortunately, these 
autophagy-related studies did not show upstream regulatory 
mechanisms. As autophagy seemed to be not reversible once 
triggered, exploration for regulatory factors of autophagy 
would be beneficial for develop potential therapeutic 

targets in sepsis. Combined with current analysis and 
previous study, outcomes of septic patients in cluster 3 were 
obviously improved largely depending on autophagy, which 
were quite possibly regulated by m6A RNA methylation. 

As m6A RNA methylation is generally known a 
reversible and regulatable process, chemicals targeting m6A 
methylation would be explored as a new therapeutic method 
for sepsis therapy. The present study provided possible 
regulatory relationships between m6A regulators with 
immune and autophagy-related molecules. 

There are several limitations in the present study. First, 
as a retrospective study of primarily publically available 
data, we were not able to download more demographics and 
clinical features such as severity, complications, individual 
treatment of each patient for detailed and longitudinal 
analyses. In addition, for the limitation of bioinformatics, 
the further studies and experiments should be conducted to 
sequentially verify and research elaborate RNA methylation 
mechanisms screened by our analyses. 

Conclusions

We identified three highly heterogenous m6A subtypes in 
sepsis, with significantly different RNA epigenetics, immune 
status, biological processes and outcomes, which could be 
intervention targets for improvement of therapeutic system 
in sepsis, with validation experiments to be warranted to 
assess these further.
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Figure S5 Hierarchical cluster tree displaying 24 modules of co-
expressed genes through weighted gene co-expression network 
analysis.



Figure S6 Co-expression network of prognostic m6A RNA methylation regulators with immune and autophagy related genes. Two related 
genes are linked (P<0.05 and correlation coefficient more than 0.6). ◇ represent m6A RNA methylation regulators; △ represent immune 
molecules; blue links represent positive correlation and green links represent negative correlation.
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