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Background: Due to organ shortage, liver transplantation (LT) in hepatocellular carcinoma (HCC) 
patients can only be offered subsidiary to other curative treatments, including liver resection (LR). We aimed 
at developing and validating a machine-learning algorithm (ML) to predict which patients are sufficiently 
treated by LR. 
Methods: Twenty-six preoperatively available routine laboratory values along with standard clinical-
pathological parameters [including the modified Glascow Prognostic Score (mGPS), the Kings Score (KS) 
and the Model of Endstage Liver Disease (MELD)] were retrieved from 181 patients who underwent 
partial LR due to HCC in non-cirrhosis or compensated cirrhosis from January 2007 through March 2018 
at our institution. These data were processed using a Random Forest (RF)-based workflow, which included 
preprocessing, recursive feature elimination (RFE), resampling, training and cross-validation of the RF 
model. A subset of untouched patient data was used as a test cohort. Basing on the RF prediction, test data 
could be stratified according to high (HR) or low risk (LR) profile characteristics.
Results: RFE analysis provided 6 relevant outcome predictors: mGPS, aPTT, CRP, largest tumor size, 
number of lesions and age at time of operation. After down-sampling, the predictive value of our model was 
0.788 (0.658–0.919) for early DFS. 16.7% of HR and 74.2% of LR patients survived 2 years of follow-up 
(P<0.001).
Conclusions: Our RF model, based solely on clinical parameters, proved to be a powerful predictor of 
DFS. These results warrant a prospective study to improve the model for selection of suitable candidates for 
LR as alternative to transplantation. The predictive model is available online: tiny.cc/hcc_model.
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Introduction

Hepatocellular carcinoma (HCC) is the most common 
primary liver neoplasm and the second leading cause of 
cancer death in the world (1-3). Hepatocarcinogenesis 
occurs mostly in precancerous cirrhotic livers. The cirrhosis 
does not only foster hepatocarcinogesis but also limits 
treatment options and outcome in patients suffering from 
HCC. Liver transplantation (LT) is the most radical form 
of tumor resection and additionally can reconstitute liver 
function (4). However, because of the scarcity of donor 
organs transplantation can only be deployed subsidiary 
to other curative treatments (5). Therefore, a dynamic 
stepwise algorithm to allocate the best therapy is desired. 
Historically, clinical decision algorithms however have 
excluded patients from potentially curative surgery in favor 
of early HCCs with the longest predicted survival after 
transplantation (6). Another possible clinical treatment 
algorithm could be to define an oncologically satisfying 
outcome and treat patients with the most accessible 
treatment (7). This would trade the longest predicted 
survival as goal for the highest net benefit of the individual. 
However, to reallocate patients based on these principles, 
survival prediction after treatment is key. It should be 
readily available and as accurate as possible (8). 

Several variables have been reported to accurately 
predict survival after LR in HCC. The proposed predictors 
have mostly been used to either describe tumor biology 
and immunology (9-12) or underlying liver disease (10,12). 
Although promising, unfortunately, these predictors 
have not been adopted into clinical routine nor are they 
recommended by the national associations for the Study 
of the Liver (3,4). This might be explained by either the 
high experimental expenditure in some cases or a lack of 
reproducibility of the retrospectively obtained clinical 
models. Additionally, other models are only available post 
hoc and therefore are not truly predictive (13).

The use  of  b ioinformatics  a l lows for  complex 
multidimensional analyses of  survival  predictors. 
Mathematical algorithms and packages are designed to 
calculate sustainable and generalizable models, that prevent 
overfitting and accurately predict independent data sets. 
One of the most promising algorithms is Random Forest 

(RF) machine learning (ML) (14). It creates a multitude of 
decision trees based on both regression and classification 
variables. By majority vote the obtained model calculates the 
most likely prediction (14). With this ML, and specifically 
RF, could improve outcome prediction and guide complex 
multilayered treatment decisions. 

The aim of this study was to use a ML algorithm based 
on easily accessible variables to accurately predict disease 
free survival (DFS) of HCC patients after LR. 

Methods

Study groups and predictive variables

Patients scheduled for resection because of suspected HCC 
from 1st January 2007 until 1st April 2018 were included 
in the prospectively maintained data base. Inclusion was 
truncated at this date to ensure a minimum follow-up of  
1 year. Ethical approval was obtained from the institutional 
review board (EK 19-395) at the Ludwig-Maximilian 
University in Munich. The need for an informed consent 
was waived by the institutional review board. This trial 
complies with the TRIPOD Statement (15).

Clinical indication for surgical resection was based on the 
recommendation of our multidisciplinary specialized tumor 
board, which is attended by experienced liver surgeons to 
evaluate the resectability of the patients (16). HCC was 
diagnosed based on pathognomonic magnet resonance 
imaging, computed tomography or biopsy. In general LR 
as a destination therapy was offered to all patients with 
preserved liver function and no cirrhosis or compensated 
cirrhosis. This was defined as: Child-Turcotte-Pugh-Score 
(CTP) A or B+ without clinical (esophageal varices) and 
radiographic signs of portal hypertension (enlarged spleen) 
and a serum bilirubin of ≤2 mg/dL. Portal hypertension is 
a negative predictor for early postoperative death through 
liver failure. In some guidelines it is named as a relative 
contraindication for liver surgery (17-19). Major resections 
were defined as resections of 4 or more segments. All other 
resections were defined as minor resections (20).

Twenty-six preoperatively readily available variables were 
used for this analysis. Clinical variables, such as sex, age, 
presence of cirrhosis and ascites, CTP and its underlying 
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disease were noted. Radiographic parameters consisted of 
number, size of the largest lesion and whether the tumors 
were deemed inside Milan-Criteria. With these information 
patients were staged according to Barcelona Clinics Liver 
Cancer (BCLC) staging system. Additionally, the following 
laboratory values were acquired: Bilirubin (BILI; mg/dL), 
Albumin (ALB; g/L), Aspartate Transferase (AST; U/L), 
Alanine Transferase (ALT, U/L), alpha-Fetoprotein (AFP; 
ng/mL), (aPTT; s), International Normalized Ratio (INR), 
Creatinine (CREA; mg/dL), C-Reactive Protein (CRP;  
mg/L), Leukococytes (WBC, 106/L), Platelets (PLT; 106/L). 
Finally, with these values and clinical data additional scores 
were calculated. The formulas for the Model of Endstage 
Liver Disease (MELD), Kings-Score (KS) and modified 
Glascow Prognostic Score (mGPS) can be found in our 
supplementary material (http://fp.amegroups.cn/cms/11f7
39089d6cadd46ac0f4cbfa36a50f/atm.2020.04.16-1.pdf, p1) 
(10,21,22).

Follow-up

According to the recommendation of the interdisciplinary 
tumor board HCC patients were structurally followed-up 
with screening cross sectional imaging every 3–6 moths 
in the first year. After an uneventful first year the intervals 
were changed to every 6 months. From 2 years on patients 
were screened every year. If patients did not choose to 
participate in our structured follow-up, periodical telephone 
interviews were conducted. Disease free survival (DFS) 
was defined as the time-period from the index operation to 
recurrence or death of the patient. Survival times for overall 
survival (OS) were calculated from the date of resection 
to the date of death.  Last contact with the patients was 

censored.

Statistical analysis

All included variables were obtained before the index 
operation, making this an intention-to-treat analysis in 
a retrospective setting. All calculations were conducted 
with the RStudio software (Version 1.1.463, RStudio Inc., 
Boston, MA, USA). Loaded packages were caret, factoextra, 
FactoMineR, ggplot2, mice, pROC, randomForest, VIM 
and survival, survminer (23-29). Code for decision curve 
analysis was obtained from a publication by Zhang et al. (30). 
In general, normally distributed data is summarized with the 
mean and standard deviation (± SD) and compared using 
t-test. Classification variables were noted in a contingency 
table and compared using the Chi2-Test. A P value of <0.05 
was considered statistically significant. 

As detailed in Figure 1 we used the following workflow to 
analyze the data:

(I) Preprocessing 
 Imputation of missing values
 Random data partitioning
(II) Variable Selection (training data)
 Recursive Feature Elimination (RFE)
 Clinical curation of selected variables (anti-

classification)
(III) Modelling (training data)
 Resampling to balance data 
 RF Modelling 
(IV) Prediction of independent test data (test data)
(V) Performance measurement (test data)
 Receiver operating characteristic (ROC) curve
 Area under the curve (AUC)

Preprocessing

Imputation  
Data partitioning 

Recursive Feature 
Elimination

Resampling  
Training  

Cutpoint Analysis 

Prediction of early disease 
free survival (DFS)

AUROC  
Kaplan Meier Analysis 

Decision Curve Analysis

Variable Selection Modelling Prediction Performance

Study 
Cohort

Training  
Data

Training  
Data

Final  
Model

Test 
Data

Figure 1 Workflow for the development of the random Forest model. AUROC, area under the receiver operator curve.
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 Kaplan Meier Analysis
 Decision Curve Analysis (DCA)
First, preprocessing was done by imputing missing 

values with the RF algorithm within the “mice” package 
for R. Observations with more than 50% missing data 
were excluded from the analysis. Visual evaluation of 
kernel density plots was performed for variables with more 
than 10% missing data. Additionally, to test for unwanted 
skewing of data through imputation, we recalculated the 
entire model with exclusion of important variables with 
more than 10% missing values as described by Sterne et al. 
(http://fp.amegroups.cn/cms/11f739089d6cadd46ac0f4cbfa
36a50f/atm.2020.04.16-1.pdf, p2-3) (31).

After preprocessing, simple Kaplan Meier Analysis was 
performed for the entire cohort. Univariate and multivariate 
analyses of all variables were conducted to explore the 
data set for independently predictive variables. This 
analysis was separate from the ML modelling to show the 
predictive power of singular predictors obtained by classical 
retrospective analysis. This analysis was performed for 3 
different time-points. First 90 days, which represents in-
hospital mortality (32). Second, 24 months, which indicates 
early recurrence, and lastly the entire follow-up period was 
used as time-point to explore effects on long-term DFS. 
For univariate analysis we utilized standard Cox survival 
regression. For multivariate analysis we chose a stepwise 
forward and backward variable selection process published by 
Collet et al. (33). Categorical variables were only considered 
if more than 10 events occurred in each group. C-Statistics, 
Receiver Operating Curves (ROC) and their Area under the 
Curve (AUC) were calculated from variables that were shown 
to be independently predictive in the multivariate analysis. 

The entire cohort was split randomly 70% to 30% in a 
training and a test data set using the createDataPartition 
formula from the caret ensemble package (24). Training 
data was used to develop the model and perform cross-
validation (CV) for hyperparameter tuning. The test data 
was left untouched and used for testing the model after 
developing the model.

Therefore secondly, RFE was used on the training data 
to select appropriate variables for the model. RFE itself is a 
ML algorithm implemented in the caret package. It allows 
for backwards selection of predictive variables. The least 
important predictors are eliminated sequentially thereby 
creating a more accurate model.  As ML algorithms may 
discriminate based on socioeconomic factors, it may lead 
to the development of ethically non-acceptable patient 
selection (ML bias). Therefore,  we have excluded gender 

and history of alcohol abuse from machine model training 
(anti-classification) (34).

Thirdly, modelling steps were done simultaneously using 
the train function within the caret package. We used a RF 
algorithm to construct the model. RF was proposed by  
Breiman in 2001 (14). It grows k (default: k=500) decision 
trees, which can be used with regression and classification 
variables. In contrast to other tree-based ML algorithms 
like “eXtreme Gradient Boosting”, these trees are grown at 
the same time not sequentially. This and repeated CV limits 
overfitting to the training data. Because of its robustness 
and the possibility for nested validation using CV we chose 
the RF approach. To account for the unbalanced data set, 
we tested down-, up-sampling and the SMOTE algorithm 
as well as outcome weighing within the RF training to 
prevent misclassification in case of a dominating majority-
class. The sampling technique that created the most 
generizable model was chosen.

Lastly the tuned and cross validated final model was used 
to predict the test data (see above) which was untouched 
throughout the entire procedure. Performance on test data 
was measured using the ROC curve and AUC analysis. 
The obtained predictions from the RF model were added 
to the test data set. Based on the calculated probability 
patients were either classified as “High Risk” or “Low 
Risk” patients. Based on this classification we drew the 
Kaplan-Meier curve and calculated the survival difference. 
Additional to the aforementioned performance measures 
decision curve analysis was used to depict the clinical net 
benefit of our RF model (12,35). Relevant code from the 
workflow is made available in the supplementary Material 
(http://fp.amegroups.cn/cms/11f739089d6cadd46ac0f4cbfa
36a50f/atm.2020.04.16-1.pdf, p 4-7).

Results

Study cohort

One hundred and eighty-one patients were scheduled by 
the interdisciplinary tumorboard for LR because of HCC. 
In the preprocessing analysis one observation showed itself 
to have more than 50% missing values, thus this patient was 
removed from the analysis. Therefore 180 patients were 
included into the analysis. As described above we analyzed 
the data imputation for stability. Detailed description of the 
analysis of imputed data can be found in the supplement 
document pp 5-6 including graphs (http://fp.amegroups.cn/
cms/11f739089d6cadd46ac0f4cbfa36a50f/atm.2020.04.16-
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1.pdf, Figures 1,2) of the observed changes after imputing 
largest tumor measured and AFP. 

The demographic and clinical characteristics as well as 
mean laboratory values of the entire study cohort are listed 
in Table 1. Patients scheduled for operation because of HCC 
were 65.74±12.75 years old. 139 (77.22%) were male and 41 
(22.78%) were female. 74 (41.11%) had signs of cirrhosis 
in the preoperative cross-sectional imaging or confirmed 
cirrhosis through biopsy. Of those patients with cirrhosis 
most patients were classified as CTP A (37.78%) and 3.33% 
showed a compensated CTP B+ cirrhosis. Underlying 
disease was evenly distributed between HCV, HBV, and 
alcoholic cirrhosis (Table 1). Most patients appeared to be 
outside Milan-Criteria on imaging at treatment decision 
112 (62.22%). Overall Survival of all patients was 83.1% 
[76.5; 87.9], 63.4% [54.3; 71.1] and 56.6% [46.6; 65.4] at 

1,3 and 5 years of follow-up, respectively. DFS of the entire 
study cohort at the same time-points was 61.6% [53.77; 
68.5], 38.2% [30.0; 46.3] and 27.4% [19.1; 36.3] (Figure 2). 

Multivariate analysis of predictors for DFS

As mentioned above variable selection for the multivariate 
analysis was conducted according to the stepwise procedure 
published by Collet et al. DFS 90 days after resection was 
independently predicted by the serum creatinine and the 
presence of an HBV infection (Table S1). At 24 months 
predictive variables changed to only serum AFP (Table S2). 
Lastly, mGPS, BCLC, AFP, AST and the MELD Score 
showed themselves to be independently predictive of DFS 
over the entire follow-up period (Table 2, Table S3). Next, 
we analyzed the c-statistics of all independent predictors. 
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Figure 2 Kaplan Meier Analysis of (A) overall survival and (B) disease free survival of the entire cohort.
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Table 1 Study data of the study cohort

Characteristic Study cohort, n=180 Training data, n=127 Test data, n=53
Training vs. test, 

P Value

Demographics

Age at operation in years, mean ± SD 65.74±12.75 66.39±12.16 64.19±14.06 0.323

Sex, n (%) 0.254

Male 139 (77.22) 101 (79.52) 38 (71.70)

Female 41 (22.78) 26 (20.47) 15 (28.30)

Underlying liver disease

Cirrhosis, n (%) 74 (41.11) 54 (42.52) 20 (37.74) 0.552

Child-Turcotte-Pugh A 68 (37.78%) 49 (38.58%) 19 (35.19) 0.551

Child-Turcotte-Pugh B 6 (3.33%) 5 (3.94%) 1 (1.89)

Cause of cirrhosis, n (%) 0.569

Hepatitis C 34 (18.89) 24 (18.90) 10 (18.87)

Hepatitis B 24 (13.33) 19 (14.96) 5 (9.43)

Alcohol 27 (15.00) 22 (17.32) 5 (9.43)

Radiographic features

No. of tumors at baseline, mean ± SD 1.44±0.87 1.48±0.91 1.36±0.79 0.368

Initial largest tumor diameter in mm, mean ± SD 68.76±40.71 67.71±39.99 71.28±42.67 0.603

Milan-Criteria, n (%) 0.495

Inside 68 (37.78) 50 (39.37) 18 (33.96)

Outside 112 (62.22) 77 (60.63) 35 (66.04)

Laboratory values

⍺-Fetoprotein prior Resection in ng/mL, median (IQR) 13.7 (102.5) 12.9 (96.8) 21.1 (100.2) 0.581

Bilirubin mg/dL, mean ± SD 0.996±2.23 1.07±2.63 0.83±0.52 0.342

Albumin g/L, mean ± SD 42.02±5.81 42.00±6.05 42.09±5.24 0.914

ALT U/L, mean ± SD 55.69±54.10 52.69±42.94 62.87±74.38 0.354

AST U/L, mean ± SD 64.83±98.65 57.43±40.06 82.55±170.75 0.294

aPTT in seconds, mean ± SD 28.20±5.93 28.06±4.82 28.55±8.05 0.680

INR, mean ± SD 1.05±0.097 1.05±0.097 1.05±0.099 0.996

Creatinine mg/dL, mean ± SD 1.02±0.25 1.03±0.23 1.00±0.30 0.487

CRP mg/L, mean ± SD 12.86±22.07 12.52±21.77 13.68±22.96 0.754

Leukocytes 106/L, mean ± SD 7056±2290 7140±2451 6856±1856 0.399

Platelets 106/L, mean ± SD 220.1±107 220.8±112 218.7±93 0.897

Training and test data is compared. bili, Bilirubin, mg/dL; alb, Albumin, g/L; AST, aspartate transferase, U/L, ALT, alanine transferase, U/L; 
afp, alpha Fetoprotein, ng/mL; aPTT, s; INR, international normalized ratio; crea, Creatinine, mg/dL; CRP, C-reactive protein, mg/L; WBC, 
Leukocytes, 106/L; plt, Platelets, 106/L; SD, standard deviation.
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The c-index for mGPS, BCLC, AFP, AST, HBV and 
MELD Score were 0.579, 0.571, 0.505, 0.595, 0.523 and 
0.543 indicating a poor predictive power of the individual 
variables. ROC curves and AUC for continuous variables 
are depicted in Figure 3.

Creation of the training and test data sets

Before training and validating (Cross Validation) the 
algorithm, we split the study cohort 70/30. The training 
data set included n=127 patients. The test data set included 
53 patients and remained untouched throughout the 
analysis and was only used for testing the final model. 

Variables were compared between the training and the test 

data sets. None of the variables differed significantly between 
both cohorts. Detailed information can be found in Table 1.

RF Model training and validation

We used RFE to select the variables based on the accuracy 
they contribute to the final model. Seven variables (mGPS, 
aPTT, CRP, largest tumor size, number of lesions, age at 
time of operation and history of alcohol abuse) remained as 
predictors for the RF model (Figure 4).

As shown in Figure 4 the variables were chosen by the 
highest accuracy in the cross-validation cohort. The chosen 
variables included history of alcohol abuse, which we removed 
after curation to prevent machine bias. Lastly, mGPS, aPTT, 

Table 2 Results from multivariate analysis for the entire follow-up period after stepwise selection of variables 

Univariate analysis Multivariate analysis

HR Confidence interval P value HR Confidence interval P value

AFP (<21.5 ng/mL) 0.672 0.460–0.983 0.041 0.653 0.431–0.989 0.044

AST (<41.5 U/L) 1.003 1.001–1.004 0.003 0.651 0.432–0.980 0.039

BCLC >A 2.050 1.328–3.165 0.002 1.769 1.122–2.786 0.014

C-Reactive Protein 1.01 1.003–1.017 0.008 0.999 0.987–1.010 0.873

MELD 1.123 1.020–1.237 0.018 0.560 0.370–0.847 0.006

mGPS =0 0.444 0.286–0.687 <0.001 0.460 0.245–0.867 0.016

Largest tumor in mm 1.007 1.003–1.011 <0.001 1.002 0.997–1.007 0.472

AFP, alpha Fetoprotein, ng/mL; AST, aspartate transferase, U/L; mGPS, modified Glascow Prognostic Scale; MELD, model of endstage 
liver disease; BCLC, Barcelona clinic liver cancer.
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CRP, largest tumor size, number of lesions and age at time of 
operation remained to calculate the RF model.

In case of unbalanced data, optimization for predictive 
accuracy is prone to favor the majority class in predicting 
outcome. As described in the method section the outcome 
classes were weighed to improve the prediction power of 
the RF model. “ALIVE” was weighed 0.01 and “EVENT” 
was weighed 0.0065. Additionally, up-, down-sampling and 
the SMOTE algorithm were used to improve prediction of 
the majority and minority outcome classes. Finally, based 
down-sampling was identified to be the most accurate and 
generizable method for predicting the independent test 
data. With RFE and down-sampling the RF model based 

on above mentioned variables reached an AUC of 0.766 
(0.627–0.904) in predicting the test data (Figure 5) during 
the entire follow-up period. 

RF Model validation for early DFS

To predict early recurrence the above trained and validated 
RF model was used to predict early recurrence in the test 
data set. The RF model showed a strong predictive power 
for early recurrence with an AUC of 0.788 (0.658–0.919) 
(Figure 6). After dividing the patients into “High-Risk” (HR) 
and “Low-Risk” (LR), survival analysis was performed. 

Twenty-seven patients were predicted to survive (LR) 
and 26 patients were predicted to have an event (HR). In 
the LR group survival was 84.1% (63.1, 93.7) at 1 year and 
74.2% (51.0, 87.6) at 2 years. In the HR group survival was 
lower [1 year: 41.8% (22.4, 60.2), 2 years: 16.7% (5.2, 33.8)] 
(P<0.001). The survival curve is depicted in Figure 7. After 
dividing the LR and HR patients into major and minor 
resection no difference based on the extend of resection 
could be identified (Figure 8). 

Additionally, DCA was conducted to examine the clinical 
benefit of the model. Figure 9 shows that our RF model added a 
relevant net benefit across a range of risk thresholds up to 0.72. 

Discussion

Key findings

The aim of this study was to develop a ML model to 
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Figure 4 Accuracy dependent on the number of variables based on 
recursive feature elimination.

Figure 5 “Receiver Operating Curve” of test data prediction based 
on the developed Random Forest model.
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Figure 6 “Receiver Operating Curve” of early DFS prediction 
based on the developed Random Forest model.

0.9

0.6

0.3

0.0

S
en

si
tiv

ity

0.9                   0.6                   0.3                   0.0
Specificity

AUC =0.766

Model Prediction



Annals of Translational Medicine, Vol 8, No 7 April 2020 Page 9 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):434 | http://dx.doi.org/10.21037/atm.2020.04.16

1.00

0.75

0.50

0.25

0.00

0                3                6                9               12              15              18              21              24

p<0.0001

Time in months

Strata Low Risk High Risk

S
ur

vi
va

l p
ro

ba
bi

lit
y

Figure 7 Survival analysis of DFS within 2 years of follow-up after defining “Low-Risk” and “High-Risk” patients.
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Figure 8 Survival Analysis of DFS within 2 years of follow-up after defining “Low-Risk” and “High-Risk” patients divided by minor and 
major resection. Low risk (LR) Minor vs. Major Resection: P=0.2. High risk (HR) Minor vs. Major Resection: P=0.8.

accurately predict early DFS after LR of HCC. 
The collected clinical and laboratory values were chosen 

based on previous publications identifying variables for 
prediction of HCC outcomes (5,7,21,36-42). By using 
bioinformatics, we identified relevant variables for the 
model. Although not all variables by themselves were 
independently predictive in the multivariate analysis, the 
combination of these within the RF ML added to the 
predictiveness of the final model. We tested our RF model 
in a separate test data set and calculated its performance. 

With our RF model we were able to distinguish between 
patients at high or low risk for recurrence or death 
early after LR. Only 16.7% of HR patients had disease 
recurrence or died during the follow-up. In contrast 74.2% 
LR patients survived without disease recurrence. This 
difference was highly significant. The prediction of test data 
based on the model reached an AUC of 0.788 [0.658-0.919]. 
Additionally, the extend of resection had no influence on 
survival. DCA showed a clinical net benefit for using the RF 
model.
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threshold probabilities. The horizontal dashed black line represents the assumptions that no patient will be treated. The solid grey line 
represents the assumption that all patients will be treated.

Up to now, no study has attempted to combine these 
routine variables with complex ML algorithms to predict 
survival after HCC resection. 

Workflow

The presented workflow was designed to be used for a range 
of diseases and treatments. The first obstacle when analyzing 
clinical data is that not all variables will be available to 
researchers. In this scenario, either observations (patients) 
are excluded or missing data is imputed. Exclusion of 
patients leads to a reduction of the power of the analysis (23).  
The imputation of means and median values can be used as 
dummy variables, however these values will add more noise 
to the data (23). Imputation algorithms allow for multiple 
estimations and cross-validation of missing values. However, 
with naïve unchecked imputations these algorithms are in 
danger of creating a self-fulfilling prophecy (31). Therefore, 
in light of multiple observations with missing values in 
our data set we reviewed the variables included in the final 
model. We opted to remove the observations with missing 
values and ran the entire workflow again as proposed by 
Sterne et al. (31). We could conclusively show that the 
imputation of missing values did not skew the data (http://
fp.amegroups.cn/cms/11f739089d6cadd46ac0f4cbfa36a50f/
atm.2020.04.16-1.pdf, pp 2-3)

Another pitfall for ML models might be unbalanced 
outcome in data sets (in this study: disease recurrence or 
death). The model is thereby incentivized to predict the 
majority class, whilst misclassifying the minority class. To 
combat this, up-, down-sampling and SMOTE were used to 
balance the data (43,44). In our analysis the down-sampling 
technique yielded the most generizable model.

ML algorithms are superior in pattern recognition 
particularly in large data sets but may result in decision-
making which due to the method ignore ethical values 
embedded in our society (34). In medicine gender, race 
and other stigmatized patient characteristics (e.g., history 
of alcohol abuse) may come out as discriminative variables, 
which we have deliberately excluded (anti-classification) 
(45,46). Even though, anti-classification is criticized because 
it might lead to intentional biases in the entire cohort, we 
advocate for a practical approach until algorithms for “Fair 
Machine Learning” are available (34). 

Interpretation

Prediction of outcome after HCC resection has been 
published before. Especially, most variables that were 
included in our model have already been identified by 
classical retrospective multivariate analysis. Kinoshita and 
colleagues calculated multiple inflammation-based scores 



Annals of Translational Medicine, Vol 8, No 7 April 2020 Page 11 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):434 | http://dx.doi.org/10.21037/atm.2020.04.16

including mGPS. For 24 months of follow-up mGPS 
reached an AUC of 0.695 (47). These results could not 
be replicated in our study (AUC =0.579). CRP has also 
been tested individually in multiple studies. In a recently 
published study CRP could not reach AUC values above 
0.6 for recurrence free survival (12). The same is also 
true for largest tumor size and number of lesions. Their 
individual predictive power is disputed in the literature 
and while independently predictive in validation cohorts 
in some studies, tumor size alone was not predictive in 
ours. However, BCLC A stadium was a positive prognostic 
indicator. The differing results in the literature might be 
based on the fact that cohorts are often not comparable. 
Especially western cohorts have a lower proportion of 
hepatitis patients (12,35). Additionally, analyses are often 
based on single center retrospective cohorts and only 
analyzed with multivariate analyses without appropriate test 
cohorts. In our multivariate analysis (separate from the ML 
algorithm), which we performed for 90 days and 24 months 
after operation as well as for the entire available follow-
up, we could show that the predictiveness of variables 
changes. Predictive variables for early in-hospital DFS were 
creatinine and presence of HBV infection. At 24 months 
predictive variable shifted to AFP as a surrogate of tumor 
biology. The RF model designed in this work incorporated 
variables representing liver function and possibly tumor 
biology. These were not chosen by multivariate analysis but 
with a complex algorithm called RFE (24). Compared to 
multivariate analysis it is superior because it incorporates 
the complex relationships between variables within the 
multitude of trees (classification models) that are created by 
the Random Forest algorithm.

Up to now, publications investigating ML prediction 
for outcomes after surgery are scarce. Recently, Kim 
et al. published a ML model based on radiomics and 
clinicopathological variables. With this they reached an 
AUC of 0.716 predicting the early DFS (2 years) after HCC 
resection. We concur with the authors, that using modern 
ML algorithms combined with clinical values and possibly 
experimental/computer generated variables could help to 
better predict survival after liver resection (48). 

Limitations

The main limitation is the retrospective nature of this study. 
Even though we tested the model on an untouched set of 
patient data, more patients would make this model more 
stable and generizable. Also, the inclusion of more Hepatitis 

patients would make our approach more suitable for 
patients from e.g., Asia. Based on these encouraging results 
we plan to launch a prospective observational multinational 
study to further validate and improve the model. Because 
the complexity of a RF model could potentially impede 
deployment to study centers and clinical practice, we have 
developed an easy to use browser based online app (tiny.cc/
hcc_model). With this, researchers are free to explore the 
model in other cohorts or to join our efforts to improve the 
RF model. 

Another limitation of our study is that the RFE 
algorithm inside the caret package does not allow for nested 
resampling inside the feature selection. With this feature 
selection could be tuned to adjust for unbalanced data. We 
hope that a new version of the caret package will allow for 
resampling when selecting variables using RFE.

Conclusions

With the use of our workflow we were able to develop and 
test a RF model based on standard clinical and laboratory 
variables to accurately predict early DFS after liver 
resection in case of HCC. ML modelling could change 
future treatment allocation to offer LR to low risk patients 
and to list high risk patients for LT. 
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Table S1 Results from multivariate analysis of disease-free survival for 90 days after stepwise selection of variables 

Univariate analysis Multivariate analysis

HR Confidence interval P value HR Confidence interval P value

Age at operation 1.034 0.989–1.081 0.139 1.036 0.980–1.095 0.212

Creatinine 6.297 1.922–20.62 0.002 5.662 1.041–30.798 0.045

HBV infection 2.118 0.781–5.744 0.140 3.748 1.190–11.802 0.024

Kings-Score 1.001 1.000–1.002 0.011 1.000 0.999–1.001 0.790

Portal hypertension 3.571 1.055–12.09 0.041 2.352 0.513–10.776 0.271

HBV, ( Hepatitis B Virus).

Table S2 Results from multivariate analysis of disease-free survival for 24 months after stepwise selection of variables 

Univariate analysis Multivariate analysis

HR Confidence interval P value HR Confidence interval P value

AFP (>21.5 ng/mL) 1.050 1.001–1.121 <0.001 1.020 1.001–1.081 0.022

Albumin 0.964 0.933–0.996 0.028 0.952 0.897–1.011 0.109

CTP Score 0.671 0.421–1.070 0.094 0.676 0.378–1.209 0.187

mGPS 0.418 0.254–0.690 <0.001 0.5823 0.317–1.069 0.081

AFP, alpha Fetoprotein; ng/mL; CTP, child-turcotte-pugh score.

Table S3 Results from univariate analysis of variables that were not predictive for the entire follow-up period

Characteristic
Univariate analysis

HR Confidence interval P value

Age at operation 0.99 0.984–1.014 0.850

ALT 1.001 0.998–1.004 0.434

Bilirubin 1.031 0.966–1.100 0.417

Creatinine 1.634 0.729–3.666 0.233

CTP score 0.942 0.334–2.658 0.631

Alcoholic liver disease 0.684 0.382–1.224 0.180

Extend of liver resection 1.264 0.860–1.856 0.233

Gender 0.875 0.559–1.371 0.565

HBV Iinfection 1.345 0.778–2.325 0.306

HCV Iinfection 0.813 0.484–1.366 0.423

International normalized ratio 3.469 0.477–25.23 0.224

Number of lesions 1.033 0.839–1.271 0.764

Platelets 1.001 0.999–1.003 0.287

Portal hypertension 1.11 0.440–2.785 0.832

ALT, alanine transferase, U/L; CTP Score, child-turcotte-pugh score; HBV, hepatitis B virus; HCV, hepatitis C virus.
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