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A CT-based radiomics signature for evaluating tumor infiltrating 
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Xujie Gao1,2,3,4#, Tingting Ma1,2,3,4#, Shuai Bai2,5,6, Ying Liu1,2,3,4, Yuwei Zhang1,2,3,4, Yupeng Wu2,5,6,  
Hui Li2,5,6, Zhaoxiang Ye1,2,3,4

1Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; 2National Clinical Research Center for 

Cancer, Tianjin 300060, China; 3Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China; 4The Key Laboratory of Cancer Prevention 

and Therapy, Tianjin 300060, China; 5Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, 

Tianjin 300060, China; 6Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China

Contributions: (I) Conception and design: X Gao, T Ma, Z Ye; (II) Administrative support: H Li, Z Ye; (III) Provision of study materials or patients: 

H Li, Z Ye; (IV) Collection and assembly of data: X Gao, Y Wu, S Bai; (V) Data analysis and interpretation: X Gao, T Ma, Y Liu, Y Zhang; (VI) 

Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Zhaoxiang Ye. Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road Tiyuanbei, 

Tianjin 300060, China. Email: yezhaoxiang@163.com; Hui Li. Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer 

Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road Tiyuanbei, Tianjin 300060, China. Email: lihui@tjmuch.com.

Background: Tumor infiltrating regulatory T (TITreg) cells are highly infiltrated in gastric cancer (GC) 
and associated with worse prognosis of GC patients. We aim to develop and validate a radiomics signature 
for evaluation of TITreg cells and outcome prediction of GC patients.
Methods: A total of 165 GC patients from three independent cohorts were enrolled in this retrospective 
study. The abundance of TITreg cells were evaluated by using multispectral immunohistochemical analysis 
and CIBERSORT algorithm. The radiomics features were extracted by using PyRadiomics software 
and the radiomics signature was generated by using the least absolute shrinkage and selection operator 
(LASSO) logistic regression model. The receiver operator characteristic (ROC) curves were applied to assess 
the performance of radiomics signature for estimating TITreg cells. Univariable and multivariable Cox 
regression analysis were used for identifying risk factor of overall survival (OS). The prognostic value of the 
radiomics signature and the TITreg cells were evaluated by using the Kaplan-Meier method and log-rank 
test.
Results: Six robust features were selected for building the radiomics signature. The radiomics signature 
showed good ability for estimating TITreg in the training, validation and testing cohort, with area under the 
curve (AUC) of 0.884, 0.869 and 0.847, respectively. Multivariable Cox regression analysis showed that the 
radiomics signature was an independent risk factor of unfavorable OS of GC patients.
Conclusions: The proposed CT-based radiomics signature is a promising non-invasive biomarker of 
TITreg cells and outcome prediction of GC patients.
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Introduction

Regulatory T (Treg) cells are a subset of CD4+ T cells 
which distinguished by expression of the transcription factor 
forehead box protein P3 (FoxP3). Accumulating evidence 
demonstrated that a large number of Treg cells were 
infiltrated in tumor microenvironment (1). In addition, most 
of Treg cells within tumors had high proliferative activity and 
could lead to profound immunosuppression within tumors. 
A number of studies showed that higher fraction of Treg 
cells was associated with worse prognosis of breast cancer (2),  
non-small-cell lung cancer (3), pancreatic cancer (4),  
renal cell cancer (5), head and neck squamous cell cancer (6)  
and gastric cancer (GC) (7). Rapid progression referred 
to as hyper progression disease (HPD) had been observed 
in up to 10% of patients received immune checkpoint 
inhibitor (ICI) of several types of tumors (8,9). Recently, 
Kamada et al. reported that Treg cells may contribute to 
the HPD in proportion of GC patients treated with anti-
PD-1 therapy (8). These results suggested a potential role 
for tumor infiltrating Treg (TITreg) cells in prediction of 
outcome and treatment response of immunotherapies.

Computational medical imaging, known as Radiomics, 
are processes that translate medical images into high-
dimensional quantitative data and thus enable the 
characterization of microscopic features of tumor tissues such 
as cellular, molecular and even gene expression properties. In 
previous studies, radiomics had successful applicated in the 
differential diagnosis, prognosis or lymph node metastasis 
prediction of GC patients (10-12). Therefore, the radiomics-
based biomarkers could be a novel non-invasive biomarker 
for diagnosis, prognosis and treatment response of cancer 
patients and promising complimentary to other gene-driven 
tumor markers or biopsies. 

To our knowledge, there is no previous study that had 
investigated the value of radiomics for assessing TITreg 
cells. Thus, the aim of current study is to develop and 
validate a CT-based radiomics signature for evaluation of 
TITreg cells in GC. The prognostic value of the radiomics 
signature was also evaluated.

Methods 

Patients and study design 

This study was conducted in three independent cohorts. 
One hundred and thirty-five GC patients who had 
undergone radical gastrectomy at Tianjin Medical 
University Cancer Institute and Hospital between June 2012 

and April 2016 were enrolled. The patients were randomly 
divided into training cohort (n=90) and validation cohort 
(n=45). The inclusion criteria: (I) patients received radical 
gastrectomy with D2 lymphadenectomy; (II) GC diagnosis 
was histologically confirmed; (III) contrast-enhanced 
abdominal CT images were acquired within 14 days before 
operation; (IV) Image quality was satisfactory for analysis. 
The exclusion criteria: (I) patients received chemotherapy 
or radiotherapy before surgery; (II) with other malignant 
tumors; (III) incomplete clinical information.

The  Cancer  Genome At la s  (TCGA)  Stomach 
Adenocarcinoma (STAD) dataset was used as an external 
testing cohort. The CT images of TCGA-STAD dataset 
were obtained from The Cancer Imaging Archive (TCIA). 
The RNA-sequencing data and clinical information of 
patients were acquired from the TCGA portal. The 
abundance of TITreg cells of each patient was calculated 
using CIBERSORT web tools (13). All patients of TCGA 
dataset had undergone radical gastrectomy and the 
diagnosis of GC were also histologically confirmed.

This study was approved by ethics committee of our 
institute and informed consent was obtained from all the 
patients. The flowchart of study design is showed in Figure 1.

CT scanning protocol 

Contrast-enhanced abdominal CT was performed by using 
Discovery CT750 HD (GE Medical Systems, Milwaukee, 
Wisconsin) or Somatom Sensation 64 scanner (Siemens 
Medical Solutions, Forchheim, Germany). Oral doses of 
water (500–1,000 mL) were administered to ensure stomach 
distension prior to CT examination. The parameters were 
as follows: tube voltage was 120 kVp, tube current was 150–
200 mA; field of view, 350 mm × 350 mm; matrix, 512×512; 
Images reconstruction section thickness: 1.25 mm. Arterial 
phase images were obtained following delays of 20 seconds 
after intravenous injection of contrast media (2.5 mL/s,  
1.2 mL/kg; Omnipaque 300, GE Healthcare, Chicago, 
Illinois) via a syringe pump. The portal venous phase was 
obtained after delays of 60 seconds.

Multispectral immunohistochemical analysis of TITreg cells

The abundance of TITreg cells was analyzed utilizing Opal 
7-Colour Manual IHC Kit (PerkinElmer NEL811001KT) 
according to the manufacture’s protocol (14). In brief, the 
slides were incubated with Antibody Diluent blocking buffer 
(PerkinElmer) at room temperature (RT) for 10 min. The 
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primary antibody for CD4 (Abcam, ab133616, 1:500) and 
FoxP3 (R&D, MAB8214, 1:400) were incubated at RT for 
1 h. Then, a secondary HRP antibody were incubated at 
RT for 10 min. Signal amplification was performed using 
Opal 520 TSA (PerkinElmer) and incubated at RT for 10 
min. Visualization of the slides was done using the Mantra 
Quantitative Pathology Imaging System (PerkinElmer) 
and analyzed using InForm Image Analysis software 
(PerkinElmer, version 2.1). The TITreg cell fraction in CD4+ 
cells were calculated and data were presented as mean ± SD.

Estimation of TITreg cells using CIBERSORT algorithm

CIBERSORT is a gene expression-based deconvolution 
algorithm for assessing immune cell composition. 
Normalized gene expression data of TCGA-STAD 
dataset was uploaded to CIBERSORT web portal (13). 
The proportion of 22 types of intratumoral immune 
cells, including Treg cells, were evaluated with the default 
algorithm at 1000 permutations (15).

Tumor segmentation and feature extraction 

The portal venous phase of contrast-enhanced CT images 
was selected for the analysis because most of the lesions had 
significant enhancement in this phase (16).

The volume of interest (VOI) of tumors were manually 
drawn along the tumor boundaries by using 3D Slicer 

software (version 4.8.1). The VOIs were delineated by two 
radiologists (Reader 1, X Gao; Reader 2, T Ma) with 6 years 
and 9 years of experience, respectively. Reader 1 performed 
tumor segmentations for patients of all cohorts. Reader 2 
independently segmented tumors of the training cohort. 
Inter-class correlation coefficients (ICCs) were calculated 
for evaluation of inter-observer reliability of the extracted 
features. Feature extraction was performed by using 
PyRadiomics software (version 2.2.0) (17). Eight hundred 
and fifty-nine radiomic features were extracted from VOIs. 
The features were divided into four catalogs including: 
first-order, shape, texture, and wavelet features. Details of 
radiomic features are showed in Table S1. 

Feature selection and radiomics signature construction

To evaluate the inter-observer reliability of the extracted 
features, tumors of the training cohort were independently 
segmented by two radiologists (X Gao and T Ma) and 
ICCs were calculated for each feature. Only features with 
ICC ≥0.8 were considered as highly reproducible and 
retained. Then, the patients were stratifying into high or 
low Treg cell group on the basis of median value of Treg 
cell fraction in CD4+ cells. The Mann-Whitney U test was 
utilized to compare the value of each radiomics feature 
between high and low TITreg cell groups. The features 
with P<0.05 were considered as significant different features 
between two groups and included for further analysis. 

Figure 1 Flowchart of overall study design. 

Kaplan-Meier curves and
Cox’s proportional hazards model analysis

Training cohort (n=90) Validation cohort (n=45) TCGA-STAD dataset (n=48)

Testing cohort (n=30)

Estimation of tumor infiltrating
Treg cell using CIBERSORTEstimation of tumor infiltrating Treg

cell using multispectral
immunohistochemical analysis

Image features

Estimation of tumor infiltrating
Treg cell using multispectral

immunohistochemical analysis

Inter-class correlation
coefficients (ICC >0.8)

Significant different features
between high and low Treg groups

The receiver operator characteristic (ROC)
curves analysis

Radiomics signature of Treg cells



Gao et al. Radiomics for Treg cell

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):469 | http://dx.doi.org/10.21037/atm.2020.03.114

Page 4 of 10

Finally, the least absolute shrinkage and selection operator 
(Lasso) regression model was used for feature selection and 
signature construction (18). The regularization parameter λ 
was defined by use of 10-fold cross-validation. Lasso logistic 
regression analysis was done utilizing “glmnet” package of 
R software. The workflow of radiomics analysis is showed 
in Figure 2.

Statistical analysis

The t-test, Mann-Whitney U test or one-way ANOVA 
test was used for numerical variables. χ2 test or Fisher’s 
exact test was used for categorical variables. The receiver 
operator characteristic (ROC) curves and the area under 
the curve (AUC) were utilized to assess the performance of 
radiomics signature for estimating TITreg cells. Univariable 
and multivariable Cox regression analysis were used for 
identifying risk factors of overall survival (OS). Factors 
with statistical significance at the univariable analysis were 
analyzed for the multivariable model with step-wise forward 
approach. The optimal cutoff value of radiomics score was 
decided with the maximized Youden index from the training 
cohort and patients were divided into high or low radiomics 

score group. OS was evaluated using the Kaplan-Meier 
curve along with log-rank test. P<0.05 was considered as 
statistical significance. Statistical analysis was performed by 
using R (version 3.4.2).

Results

Patients characteristics

The clinical characteristics of patients are showed in Table 1.  
The contrast-enhanced abdominal CT images, RNA-seq 
data and clinical information of TCGA-STAD dataset were 
downloaded from TCGA and TCIA data portal. 18 patients 
were excluded for lacking of RNA-seq data and 30 patients 
were finally included as the testing cohort. All patients 
from the three cohorts were pathological diagnosed with 
gastric adenocarcinoma. No significant difference in clinical 
covariates was observed among the three cohorts.

Evaluation of TITreg cells abundance in the training, 
validation and testing cohort

The abundance of TITreg cell of 135 patients of the 

Figure 2 Workflow of radiomics analysis. 

Tumor segmentation Feature extraction Feature selection Analysis
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Table 1 Characteristics of the study population

Variable Training cohort (n=90), n (%) Validation cohort (n=45), n (%) Testing cohort (n=30), n (%) P

Age (years) 0.346

<60 36 (40.0) 19 (42.2) 8 (26.7)

≥60 54 (60.0) 26 (57.8) 22 (73.3)

Gender 0.261

Male 66 (73.3) 32 (71.1) 26 (86.7)

Female 24 (26.7) 13 (28.9) 4 (13.3)

Vital status 0.564

Alive 35 (38.9) 19 (42.2) 15 (50.0)

Dead 55 (61.1) 26 (57.8) 15 (50.0)

Tumor site 0.987

Upper 21 (23.3) 12 (26.7) 6 (20.0)

Middle 11 (12.2) 6 (13.3) 5 (16.7)

Lower 42 (46.7) 20 (44.4) 13 (43.3)

Overlap 16 (17.8)  7 (15.6) 6 (20.0)

Differentiation 0.881

Moderate 55 (61.1) 26 (57.8) 19 (63.3)

Poorly 35 (38.9) 19 (42.2) 11 (36.7) 

TNM stage 0.625

I 6 (6.7) 2 (4.4) 1 (3.3) 

II 22 (24.4) 9 (20.0) 4 (13.3)

III 62 (68.9) 34 (75.6) 25 (83.3)

T stage 0.860

T1 5 (5.6) 4 (8.9) 1 (3.3)

T2 12 (13.3) 5 (11.1) 3 (10.0)

T3 14 (15.6) 4 (8.9) 5 (16.7)

T4 59 (65.6) 32 (71.1) 21 (70.0)

N stage 0.994

N0 23 (25.6) 9 (20.0) 7 (23.3)

N1 16 (17.8) 8 (17.8) 6 (20.0)

N2 25 (27.8) 14 (31.1) 9 (30.0)

N3 26 (28.9) 14 (31.1) 8 (26.7)

Adjuvant therapy 0.990

None 55 (61.1) 25 (55.6) 16 (53.3)

Chemotherapy 15 (16.7) 8 (17.8) 6 (20.0)

Radiotherapy 2 (2.2) 1 (2.2) 1 (3.3)

Chemoradiotherapy 18 (20.0) 11 (24.4) 7 (23.3)
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training and the validation cohort were estimated using 
multispectral immunohistochemical analysis.  The 
TITreg cell fraction in CD4+ cells of the training cohort 
and the validation cohort were 22.41%±17.53% and 
21.38%±13.72%, respectively. As showed in Figure 3, the 
relative fraction of 22 tumor-infiltrating immune cell of 30 
GC patients of the testing cohort were estimated utilizing 
CIBERSORT. The TITreg cell fraction in CD4+ cells of 
the testing cohort were 23.21%±13.28%. The fraction of 
TITreg cells were not significantly differed among three 
cohorts (P=0.879, Figure 3A). 

Selection of features and establishment of radiomics signature

Of 859 features extracted from the selected ROIs of the 
training cohort, 70 features with ICC <0.8 were excluded. 
Then, 145 of the remained 789 features were identified 
as significant differed features between high and low Treg 
groups (P<0.05) and enrolled into LASSO regression 
analysis. Finally, the radiomics signature was built with 
6 features. The calculation formula radiomics score is 
provided in supplementary materials.

The performance of radiomics signature for estimating 
TITreg cells

The ability of radiomics signature for estimating TITreg 
cells abundance was evaluated by using ROC curves. 

The AUCs of radiomics signature for the training and 
the validation cohorts were 0.884 (95% CI: 0.816–0.952, 
Figure 4A) and 0.869 (95% CI: 0.760–0.978, Figure 4B), 
respectively. To verify the predictive ability of the radiomics 
signature in different ethnic population, TCGA-STAD 
dataset which enrolled non-Asian patients was used as 
an external testing cohort. The radiomics signature also 
showed a good predictive performance in the testing cohort 
with an AUC of 0.847 (95% CI: 0.698–0.997, Figure 4C).

Prognostic value of TITreg cells and radiomics signature

As shown in Table 2, univariable and multivariable Cox 
regression analysis showed that the radiomics signature [hazard 
ratio (HR) 2.018, 95% CI: 1.133–3.721, P=0.012], T-stage 
(HR 1.012, 95% CI: 1.008–1.875, P=0.042) and TNM stage 
(HR 1.226, 95% CI: 1.101–2.007, P=0.033) were independent 
predictors of OS. Kaplan-Meier analysis revealed that higher 
radiomics score were associated with poorer OS in the training 
(P=0.011, Figure 5A), validation (P=0.016, Figure 5B) and the 
testing cohort (P=0.022, Figure 5C). The higher abundance 
of TITreg cells were also related to unfavorable OS in the 
training (P=0.006, Figure 5D), validation (P=0.021, Figure 5E) 
and the testing cohort (P=0.039, Figure 5F). 

Discussion

In our study, six robust image features were identified and 

Figure 3 Estimation of tumor-infiltrating Treg cells. (A) The Treg cell fraction in CD4+ cells of training cohort, validation and the testing 
cohort. (B) The proportion of 22 types tumor infiltrating-immune cells in patients of the TCGA-STAD dataset using CIBERSORT. 
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Figure 4 ROC curves for the radiomics signature. (A) ROC curves of the radiomics signature in the training cohort. (B) ROC curves of the 
radiomics signature in the validation cohort. (C) ROC curves of the radiomics signature in the testing cohort.

Table 2 Univariate and multivariate Cox analyses of risk factors of overall survival 

Variable
Univariate Cox regression Multivariate Cox regression

OR (95% CI) P value OR (95% CI) P value

Gender (male vs. female) 1.261 (0.713–1.556) 0.564 – –

Age (<60 vs. ≥60 years) 0.861 (0.637–1.213) 0.340 – –

Tumor site 0.723 (0.556–1.013) 0.452 – –

Differentiation 1.121 (0.872–1.334) 0.513 – –

TNM stage 1.556 (1.221–2.314) 0.021 1.226 (1.101–2.007) 0.033

T stage (T1–2 vs. T3–4) 1.176 (1.108–1.987) 0.034 1.012 (1.007–1.875) 0.042

N stage (N0 vs. N1–3) 1.137 (0.891–1.732) 0.071 – –

Radiomics signature 2.334 (1.210–3.116) 0.009 2.018 (1.133–3.721) 0.012

utilized to build a radiomics signature for assessing TITreg 
cells of GC patients. The AUCs of radiomics signature 
for the training and the validation cohort were 0.884 and 
0.869, respectively. Then, by linking image features and 
gene expression signature of Treg cells, the performance of 
the radiomics signature was confirmed in an independent 
cohort with an AUC of 0.847. In addition, survival analysis 
showed that the radiomics signature could also sever as a 
predictor of OS in GC patients.

Treg  ce l l s  a re  a  subse t  o f  CD4 + T ce l l s  w i th 
immunosuppressive function. An increasing body of 
evidence demonstrated that Treg cells are highly infiltrated 
in various tumors. A recent meta-analysis showed that 
higher Treg cells was significantly correlated with poor 

outcome in most of solid tumors (19). Thus, TITreg cells 
play a vital role in shaping immunosuppressive tumor 
microenvironment, leading to the progression, invasion and 
metastasis of tumor (20,21).

ICIs represented by anti-CTLA-4 and anti-PD-1/L1 
agents exhibited encouraging efficacy in various solid tumors 
and has deeply changed the strategy of cancer treatment. 
Some studies demonstrated that PD-1 also expressed 
on a subset of Treg cells (22-24). Furthermore, through 
interaction with PD-L1 on CD8+ T cells, upregulation of 
PD-1 on Treg cells could strengthen the suppression of 
immune response of CD8+ T cells (23). Recently, Kamada 
et al. reported that PD-1+ Treg cells significantly amplified 
in GC patients who received anti-PD-1 and contributed to 
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Figure 5 Kaplan-Meier curves for radiomics signature and Treg cells. (A) OS of patients relative to radiomics signature in the training 
cohort. (B) OS of patients relative to radiomics signature in the validation cohort. (C) OS of patients relative to radiomics signature in the 
testing cohort. (D) OS of patients relative to the abundance of Treg cells in the training cohort. (E) OS of patients relative to the abundance 
of Treg cells in the validation cohort. (F) OS of patients relative to the abundance of Treg cells in the testing cohort.
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the development of HPD (8). Thus, the radiomics signature 
established in our study maybe a potential non-invasive 
biomarker for predicting and monitoring the development 
of HPD induced by anti-PD-1/PD-L1 agents.

To date, studies about the relationship between radiomics 
features and intratumoral immune landscape are still 
limited. Tang et al. identified a radiomics signature consist 
of four features for prognosis prediction of lung cancer. The 
signature divided patients into four clusters which associated 
with OS. Specifically, a favorable outcome cluster with low 
CT intensity and high heterogeneity had the low level of 
PD-L1+ tumor cell and the high level of infiltrating CD3+ 
T cells (25). However, whether CD3+ T cells rather than 
specific subset of T cells could be a reliable biomarker for 
immune response is still a controversial problem (26). Sun 
and colleagues proposed and tested a radiomic signature 
for assessing tumor-infiltrating CD8+ cells in three datasets. 
Their results showed that the radiomic signature could 
be a useful biomarker for assessing CD8+ cell abundance 
and outcome predication for patients received PD-1/PD-
L1 therapy (27). However, Sun et al.’s study enrolled more 

than 10 types of tumors. Since the patterns of intratumoral 
immune cell are tremendously different among different 
types of tumors, their results may still need to be confirmed 
in specific tumor type.

This study has some limitations. First, the retrospective 
nature of this study was inherently disadvantageous. 
Second, although the radiomics signature was established 
and tested with three independent cohorts, the sample 
size was relatively small. Third, no patients received anti-
PD-1 treatment was enrolled for evaluation the ability 
of the radiomics signature for predicting treatment 
response. Fourth, although same CT scan parameters were 
used in different scanners and cohorts, images acquired 
with different scanners and at different centers may still 
introduce bias. 

Conclusions

In conclusion, we proposed a CT-based radiomics signature 
for estimating TITreg cells and outcome prediction of GC. 
Multicenter studies with larger dataset are warranted to 
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verify our results for clinical practice. GC Patients received 
anti-PD-1 are also required to further investigate the 
potential of the radiomics signature for predicting treatment 
response of anti-PD-1 agents.
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Supplementary

Radiomics score calculation formula

Radiomics score = (0.645 × GLSZM.Gray Level Non 

Uniformity Normalized) – (0.211×GLSZM.Gray Level 

Variance) – (0.216 × GLSZM.Small Area High Gray Level 
Emphasis) – (0.137 × Wavelet-WLW.ngtdm.Complexity) + 
(0.08 × GLCM.MCC − 0.221) × (Wavelet-LLL.firstorder.
Maximum).

Table S1 Feature type and associated features

Feature type Methods Feature name

Shape-based – Maximum 3D diameter (M3D)

Maximum 2D Diameter Slice (M2DS)

Sphericity

Minor Axis (MA)

Elongation

Surface Volume Ratio (SVR)

Volume

Major Axis (MA1)

Surface Area (SA)

Flatness

Least Axis (LA)

Maximum 2D Diameter Column (M2DC)

Maximum 2D Diameter Row (M2DR)

First order-based Histogram Interquartile Range (IQR)

Skewness

Uniformity

Median

Energy

Robust Mean Absolute Deviation (RMAD)

Mean Absolute Deviation (MAD)

Total Energy (TE)

Maximum

Root Mean Squared (RMS)

90 Percentile

Minimum

Entropy

Range

Variance

10 Percentile

Kurtosis

Mean

Texture-based GLCM Joint Average (JA)

Sum Average (SA)

Joint Entropy (JE)

Cluster Shade (CS)

Maximum Probability (MP)

Idmn

Joint Energy (JE)

Contrast

Difference Entropy (DE)

Inverse Variance (IV)

Difference Variance (DV)

Idn

Idm

Correlation

Autocorrelation

Sum Entropy (SE)

Sum Squares (SS)

Cluster Prominence (CP)

Imc2

Imc1

Difference Average (DA)

Id

Cluster Tendency (CT)

GLSZM Gray Level Variance (GLV)

Zone Variance (ZV)

Gray Level Non-Uniformity Normalized (GLNUN)

Size Zone Non-Uniformity Normalized (SZNUN)

Size Zone Non-Uniformity (SZNU)

Gray Level Non-Uniformity (GLNU)

Large Area Emphasis (LAE)

Small Area High Gray Level Emphasis (SAHGLE)

Zone Percentage (ZP)

Large Area Low Gray Level Emphasis (LALGLE)

Large Area High Gray Level Emphasis (LAHGLE)

High Gray Level Zone Emphasis (HGLZE)

Small Area Emphasis (SAE)

Low Gray Level Zone Emphasis (LGLZE)

Zone Entropy (ZE)

Small Area Low Gray Level Emphasis (SALGLE)

GLRLM Short Run Low Gray Level Emphasis (SRLGLE)

Gray Level Variance (GLV)

Low Gray Level Run Emphasis (LGLRE)

Gray Level Non-Uniformity Normalized (GLNUN)

Run Variance (RV)

Gray Level Non-Uniformity (GLNU)

Long Run Emphasis (LRE)

Short Run High Gray Level Emphasis (SRHGLE)

Run Length Non-Uniformity (RLNU)

Short Run Emphasis (SRE)

Long Run High Gray Level Emphasis (LRHGLE)

Run Percentage (RP)

Long Run Low Gray Level Emphasis (LRLGLE)

Run Entropy (RE)

High Gray Level Run Emphasis (HGLRE)

Run Length Non-Uniformity Normalized (RLNUN)

NGTDM Coarseness

Complexity

Strength

Contrast

Busyness

GLDM Gray Level Variance (GLV)

High Gray Level Emphasis (HGLE)

Dependence Entropy (DE)

Dependence Non-Uniformity (DNU)

Gray Level Non-Uniformity (GLNU)

Small Dependence Emphasis (SDE)

Small Dependence High Gray Level Emphasis (SDHGLE)

Dependence Non-Uniformity Normalized (DNUN)

Large Dependence Emphasis (LDE)

Large Dependence Low Gray Level Emphasis (LDLGLE)

Dependence Variance (DV)

Large Dependence High Gray Level Emphasis (LDHGLE)

Small Dependence Low Gray Level Emphasis (SDLGLE)

Low Gray Level Emphasis (LGLE)

Wavelet-based First-order statistic and texture of 
wavelet decomposition

First-order features

GLCM features

GLSZM features

Decomposition levels: LLL, LLH, LHL, 
LHH, HLL, HLH, HHL, HHH

GLRLM features

NGTDM features

GLDM features

GLCM, gray-level co-occurrence matrix, describe the second-order joint probability function of the voxel intensities within the contoured 
volume; GLSZM, gray-level size-zone matrix, quantify the number of connected voxels within the contoured volume that share the same 
gray level intensity; GLRLM, gray-level run-Length matrix, quantify the number of consecutive voxels that have the same gray level 
value; NGTDM, neighboring gray-tone difference matrix, quantify the difference between a gray value and the average gray value of its 
neighbors within 3×3×3 voxels neighborhood window; GLDM, gray-level dependence matrix, quantify the gray level dependencies in the 
contoured volume which is defined as the number of connected voxels within a specific distance that are dependent on the center voxel; 
Decomposition levels, i.e., LLH interpreted as the high-pass sub band, resulting from directional filtering of the volume with a low-pass 
filter along x-direction, a low pass filter along y-direction and a high-pass filter along z-direction
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