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Background: Breast cancer (BC) is one of the most common cancers with high mortality worldwide. In the 
present study, through bioinformatics analysis, we aimed to identify new biomarkers to predict the survival 
rate of BC patients.
Methods: Differentially expressed genes (DEGs) between low- and high-tumor mutation burden (TMB) 
groups were identified by using The Cancer Genome Atlas (TCGA) dataset and integrated analysis. Gene 
Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and the protein-
protein interaction (PPI) network, were applied to predict the function of these above DEGs. Then, the 
Cox proportional hazard model was developed to screen DEGs. Based on the prognostic signature, survival 
analysis was used on The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Finally, 
the single-sample gene set enrichment (ssGSEA) analysis was employed to estimate immune cells related to 
this signature.
Results: To create a prognostic signature, 6 DEGs were identified. The results revealed that the survival 
time of patients with high-risk scores based on the expression of the six-gene signature was dramatically 
shorter than that of patients with low-risk scores in BC. Furthermore, survival analysis and multivariate cox 
analysis indicated that the six-gene signature was an independent prognostic factor of BC. Then, we built a 
nomogram that integrated the clinicopathological factors with the six-gene signature to predict the survival 
probability of BC patients. We eventually predicted the 20 most vital small molecule drugs by CMap, and 
Nadolol was considered as the most promising small molecule to treat BC. Moreover, ssGSEA analysis 
showed that the 6 genes were closely associated with immune cells. 
Conclusions: We constructed a six-gene signature associated with TMB that can improve the prognosis 
prediction and could be seen as a biomarker for BC patients.
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Introduction

Breast cancer (BC) is one of the major malignancies among 
females, and mortality remains the second main reason for 
cancer deaths worldwide (1). In recent years, the diagnosis 
of BC mainly depends on pathological tests, imaging 
examinations, and assessments of tumor markers (2).  
Because of a high recurrence rate of BC, the age of BC 
onset has gradually become younger. Therefore, the early 
detection and diagnosis of BC play an essential role in 
preventing the genesis and development of BC (3). It is 
thus necessary to identify possible molecular biomarkers 
for the diagnosis, prognosis, and survival risk prediction 
for BC.

Tumor mutation burden (TMB) is a new biomarker 
for immune therapy and is defined as the number of 
somatic, coding, base substitution, and indel mutations 
per megabase (4). It is widely acknowledged that the TMB 
plays a vital role in the occurrence and development of 
cancer (5). In one study, cancer patients with high levels 
of TMB showed stronger immunotherapeutic responses 
than those with low levels of TMB (6). Exploring gene 
expressions that are closely correlated with TMB levels can, 
therefore, be of great importance, and TMB has also been 
linked to cancer prognosis (7). Thus, there is an urgent 
need to identify potential TMB-related gene signature for 
BC prognosis.

In the current study, we firstly identified DEGs based on 
TMB by RNA sequencing data from The Cancer Genome 
Atlas (TCGA). Then, functional enrichment analyses were 
further employed to analyze the biological roles of these 
DEGs. Finally, we constructed a six-gene signature for 
BC by using TCGA datasets and bioinformatics analysis 
and verified that the prognostic value of this signature was 
associated with some clinical factors.

Methods

Data source

We obtained the RNA-seq datasets with the clinic 
information of BC patients comprising 474 tumor samples 
and 481 normal samples from the The Cancer Genome 
Atlas Breast Invasive Carcinoma (TCGA-BRCA) datasets 
and analyzed them using the limma package (8) with the 
false discovery rate (FDR) <0.05 and |log(fold change) >1|. 
Subsequently, we downloaded the masked somatic mutation 
data from TCGA database. Then, we classified BC patients 
into the low-TMB subtype and the high-TMB subtype 

by using the median of TMB data as the cutoff value and 
compared the expression levels of TMB-related genes 
between both subtypes.

Functional enrichment analysis and protein-protein 
interaction (PPI) network analysis of differentially 
expressed genes (DEGs) 

To investigate potential biological processes (BP), cellular 
components (CC), molecular functions (MF), and signaling 
pathways related to the DEGs, we applied the Gene 
Ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway analyses by clusterProfiler 
package (9) in R. The potential connections between the 
DEGs were then visualised using the STRING database (10).

Cox proportional hazards model construction and model 
validation

By combining these prognostic gene expression markers 
with the regression coefficient (β) from the multivariate 
Cox proportional hazards regression analysis, a risk score 
model was established based on the results of multivariate 
Cox regression analysis. Then, the formula of risk score 
was calculated as follows: expression of gene1 × β1gene1 
+ expression of gene2 × β2gene2 + expression of genen × 
βngenen. According to the median risk score, all patients 
were assigned into the high-risk and low-risk groups. 
Proportional assumptions for Cox proportional hazard 
model were examined by Kaplan-Meier analysis. Receiver 
operating characteristic (ROC) and the area under the curve 
(AUC) were plotted by using R package survival ROC. In 
addition, the distribution of risk score and survival status, 
along with the gene expression levels of each patient, was 
an alyzed by using the R software.

Correlation analysis of immune infiltration analysis

The CIBERSORT method (11) was used to estimate 
immunocyte population fractions, which could sensitively 
and accurately distinguish 22 phenotypes of immune cells. 
Then, in subsequent review, those with the CIBERSORT 
P<0.05 were considered eligible. Moreover, we employed 
29 immune-related gene sets, which represent different 
immune cell types, functions, and pathways. We performed 
the single-sample gene set enrichment analysis (ssGSEA) to 
calculate the activity or enrichment levels of immune cells, 
functions, or pathways in tumor samples.
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Identification of small molecular drugs

We compared the six-gene signature with those in the 
Connectivity Map (cMap) database (12) to identify 
candidate small molecular drugs associated with BC. 
We then divided DEGs into the upregulated group and 
downregulated group. Next, we used these genes to query 
the cMap database. A connectivity score from -1 to 1 
indicated the stimulation of the compound, while a negative 
score indicated the inhibition of the compound.

Statistical analysis

All the statistical analyses were performed using the R 
package. Survival curves were established by the Kaplan-
Meier method and the log-rank test. Univariate and 
multivariate Cox proportional-hazard models were used 
to evaluate the hazard ratios of prognostic factors. We 
applied the ‘RMS’ package in R to plot the nomogram 
and calibration analysis. A P value <0.05 was viewed as 
statistically significant.

Results

Identification of DEGs between two TMB groups

A total of 343 DEGs were screened between low/high-
TMB groups from the TCGA-BRCA dataset according to 
the screening criteria, including 168 down-regulated and 
175 up-regulated genes (Figure 1A). Then, GO and KEGG 
analyses were applied to investigate the biological roles of 
the DEGs. The functional enrichment analysis revealed 
that these DEGs were mostly enriched in epidermis 
development, extracellular matrix, and receptor-ligand 
activity among BP, CC, and MF, respectively (Figure 1B). 
KEGG analysis demonstrated that these DEGs primarily 
participated in protein digestion and absorption (Figure 1C). 

To further explore the relationship between high and 
low levels of TMB and infiltration of immune cells, The 
CIBERSORT algorithm was used to measure the relative 
proportions of immune cells in low/high TMB groups. It 
revealed that the abundance levels of naive B cells, resting 
CD4 memory T cells, resting dendritic cells, and resting 
mast cells were significantly lower in the high-TMB group 
than the low-TMB group. Conversely, T cells follicular 
helper, Tregs, and macrophage subsets (M0/M1) were 
significantly higher in the high-TMB group (Figure 1D, 
P<0.05), indicating that TMB levels can affect the cancer 
progression. Moreover, the PPI network of the DEGs was 

further constructed by the STRING database with 273 
nodes and 448 edges (Figure 2).

Construction of the Cox regression model and survival 
analysis

Multivariable Cox proportional hazards stepwise regression 
with backward selection was used to build a prognostic 
model. Then, we calculated the risk score for each patient in 
the datasets. Hence, we established a six-gene signature as 
follows: risk score = (‒0.2224 × IGFALS) + (0.2232 × PAX7) 
+ (0.1243 × SPDYC) + (‒0.1224 × IGHA2) + (‒0.1172 × 
SERPINA1) + (‒0.3558 × ADRB1). Then, the distribution 
of risk score, survival status, and the corresponding heatmap 
of the gene expression levels of each patient in the signature 
was analyzed and plotted (Figure 3A,B,C). In addition, 
the survival risk curve showed that patients in the high-
risk group had a significantly shorter overall survival time 
compared with patients in the low-risk group (Figure 3D).  
ROC analysis revealed reliable performance in the survival 
prediction of the model, and the AUC was 0.705 (Figure 3E).  
Moreover, survival analysis using Kaplan-Meier showed 
that these 6 genes were closely associated with the overall 
survival of BC patients (Figure 4, P<0.05).

Association between the risk scores of the six-gene signature 
and clinicopathological features

For observing the association between the risk scores and 
each clinicopathological factors, we separately calculated 
the distribution of risk scores. We examined the expression 
of the 6 genes in high/low-TMB and high/low-risk patients 
in the TCGA-BRCA dataset (Figure 5A). We observed 
significant differences between the high- and low-risk 
groups concerning tumor grade (T, P<0.001) and lymph 
node (N, P<0.05). Furthermore, we found risk scores were 
significantly different between patients stratified by T grade 
(P<0.05), age (P<0.001), and status (P<0.001) (Figure 5B). 
Moreover, univariate and multivariate Cox analysis was 
applied to determine whether the six-gene signature can 
be employed to independently predict the survival of BC 
patients. The results showed that the six-gene risk score 
could be used to independently predict the overall survival 
of the patient (P<0.001, Figure 5C,D, Table 1). Then, we 
built a nomogram that integrated the clinicopathological 
factors with the six-gene signature to predict the survival 
probability of BC patients (Figure 5E). Meanwhile, 
calibration plots for the probability of 3- and 5-year survival 
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were consistent between predicted values by the nomogram 
and measured values (Figure 5F,G).
To further explore the relationship between the 6 TMB-
related genes and the infiltration of immune cells, we 
conducted the ssGSEA algorithm to estimate the coefficient 
of the association of 6 genes in immune cell subsets. It 

was found that these 6 genes were closely associated with 
tumor-infiltrating immune cell subset, indicating that these 
genes mainly participate in immune response (Figure 6, 
P<0.05). Furthermore, we applied the cMap database to 
identify potential therapeutic drugs for BC, and the top  
20 most distinct small molecule drugs with their enrichment 

Figure 1 Differentially expressed TMB-related genes and enrichment analysis results of DEGs. (A) The heatmap of DEGs between the 
high‐TMB and low‐TMB groups in BRCA; (B,C) functional enrichment pathway analysis of TMB-related DEGs in BRCA, including 
biological processes (BP), cellular components (CC), molecular function (MF), and KEGG pathway; (D) comparisons of 22 immune cell 
infiltrations between the high‐TMB and low‐TMB groups.

epidermis development
glial cell differentiation

cornification
positive regulation of blood circulation

glucocorticoid metabolic process
temperature homeostasis

heat generation
aromatic amino acid family metabolic process

positive regulation of heat generation
regulation of heat generation

0.005
0.010
0.015
0.020
0.025

0.005
0.010
0.015
0.020
0.025

0.6

0.4

0.2

0.0

0.02                0.04                 0.06                 0.08
GeneRatio

5
10
15
20

4
6
8
10

p.adjust

p.adjust

Fr
ac

tio
n

KEGG

Gene Ratio
0              1               2               3              4

B
P

C
C

M
F

Count

Count

P<0.001

P=0.166

P=0.017
P=0.608

P=0.021

P<0.001

P<0.001
P=0.012

P=0.037
P=0.003

P=0.931
P<0.001

P<0.001

P<0.001

P<0.001

P<0.001
P<0.827

P=0.152
P=0.282

P=0.505

P=0.22

extracellular matrix
apical part of cell

apical plasma membrane
cytoplasmic vesicle lumen

vesicle lumen
secretory granule lumen

intermediate filament cytoskeleton
anchored component of membrane

intermediate filament
connexin complex

receptor ligand activity
gated channel activity

hormone activity
potassium channel activity

heme binding
monooxygenase activity

transaminase activity
transferase activity, transferring nitrogenous groups

RAGE receptor binding
long-chain fatty acid binding

Tryptophan metabolism

Oocyte meiosis

Aldosterone synthesis and secretion

ECM-receptor interaction

Renin-angiotensin system

Neuroactive ligand-receptor interaction

P13K-Akt signaling pathway

Complement and coagulation cascades

Protein digestion and absorption

Signaling pathways regulating 
pluripotency of stem cells

B ce
lls

 na
ive

B ce
lls

 m
em

or
y

Plas
m

a c
ell

s

T 
ce

lls
 C

D8

T 
ce

lls
 C

D4 n
aiv

e

T 
ce

lls
 C

D4 m
em

or
y r

es
tin

g

T 
ce

lls
 C

D4 m
em

or
y a

ct
iva

te
d  

T 
ce

lls
 fo

lic
ula

r h
elp

er

T 
ce

lls
 re

gu
lat

or
y (

Tre
gs

)

T 
ce

lls
 g

am
m

a d
elt

NK ce
lls

 re
sti

ng

NK ce
lls

 ac
tiv

at
ed

M
on

oc
yte

s

M
ac

ro
pha

ge
s M

O

M
ac

ro
pha

ge
s M

1

M
ac

ro
pha

ge
s M

2

Den
drit

ic 
ce

lls
 re

sti
ng

Den
drit

ic 
ce

lls
 ac

tiv
at

ed

M
as

t c
ell

s r
es

tin
g

M
as

t c
ell

s a
ct

iva
te

d

Eos
ino

phil
s

Neu
tro

phil
s

A B

C D



Annals of Translational Medicine, Vol 8, No 7 April 2020 Page 5 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):453 | http://dx.doi.org/10.21037/atm.2020.04.02

scores were identified (Table 2). Nadolol was related to 
highly significant negative scores (‒0.949). The potential 
small molecules could reverse the expression levels of the 
6 TMB-related genes induced by BC, and represent new 
directions for research in BC treatment.

Discussion

BC is a heterogeneous disease with different biological 
properties caused by a variety of factors involving the 
accumulation of gene changes (13). Despite the improved 

Figure 2 The protein-protein interaction network (PPI) analysis of the DEGs. The PPI network among the DEGs was established by using 
the STRING database.
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diagnosis and therapy of BC, the prognosis is still poor (14). 
Finding accurate biomarkers for early diagnosis and a more 
accurate prognosis of BC will help to improve the efficiency 
of therapies for BC and provide molecular markers for 
targeted treatment (15). Thus, it is urgent to develop more 
sensitive and specific biomarkers for the prognosis of BC 
patients.

Currently, many studies are aimed at finding predictive 

biomarkers of immune responses. (16). TMB has been used 
to reveal the process of mutation accumulation in tumors 
and has proven to be effective in predicting the immune 
response in various cancers, including BC (17). Previous 
studies have reported that TMB is closely associated with 
the prognosis of cancer patients (18). In this study, a total 
of 343 TMB-related DEGs also showed a considerable 
difference between the 2 groups with dif ferent TMB levels, 

Figure 3 Prognostic analysis based on risk score model of the 6 genes. (A) Patients’ survival status distribution by the risk score; (B) patient 
survival status distribution of the low-risk group and the high-risk group; (C) heatmap of the 6 genes for low- and high-risk groups; (D) 
Kaplan-Meier curves for the low- and high-risk groups; (E) the receiver operating characteristic (ROC) curve validation of prognostic value 
by the risk score.
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Figure 4 Evaluation of the prognostic value of the six-gene signature using Kaplan-Meier analysis. (A) ADRB1, (B) IGFALS, (C) IGHA2, (D) 
PAX7, (E) SERPINA1, (F) and SPDYC.
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which may be of great significance. To demonstrate the 
molecular function of these DEGs, we applied the GO and 
KEGG analyses. The results indicated that DEGs were 
mainly enriched in epidermis development, extracellular 
matrix, and receptor-ligand activity, in addition to protein 
digestion and absorption. Moreover, when we compared 
the differential abundance of immune cells between the low 
and high TMB groups via CIBERSORT algorithm, the 
results revealed that the abundance levels of naive B cells, 
resting CD4 memory T cells, resting dendritic cells, and 
resting mast cells were significantly lower in the high-TMB 
group compared to those in the low-TMB group. Similarly, 
a previous study showed that increased overall survival was 
related to relatively larger fractions of resting CD4 memory 
T cells (19).

Moreover, using univariate and stepwise multivariate 
Cox regression analyses, we established a prognostic 
signature for BC based on the expression of 6 genes, 
including IGFALS, PAX7, SPDYC, IGHA2, SERPINA1, 
and ADRB1. Among these, IGHA2 and SERPINA1 
are considered risky prognostic genes in BC. Kang et al. 
reported that the differential expression of IGHA2 in the 

early and advanced stages of BC indicated that IGHA2 
might be a novel marker for the progression of BC (20). 
Chan et al. showed that SERPINA1 expression is correlated 
with the outcome of ER+ and ER+/HER2+ BC (21). 
Moreover, Kang et al. reported that knockdown of ADRB 
can suppress tumor progression by inhibiting tumor growth, 
metastasis, and angiogenesis in BC, and that ADRB1 was 
abundantly expressed in several types of BC cells (22). As 
a member of the Spy1/RINGO family, SPDYC might also 
play a vital role in regulating both normal and abnormal 
growth processes in the breast (23).

Furthermore, some previous findings have shown that 
insulin-like growth factor binding protein (IGFALS) 
can act as a possible tumor-suppressor gene silenced by 
methylation in hepatocellular carcinoma (24). Also, He  
et al. showed that deregulated levels of PAX7 can contribute 
to muscle wasting in cancer cachexia (25). Previous studies 
also have suggested that SERPINA1 could inhibit caspase-
3-mediated apoptosis and has been proven to predict the 
development of cutaneous squamous cell carcinoma (26). 
Finally, SERPINA1 has been shown to contribute to the 
development of metastatic features in epithelial ovarian 
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Figure 5 The relationship between the six-gene risk score and clinical information. (A) The heatmap showed the expression levels of the 6 
TMB-related genes in the low- and high-TMB groups; (B) the heatmap indicated the expression levels of the 6 genes in the low- and high-
risk groups. The distribution of clinicopathological features was compared between the low/high-TMB and low/high-risk groups. (C,D) 
forest plot of the univariate and multivariate Cox analysis for the independent six-gene signature; (E) a nomogram was used to predict the 
overall survival at 1 year, 3 years, and 5 years, with a six-gene risk score and clinical information. (F,G) the calibration plots for predicting 
overall survival at 3 years and 5 years. *, P<0.05; ***, P<0.001.
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Through bioinformatics analyses, based on the six-gene 

signature, we found that BC patients with high-risk scores 
had a significantly decreased survival time compared with 
low-risk scores. ROC analysis demonstrated the relatively 
high sensitivity and specificity of the six-gene signature 

model. Similarly, in this study, the survival analysis of the 
six genes based on a prognostic signature all demonstrated a 
significant difference between the high and low expression 
groups. Then, we integrated the six-gene signature 
with other independent clinical variables to construct a 
comprehensive model for monitoring progression in BC, 
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Table 1 Cox proportional hazards model analysis of prognostic factors

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Six-gene risk score 1.453 1.314–1.605 2.40E–13* 1.424 1.276–1.589 2.61E−10*

Age (<60 vs. ≥60) 1.033 1.017–1.049 3.69E–05* 1.032 1.015–1.049 0.0001*

TNM stage (III + IV vs. I + II) 2.123 1.653–2.727 3.71E–09* 1.700 0.951–3.040 0.0733*

T (tumor) 1.555 1.235–1.956 0.0001* 1.030 0.735–1.441 0.862

N (lymph node) 1.707 1.396–2.088 1.84E–07* 1.174 0.847–1.628 0.334

M (metastasis) 5.821 3.104–10.914 3.96E–08* 1.116 0.451–2.760 0.810

*, P value <0.05 was considered statistically significant.

Figure 6 The 6 TMB-related prognostic genes were associated with immune-cell subset. Blue boxes indicate positive correlation; red boxes 
indicate negative correlation. *, P<0.05; **, P<0.01.
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which suggested that the six-gene risk score could be used 
independently to estimate the overall survival of the patients. 
Based on the role of TMB in immune responses (28),  
ssGSEA analysis revealed that the 6 genes are closely 
associated with tumor-infiltrating immune cells. Nadolol 
was additionally identified as an important small molecular 
agent in BC’s development.

Conclusions

In this study, we integrated TMB with gene expression 
and built a prognostic prediction model that can improve 
survival prediction for BC patients and reveal the TMB-
based prognostic signature which may be used as a 
prognostic biomarker for BC patients. Further experimental 
studies are still needed to confirm the established signature.
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