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Mesenchymal stem cells to treat liver diseases
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Abstract: Mesenchymal stem cells (MSCs) are being developed for stem cell therapy and can be efficiently 
used in regenerative medicine. To date, more than 1,000 clinical trials have used MSCs; of these, more 
than 80 clinical trials have targeted liver disease. MSCs migrate to damaged liver tissues, differentiate into 
hepatocytes, reduce liver inflammatory responses, reduce liver fibrosis, and act as antioxidants. According 
to the reported literature, MSCs are safe, have no side effects, and improve liver function; however, their 
regenerative therapeutic effects are unsatisfactory. Here, we explain, in detail, the basic therapeutic effects 
and recent clinical advances of MSCs. Furthermore, we discuss future research directions for improving the 
regenerative therapeutic effects of MSCs.
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Introduction 

Mesenchymal stem cells (MSCs) were initially identified 
in the bone marrow by Friedenstein and coworkers (1), 
and, since then, they have been isolated from various 
organs, including the adipose tissue, umbilical cord and 
cord blood, brain, peripheral blood, synovial membranes, 
muscle, dermis, and liver (2-6). The International Society 
for Cellular Therapy (ISCT) defines MSCs as cells that 
can adhere to plastic; express CD73, CD90, and CD105 
as cell surface antigens (≥95% positive); and differentiate 
into adipocytes, chondroblasts, and osteoblasts under in 
vitro differentiation conditions (7). MSCs are being actively 
studied for the regenerative treatment of incurable diseases 
via homing to damaged sites, differentiation into damaged 
target cells, or alleviation of the death of dying cells. 
According to ClinicalTrials.Gov, more than 1,000 clinical 
trials using MSCs have been registered; of these, more than 
80 have targeted liver disease.

The liver has a high regenerative potential; however, 
long-term chronic injury, such as that due to viral hepatitis, 

alcohol, toxic drugs, and autoimmune attacks, lacks a 
complete remedy apart from liver transplantation. Since 
Theise et al. (8) found Y chromosome-positive hepatocytes 
in autopsied livers of women after therapeutic bone marrow 
allografts, bone marrow-derived cells, including unsorted 
bone marrow cells (BMCs), hematopoietic stem cells, and 
MSCs, have been investigated for the treatment of chronic 
liver diseases (9-14). In addition, the primary hepatocytes or 
hepatocyte-like cells derived from pluripotent stem cells are 
being actively explored to develop cell-based regenerative 
therapies for liver diseases. In this review, we focus only 
on MSCs that treat liver disease and discuss the potential 
therapeutic mechanisms, brief recent clinical advances, 
and future study perspectives to develop more efficient 
therapeutics.

Potential therapeutic mechanisms of MSCs for 
hepatic fibrosis

Despite reports revealing that cell therapies using BMCs, 
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HSCs, and MSCs can improve liver function and alleviate 
hepatic fibrosis, their precise therapeutic mechanisms 
remain unclear. In this section, we summarize the potential 
therapeutic mechanisms underlying the effects of MSCs 
(Figure 1), which have been reported to have relatively 
diverse therapeutic roles compared to BMCs and HSCs. 

Homing of MSCs

Homing is the active migration of HSCs or lymphocytes 
from the BM or blood toward different organs, antigens, or 
cytokines via the vasculature. Recently, this term has also 
been applied to MSCs, considering their ability to migrate 
to and engraft in the injured tissues (16). Stress signaling 
from injured tissues triggers the migration of locally 
or systemically infused MSCs to the damaged site (17). 
Several molecules that are expressed on the MSC surface 
facilitate MSC rolling, adhesion, and migration into the 

tissue. Importantly, MSCs can be detected in the injured 
tissues after systemic transfusion. Green fluorescent protein 
(GFP)-labeled MSCs were detected in C-C motif ligand 
(CCL) 4-treated rat livers after infusion via peripheral 
or portal veins (18). Adhesion molecules (e.g., integrins, 
selectins, and endoglin) and chemokine receptors (CCR1, 
CCR7, and CCR9) are involved in MSC homing (19).

Hepatocyte-like differentiation of MSCs

MSCs possess multilineage differentiation potential for 
cells of all three germ layers. They can differentiate into 
hepatocyte-like cells both in vivo and in vitro in the presence 
of specific cytokines and growth factors {such as hepatocyte 
growth factor (HGF), oncostatin M, epidermal growth 
factor (EGF), insulin-like growth factor (IGF), fibroblast 
growth factor (FGF)-2/-4, and leukemia inhibitory 
factor] and chemical compounds [such as dexamethasone, 

Figure 1 Potential therapeutic mechanisms of MSCs in hepatic fibrosis. The potential protective mechanisms of MSCs include the 
following: (I) homing into damaged sites; (II) transdifferentiation into hepatocyte-like cells; (III) suppression of immune reactions; (IV) 
secretion of trophic factors to suppress the activated hepatic stellate cells and increase the proliferation of both resident hepatocytes and 
hepatic progenitor cells; and (V) antifibrotic action that results from the regulation of activated hepatic stellate cells and immune cells. The 
shadows represent the ECM that is secreted from the hepatic stellate cells. Modified from Eom et al. (15). MSCs, mesenchymal stem cells; 
ECM, extracellular matrix.
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insulin-transferrin-selenium, retinoic acid, nicotinamide, 
norepinephr ine ,  sodium butyrate ,  and  d imethyl  
sulfoxide (20)]}. Moreover, MSCs can also differentiate into 
the hepatocyte-like cells upon culturing with liver cells in 
prohepatogenic conditions (21) or in pellet cultures (22).  
Functionally transformed cells express hepatocyte 
nuclear factors (HNF)-3, GATA4, cytokeratin (CK) 19, 
transthyretin, alpha-fetoprotein, albumin, and CK18, which 
can be analyzed via flow cytometry, reverse transcription 
polymerase chain reaction, immunostaining, and western 
blotting (20).

Direct intrahepatic administration of human MSCs 
resulted in the differentiation of the majority of MSCs 
into hepatocyte-like cells in allyl alcohol-treated rat 
livers (23). Furthermore, although the MSC-derived 
hepatocyte-like cells are morphologically and functionally 
similar to hepatocytes, sufficient data suggesting that 
MSCs completely mimic hepatocytes in vivo are lacking. 
Moreover, studies have indicated that, in addition to their 
transdifferentiation into hepatocytes or hepatocyte-like 
cells, MSCs are able to secrete trophic factors that facilitate 
liver regeneration and strong immune suppression, which is 
important for engraftment (24).

Immunosuppressive potential of MSCs

MSCs can exhibit potent anti-inflammatory properties, 
such as downregulating immune cells and enhancing the 
secretion of immunomodulatory factors (25). They can 
directly inhibit the adaptive immune cells, can suppress B 
and T cell proliferation and function, induce apoptosis of 
T cells via programmed death 1, and upregulate regulatory 
T cell (Tregs) proliferation and functionality. Additionally, 
MSCs can control innate immunity by inhibiting monocyte 
differentiation, dendritic cell (DC) activation, and natural 
killer (NK) cell activation (25).

Furthermore, MSCs can secrete immunomodulatory 
factors, such as nitric oxide (NO), prostaglandin E2 (PGE2), 
indoleamine 2,3-dioxygenase (IDO), human leukocyte 
antigen (HLA)-G, and IL-6 and -10 (25). Murine MSC-
derived NO can inhibit T cell proliferation (26). PGE2 
plays multifaceted roles in cell proliferation, apoptosis, 
tissue repair, angiogenesis, inflammation, immune 
surveillance, and cancer (27-29). It augments the synthesis 
of the anti-inflammatory cytokine IL-10 and decreases 
the production of the proinflammatory cytokines TNF-α, 
IFN-γ, and IL-12 by DCs and macrophages. Moreover, 
it suppresses the proliferation and differentiation of T 

cells, macrophages, and monocytes as well as the cytotoxic 
activity of NK cells and cytotoxic T lymphocytes (30-32).  
PGE2 directly inhibits the synthesis of IL-2, thereby 
promoting Th2 immune responses rather than Th1 
responses, and induces differentiation and expansion of 
Treg cells (33). IDO and HLA-G are important for immune 
tolerance; they suppress the proliferation of B cells and 
effector T cells, maturation of DCs, and cytotoxicity of NK 
cells (34,35). MSCs can potentiate macrophage polarization 
and generation of tolerogenic DCs (26). IL-6 secreted by 
MSCs can inhibit T cell-mediated immunity by disrupting 
monocyte differentiation into DCs (36,37). In addition, 
IL-6 secreted by MSCs protects the lymphocytes and 
neutrophils against apoptosis (26,38). Thus, MSCs play a 
crucial role in immunosuppression, which makes them an 
attractive therapeutic candidate for hepatic fibrosis.

MSC therapy may trigger tissue regeneration, repair, and 
remodeling. MSCs exert their effects by secreting bioactive 
molecules that are responsible for tissue regeneration, 
repair, and angiogenesis. These soluble factors, known as 
trophic factors, are associated with not only regeneration 
but also reductions in inflammation, apoptosis, and fibrosis 
in the injured tissues (39). MSC-derived trophic factors, 
including growth factors [brain-derived neurotrophic 
factor (BDNF), glial cell-derived neurotrophic factor, EGF, 
FGF-2/-4/-7/-9/-17, HGF, IGF-1, nerve growth factor, 
and platelet-derived growth factor (PDGF)], cytokines 
(IFN-γ, TNF-α, and IL-1α/β, -2, -6, -8, -10, -12, and -13), 
chemokines (various CCLs and C-X-C motif ligands), and 
antiapoptotic and angiogenic factors (VEGF), facilitate the 
regeneration of specific tissues (40).

Antifibrotic activities of MSCs

Fibrosis is a cardinal feature of chronic inflammation. 
Hepatic fibrosis results from chronic liver injury caused by 
alcohol, drugs, viral infection, and metabolic or inherited 
diseases. It is characterized by excessive ECM deposition; 
hepatic stellate cells are key fibrogenic cells in this process. 
Activated hepatic stellate cells stimulate the neighboring 
cells and initiate inflammatory responses. MSCs are 
effective in treating fibrosis due to their antifibrotic and 
immunosuppressive properties (41-44). Recently, MMPs, 
which can be inhibited by tissue inhibitor of MMP (TIMP), 
have been demonstrated to reduce liver fibrosis. MSCs can 
upregulate the expression of MMPs (43), which can degrade 
ECM, and downregulate TIMP expression (44); thus, MSCs 
regulate the balance between MMPs and TIMP to control 
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ECM remodeling and reduce liver fibrosis. Additionally, 
MSCs can suppress the proliferation and activation of 
hepatic stellate cells via indirect mechanisms or direct 
cell–cell contact, inhibit collagen synthesis, and suppress 
overactive immune reactions; MMPs can breakdown the 
ECM, resulting in the apoptosis of hepatic stellate cells (42). 
Collectively, these mechanisms alleviate liver fibrosis.

Antioxidant activities of MSCs

Owing to their immunosuppressive, antifibrotic, and 
trophic properties, MSCs have also been evaluated for 
their antioxidant activity. Several studies have suggested 
that MSCs mediate strong antioxidant effects in various 
animal models (45-48). Typically, carbon tetrachloride 
(CCl4), tert-butyl hydroperoxide, paracetamol, alcohol, 
and thioacetamide (TAA) are used to induce oxidative 
stress in experimental animal models. In this process, 
reactive oxygen species (ROS), reactive nitrogen species, 
and free radicals act as mediators to initiate inflammation, 
hepatocellular damage, and fibrosis, although the small 
amount of ROS produced via the oxidation–reduction chain 
(cellular respiration) in the cell is crucial in cell signaling 
and homeostasis (49,50). MSCs can alleviate chemically 
induced (CCl4 and TAA) oxidative stress in vitro and  
in vivo (46,48). Transplantation of MSCs suppresses 
oxidative stress and enhances antioxidant activity by 
increasing the expression of superoxide dismutase, 
thereby reducing hepatocyte apoptosis (46,48). MSCs can 
surmount oxidative stress in not only hepatic fibrosis but 
also other diseases, such as dextran sulfate sodium-induced 
colitis and neurodegenerative diseases (e.g., Friedreich’s  
ataxia) (51). Collectively, these data highlight the efficacy of 
MSC infusion for the treatment of liver disease.

Clinical application of MSCs to treat liver 
diseases 

According to ClinicalTrials.Gov, more than 80 clinical 
trials evaluating the treatment of liver disease using MSCs 
have been completed or are in progress. In Table 1, clinical 
studies, focusing on the patient group, source of MSC, 
injection route, and main improvements, are summarized 
(52-71). Despite differences in patient group, injection cell 
dose, MSC source, graft type, administration route, and 
study design, no significant side effects were observed in the 
reported clinical studies. Patient groups included acute-on-
chronic liver failure (ACLF) and cirrhosis due to alcohol, 

HBV or HCV, primary biliary cholangitis (PBS), and 
autoimmune diseases-induced cirrhosis. In early studies, 
autologous bone marrow-derived MSCs have mainly been 
used; however, recently, umbilical cord, umbilical cord 
blood, and bone marrow-derived allogenic MSCs have also 
been used. Peripheral veins are mainly used for stem cell 
transplantation along with the portal vein and intrasplenic, 
intrahepatic, and hepatic arteries. Except for two other 
clinical outcomes, MSC transplantation typically resulted in 
improvement in liver functions, including AST, ALT, GGT, 
serum albumin, and bilirubin levels and histological score.

Possible risks of MSC therapy

Although MSCs have been reported to improve hepatocyte 
and liver function in laboratory, preclinical, and clinical 
trials, there are some considerations that must be noted. 
As described earlier, MSCs can migrate to the damaged 
liver and, thus, exert immunosuppressive, antifibrotic, and 
antioxidant effects to repair this damaged organ; however, 
these MSCs may exhibit fibrogenic activity. When MSCs 
were cocultured with the human hepatoma cell line  
HuH-7 in a hepatogenic differentiation medium, the MSCs 
expressed alpha-smooth muscle actin (α-SMA), a marker for 
myofibroblast differentiation. Moreover, after intrahepatic 
administration of MSCs into partially hepatectomized 
NOD/SCID mice, the MSCs expressed vimentin and 
α-SMA in the absence of hepatic markers (72). The 
transplanted MSCs exhibited very low engraftment rates in 
normal and acutely injured NOD/SCID mice, compared 
to chronically injured mice; a significant number of the 
MSCs injected into the site of acute liver injury exhibited 
a myofibroblast-like morphology (73). Collectively, these 
results suggest that the fibrogenic potential of MSCs 
could result in increased hepatic fibrosis under certain 
circumstances. Therefore, prior to the use of MSCs for the 
treatment of hepatic fibrosis, the issue of MSC-induced 
fibrosis needs to be evaluated in depth.
MSCs can migrate to tumors and, then, incorporate 
into the tumor stroma (74,75). They promote the 
proliferation of pre-existing tumor cells via differentiation 
into tumor-associated fibroblasts (TAFs) in the tumor 
microenvironment, inhibition of the antitumor immune 
response, promotion of neovascularization and tumor 
metastasis, and inhibition of tumor cell death (76). 
Transforming growth factor-β (TGF-β), commonly 
secreted by tumor cells, induces differentiation of MSCs 
into myofibroblasts, which express α-SMA, tenascin C, and 
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Table 1 Clinical studies of MSCs in liver diseases

Study Patient group MSC source Injection route Main improvement

Mohamadnejad 
[2007]

Decompensated liver cirrhosis 
(n=4)

Autologous BM Peripheral vein Creatinine and MELD score 

Kharaziha 
[2009]

Liver cirrhosis (n=8) Autologous BM Portal vein (n=6) Creatinine, prothrombin time, and MELD 
score 

Peripheral vein (n=2)

El-Ansary 
[2010]

Decompensated liver cirrhosis 
due to HCV or HBV (n=12)

Autologous BM Intrasplenic (n=6) Creatinine, prothrombin time, albumin, 
bilirubin, and MELD score

Peripheral vein (n=6)

Amer [2011] Decompensated liver cirrhosis 
due to HCV (n=40)

Autologous BM Intrasplenic (n=10) Ascites, peripheral edema, albumin, 
MELD score, and Child-Pugh score

Intrahepatic (n=10)

Peng [2011] ACLF caused by HBV (n=158) Autologous BM Hepatic artery Prothrombin time, albumin, bilirubin, and 
MELD score

El-Ansary 
[2012]

Decompensated liver cirrhosis 
due to HCV (n=25)

Autologous BM Peripheral vein Albumin and MELD score

Shi [2012] ACLF-associated HBV (n=43) Allogeneic UC Peripheral vein Albumin, prothrombin time, bilirubin, ALT, 
survival rates, and MELD score

Zhang [2012] Decompensated liver cirrhosis 
due to HBV (n=45)

Allogeneic UC Peripheral vein Albumin, bilirubin, MELD score, and 
ascites

Amin [2013] Post-HCV (n=20) Autologous BM Intrasplenic Albumin, prothrombin time, bilirubin, AST, 
ALT, and MELD score

Mohamadnejad 
[2013]

Decompensated liver cirrhosis 
(n=25)

Autologous BM Peripheral vein None

Wang [2013] UDCA-resistant PBC (n=7) Allogeneic UC Peripheral vein Alkaline phosphatase and 
γ-glutamyltransferase (GGT) levels

Jang [2014] Alcohol-related liver cirrhosis 
(n=11)

Autologous BM Hepatic artery MELD score and liver histology

Salama [2014] Post-HCV end-stage liver 
disease (n=40)

Autologous BM Peripheral vein MELD score and Child-Pugh score

Wang [2014] UDCA-resistant PBC (n=10) Allogeneic BM Peripheral vein ALT, AST, GGT, and IgM

Suk [2016] Alcohol-related liver cirrhosis 
(n=72)

Autologous BM Hepatic artery Histologic fibrosis and Child-Pugh score

Detry [2017] Liver transplant recipients Allogenic BM Peripheral vein No difference in rate of infection or de 
novo cancer

Lanthier [2017] Decompensated alcoholic 
hepatitis (n=58)

Autologous BM Hepatic artery None

Lin [2017] ACLF-associated HBV (n=110) Allogeneic BM Peripheral vein Bilirubin, MELD score, and survival rates

Liang [2017] Autoimmune diseases-induced 
cirrhosis (n=26)

Allogeneic UC 
(n=23), UCB (n=2), 
or BM (n=1)

Peripheral vein Bilirubin, albumin, prothrombin, and 
MELD score

Xu [2019] ACLF-associated HBV (n=110) Allogeneic UC Peripheral vein Bilirubin, ALT, AST, and MELD score

ACLF, acute-on-chronic liver failure; BM, bone marrow; HBV, hepatitis B virus; HCV, hepatitis C virus; PBC, primary biliary cholangitis; 
RCT, randomized controlled trial; UC, umbilical cord; UDCA, ursodeoxycholic acid
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fibroblast surface protein; it also increases the expression 
and secretion of growth-stimulating factors, such as CCL5/
RANTES and stromal cell-derived factor 1 (SDF-1).  
Recently, researchers found that MSCs can differentiate 
into carcinoma-associated fibroblasts or TAFs, which 
express α-SMA and promote tumor growth by inducing 
neovascularization and expressing tumor-stimulating factors 
(77-81). In addition, MSCs express various antiapoptotic and 
prosurvival factors, including VEGF, FGF-2, PDGF, HGF, 
BDNF, SDF-1α, IGF-1 and -2, TGF-β, and IGF binding 
protein-2, through which they promote tumor growth by 
suppressing tumor apoptosis (40,82-86). Hypoxia, which 
usually occurs in tumor regions and sites of inflammation, 
can stimulate MSCs to produce VEGF, FGF2, HGF, IGF1, 
CX3CR1, and CXCR4; these factors are known to be able to 
protect tumor cells in tumor microenvironments (87-90).

Future prospects of MSC therapy for hepatic 
fibrosis

MSC priming 

MSCs are known to migrate to damaged areas and express 
various immune cell-regulating factors, such as NO, 
PGE2, IDO, IL-6 and -10, and HLA-G, upon exposure 
to inflammatory cytokines, such as IFN-γ, TNF-α, and 
IL-1β (91); however, depending on the concentrations 
and types of inflammatory cytokines in the damaged 
microenvironments, MSCs may mediate myofibroblast 
activity (72,73). Therefore, to improve the functional 
activity and reduce the unwanted properties of MSCs, they 
can be primed with inflammatory cytokines in vitro prior to 
infusion. IFN-γ-primed MSCs inhibit the proliferation of 
activated T and NK cells by inducing IDO expression (92). 
In addition, HLA-A, -B, -C, and -E were elevated in IFN-
γ-primed MSCs, which were less susceptible to NK cell-
mediated killing and increased immunosuppression (93). 
Moreover, IFN-γ-primed MSCs can induce the expression 
of TNF-related apoptosis-inducing ligands and, thus, be 
used to treat cancer. Investigating the interactions of MSCs 
with the microenvironments of damaged areas in disease 
models can provide insights into the precise mechanisms 
underlying the therapeutic effects of MSCs, which can be 
applied to enhance these effects in regenerative medicine.

MSC-derived exosomes

Paracrine action is one of the key mechanisms that 

can be evaluated to explore the therapeutic potential 
of MSCs (94,95). In accordance with the effects of 
MSC transplantation, MSC-conditioned medium can 
improve liver function via paracrine factors, which 
comprise free soluble factors and extracellular vesicles 
(EVs). EVs are divided into microvesicles (0.1–1 mm 
in diameter) and exosomes (40–100 nm in diameter) 
(96,97). Exosomes originate from the inward budding 
of late endosomes known as multivesicular bodies; they 
carry various nucleic acids, lipids, and proteins. Most 
cells secrete EVs in response to triggers or environmental 
circumstances, to exchange information between the 
cells (98). More than 850 unique gene products and  
150 miRNAs have been identified as the cargo of MSC-
derived exosomes; they have been implicated, via mass 
spectrometry, antibody array, and microarray, in cell-to-
cell communication, immune regulation, and tissue repair 
(99,100). Several studies have reported that MSC-derived 
exosomes inhibit hepatocyte epithelial-to-mesenchymal 
transition and collagen production (101), increase 
hepatocyte proliferation (102) and liver function (103),  
and stimulate host responses to initiate repair (104-110). 
Moreover, as exosomes can be more easily produced and 
stored than MSCs, greater quality control may be possible; 
exosomes can be repeatedly administered as drug; thus, they 
could maintain and improve their therapeutic effects more 
consistently over time than MSC therapy.

Genetic modification of MSCs

Despite several advantages of MSCs in treating human 
diseases, MSC therapy is still limited by low cell survival, 
engraftment, and homing efficiency to the damaged site as 
well as by insufficient secretion of effector molecules. To 
overcome these limitations, researchers have investigated 
genetic modifications in MSCs. Diverse prosurvival genes, 
such as Akt (111), heat shock protein 20 (112), SDF-1β (113), 
hypoxia-inducible factor-1α (114), and FGF-2 (115), have 
been inserted into MSCs, to prolong their survival in the 
target organ. Moreover, SDF-1- and CXCR4-engineered 
MSCs exhibited more efficient homing and engraftment 
in target organs, followed by enhanced regeneration of the 
liver, kidney, skin, and brain (116-120). To treat hepatic 
fibrosis, MSCs can be modified using decorin (DCN) (121), 
urokinase-type plasminogen activator (uPA) (122), and  
IL-10 (123). DCN-MSCs induce histological improvements 
in hepatic fibrosis and aid in the recovery of liver function 
in rats with TAA-induced cirrhosis via suppression of 
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TGF-β/Smad signaling (121). MSCs expressing uPA 
exhibited markedly lower expression of α-SMA, TGF-β1, 
and collagen types I and III but increased expression of 
MMP-2, -3, and -9, HGF, and proliferating cell nuclear 
antigen; moreover, they ameliorated hepatic fibrosis (122). 
In addition, in liver-fibrotic rats, IL-10-MSCs improved 
liver histopathology and liver function but suppressed 
inflammation and the activation of hepatic stellate  
cells (123). Therefore, genetic manipulation of MSCs may 
greatly enhance their therapeutic functions by increasing 
their survival and migration to the target organs and 
inducing their factor expression with high therapeutic 
potential. 

Three-dimensional (3D) culture

To increase their survival and therapeutic potential, MSCs 
can be cultured in 3D systems with or without biomaterial 
scaffolds. To date, a variety of scaffolds manufactured from 
natural ECM components or synthetic materials as well 
as decellularized organ/tissue matrices have been used to 
enhance the proliferation and differentiation of stem cells 
(124-127). Moreover, 3D spheroid MSC cultures without 
scaffolds have been reported to improve the differentiation 
efficiency of MSCs (128,129) and enhance their therapeutic 
potential in liver disease, peritonitis, kidney injury, and 
myocardial infarction (129-132). Spheroid 3D culture 
of MSCs increased the expression of antifibrotic factors, 
such as IGF-1, HGF, and IL-6; furthermore, the MSCs 
protected the hepatocytes injured with CCl4 in vitro more 
effectively than 2D cultured cells. In addition, 3D spheroid-
derived MSCs ameliorated hepatic fibrosis and improved 
liver function to a greater extent than 2D-cultured MSCs. 

Conclusions

Cell-based therapies with BMCs, HSCs, hepatocytes, 
and MSCs are being actively used to replace liver 
transplantation, which is the ultimate treatment for end-
stage liver disease. MSCs are being evaluated as a very 
suitable cell source for cell therapies that have been 
reported to improve the liver function. They migrate to the 
damaged liver tissues, differentiate into hepatocytes, reduce 
liver inflammatory responses and liver fibrosis, and exhibit 
antioxidant effects. More than 80 clinical studies on the 
treatment of liver disease with MSCs have been completed 
or are in progress; the reported clinical results suggest that 
MSCs are safe, have no side effects, and can improve liver 

function. However, despite the proven regenerative value of 
MSCs, their regenerative therapeutic effect is unsatisfactory. 
Therefore, to improve the regenerative therapeutic effects 
of MSCs, research on MSC-priming, MSC-derived 
exosomes, genetic modification, and 3D-culture methods is 
warranted. In addition, to improve the therapeutic efficacy 
of MSCs, further robust preclinical and clinical studies are 
necessary to standardize the optimal number of transplanted 
MSCs, their delivery route, and their administration 
frequency.
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formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.
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