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Background: This study aimed to evaluate the efficiency of gadoxetic acid-enhanced MRI-based radiomics 
features for prediction of overall survival (OS) in hepatocellular carcinoma (HCC) patients after surgical 
resection.
Methods: This prospective study approved by the Institutional Review Board enrolled 120 patients with 
pathologically confirmed HCC. Radiomics signatures (rad-scores) were built from radiomics features in 3 
different regions of interest (ROIs) with the least absolute shrinkage and selection operator (LASSO) cox 
regression analysis. Preoperative clinical characteristics and semantic imaging features potentially associated 
with patient survival were evaluated to develop a clinic-radiological model. The radiomics features and 
clinic-radiological predictors were integrated into a joint model using multivariable Cox regression analysis. 
Kaplan-Meier analysis and log-rank tests were performed to compare the discriminative performance and 
evaluated on the validation cohort.
Results: The radiomics signatures showed a significant association with patient survival in both cohorts (all 
P<0.001). The BCLC (Barcelona clinic liver cancer) stage, non-smooth tumor margin, and the combined 
rad-score were independently associated with OS. Moreover, the combined model incorporating with clinic-
radiological and radiomics features showed an improved predictive performance with C-index of 0.92 [95% 
confidence interval (CI): 0.87–0.97], compared to the clinic-radiological model (C-index, 0.86, 95% CI: 
0.79–0.94; P=0.039) or the combined rad-score (C-index, 0.88, 95% CI: 0.81–0.95; P=0.016).
Conclusions: Radiomics features along with clinic-radiological predictors can efficiently aid in 
preoperative HCC prognosis prediction after surgical resection and enable a step forward precise medicine.
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Introduction

The second leading cause of cancer-specific mortality 
in the Asia-Pacific regions, and especially in China, is 

hepatocellular carcinoma (HCC). Surgical resection 

was recommended as primary treatment for patients at 

early stages by internationally endorsed guidelines (1). 
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Nevertheless, over 70% of patients are still suffering from 
postoperative recurrence within five years, which is one 
of the main threats that lead to reduced survival (2,3). It is 
speculated that the recurrence of HCC was caused by either 
primary tumor metastasis or metachronous multicentric 
occurrence in the underlying liver disease (4-6).

Several pathological factors have been identified, such as 
poor tumor differentiation, microvascular invasion (MVI), 
satellite lesions to be associated with early recurrence in 
HCC (7,8). Background liver factors (e.g., advanced liver 
fibrosis or cirrhosis) have been considered as an essential 
host factor that causes multicentric recurrence of the 
remnant liver (9,10). However, these factors are available 
only postoperatively at the pathological examination of the 
surgical specimen. It is still challenging to find a useful tool 
that can reflect both intrahepatic metastasis and de novo 
carcinogenesis.

Medical imaging was commonly used in clinical 
procedures for HCC patients, and was stated to be closely 
associated with histopathological examination (11). Recent 
studies have focused on assessing the prognosis of patients 
with HCC by gadoxetic-acid enhanced MRI, with a variety 
of semantic imaging findings described (11-14). However, 
since conventional imaging evaluation relies on semantic 
features and provides relatively few metrics, the large 
quantity of additional useful information about tumor 
heterogeneity has been underutilized (15). Radiomics 
is a rapidly advancing form of medical image analysis, 
which enables the quantification of tumor phenotypic 
characteristics to provide prognostic information (16,17). By 
converting medical images into high-throughput imaging 
features, the radiomics method enables investigation for 
treatment monitoring and outcome prediction in the 
field of oncology (18-20). Several studies have assessed 
the prognostic aspect of radiomics signature in HCCs, 
with exceptional potential abilities for patient survival 
prediction and liver fibrosis diagnosis (21-24). However, 
most of published studies were in retrospective design and 
only focused on the intratumoral region (22,25). To our 
knowledge, few studies to date have tried to evaluate the 
tumor and non-tumorous liver tissues using a radiomics 
approach based on gadoxetic acid-enhanced MRI. 
Therefore, we hypothesized that this new method could 
be useful to predict survival outcome in HCC patients 
underwent hepatectomy.

In this study, we looked to develop and validate a 
radiomics-based nomogram that combined radiomics 
features and clinic-radiological predictors for preoperatively 

predicting overall survival (OS) in patients with HCC after 
surgical treatment.

We present the following article in accordance with the 
STROBE reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-3041). 

Methods

Study population

This prospective study has obtained ethical approval from 
the institutional review board, and the informed consent 
from all patients was waived before patient enrollment. 
All patients underwent gadoxetic acid-enhanced MR 
imaging before surgery. Inclusion criteria were as follows: 
(I) age>18 years old; (II) patients suspected of having 
primary liver lesions based on clinical history, laboratory 
examinations and previous ultrasonography or CT results; 
(III) no treatment history, i.e., transcatheter arterial 
chemoembolization (TACE), radiofrequency ablation 
(RFA) or hepatectomy; (IV) no contraindication for MR 
examination. Demographic and clinicopathologic data were 
obtained from our hospital records.

Follow-up

Patients were followed up every three months during the 
first two years after surgery and then every six months 
regularly. All patients underwent contrast-enhanced 
CT or gadoxetic acid-enhanced MRI and serum AFP 
measurement. The endpoint of this study was OS, which 
was defined as the time from the date of surgery to the last 
follow-up or death. Patients were censored in July 2019 for 
living patients.

MR imaging techniques

MR images of all patients were acquired on unform3.0T 
MR system (Magnetom Skyra, Siemens Healthcare, 
Erlangen, Germany) using an 18-channel body array 
coil. All patients underwent MR examination within one 
week before the operation and fasted for 6 to 8 hours 
before the examination. Baseline MR imaging sequences 
were composed of: (I) an breath-hold fat-suppressed T2-
weighted imaging with fast spin-echo (FSE) sequence; 
(II) MR cholangiopancreatography (MRCP) heavily T2-
weighted 2D imaging; (III) a diffusion-weighted imaging 
(DWI) (b values: 0, 50, 500, 800, 1,000, and 1,200 s/mm2). 
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After administration of gadoxetic acid (Primovist®; Bayer 
Schering Pharma AG, Berlin, Germany), dynamic images 
in arterial phase (20–35 s), portal venous phase (60–70 s), 
transitional phase (3 min) and hepatobiliary phase (HBP) 
(20 min) were obtained using a fat-suppressed three-
dimensional gradient-echo T1 weighted sequence (volume 
interpolated breath-hold examination, VIBE). A dose of 
0.025 mmol/kg bodyweight of gadoxetic acid was injected 
intravenously at a rate of 2 mL/s, followed at once by a 
30-mL saline flush. Detailed parameters of MR imaging 
sequences are provided in Table S1.

MR imaging findings

Two independent radiologists with 6  and 10 years of 
experience in abdominal imaging diagnosis, who were 
blinded to all clinical information and pathologic results, 
reviewed the MR images to evaluate the following imaging 
features: (I) tumor size; (II) multifocality; (III) smooth or 
non-smooth tumor margin; (IV) non-enhancing capsule; 
(V) arterial peritumoral enhancement; (VI) “washout”; 
(VII) peritumoral hypointensity on HBP images; and (VIII) 
signal intensity on HBP images. Any disagreements of the 
imaging features were resolved by consensus.

Regions of interest (ROI) segmentation and radiomics 
features extraction

An experienced radiologist (with five years of clinical 
experience in abdominal radiology) segmented ROIs 
on multiple phase images, including T2-weighted, non-
enhanced T1-weighted, arterial phase, portal venous phase 
and HBP images, using in-house software (Analysis-Kit, 
version V3.0.0.R, GE healthcare).

Three different ROIs were delineated on each phase 
with the combination of automatic and manual approach 
by two different radiologists: first,  ROI tumor were 
performed manually along the boundary of the tumor 
on the largest cross-sectional area; And then, a radius of 
1cm surrounding the tumor boundary was automatically 
reconstructed based on the ROItumor, defined as ROIpenumbra; 
Finally, ROIliver was generated manually as a region of 
background liver parenchyma excluding ROI tumor and 
ROIpenumbra. Representative examples of image segmentation 
are shown in Figure 1. We extracted 350 radiomic features 
[20 histogram features, 40 texture features, 9 form factor 
features, 101 grey-level co-occurrence matrix (GLCM) 
features, and 180 grey-level run-length matrix (GLRLM) 

features] from each segmentation (background liver 
parenchyma, tumor, and its periphery), giving a total of 
1050 features for every lesion.

The image segmentation process was repeated by 
another experienced radiologist in 1 month to evaluate the 
interobserver reproducibility of the radiomic features by 
calculating the interclass correlation coefficient (ICC).

Statistical analysis

First, radiomics features with intraclass correlation 
coefficient >0.75 showed high stability and were kept for 
further analysis. Then, the least absolute shrinkage and 
selection operator (LASSO) Cox regression method was 
performed to select the most informative radiomics features 
from the primary cohort for building a radiomics signature 
(rad-score) (26). Ten-fold cross-validation was applied for 
parameters perfected and overfitting reduction. A rad-score 
for each patient was set up via a linear combination of the 
radiomics features weighted according to their respective 
coefficients.

Univariate and multivariate Cox regression analyses 
were used in the primary cohort to determine independent 
predictors of OS. Features with P value less than 0.05 in 
the univariate Cox regression were included in multivariate 
Cox regression models: (I) a clinic-radiological model, from 
clinic-radiological features; and (II) a combined model, 
from clinic-radiological features and radiomics signature. 
The final model was obtained based on a backward stepwise 
choice process by using Akaike’s information criterion. 

Harrell's concordance index (C-index) was used to 
measure the discriminative ability of the proposed model in 
the primary cohort and confirmed in the validation cohort. 
Calibration curves were generated to assess the relationship 
between model-predicted probability and observed OS. 
Survival curves were created with the Kaplan-Meier method 
and compared using a two-sided log-rank test.

All statistical tests were performed using R version 
3.5.2 (R Foundation for Statistical Computing, Vienna, 
Austria). A two-sided P value less than 0.05 was considered 
statistically significant.

Results

Patients characteristics

From July 2015 to May 2018, 277 consecutive patients with 
suspected HCC who underwent preoperative gadoxetic 
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acid enhanced MR examination were included. Among 
them, 157 patients were excluded for the following reasons: 
(I) received other treatments instead of surgery, including 
trans-arterial chemoembolization (TACE) and RFA (n=22); 
(II) pathologically confirmed non-HCC (n=28); (III) 
patients lost to follow-up or were followed up for less than 
one year (n=52); (IV) poor image quality (n=6) and difficult 
tumor segmentation (n=17); (V) incomplete clinical or 
pathological data (n=32) (Figure 2). In total, 120 patients 
(mean age, 50.21±10.29 years; range, 28–77 years) were 
enrolled in the study, which was split into two cohorts: 83 
patients who underwent surgery between July 2015 and 
August 2017 were divided into the primary cohort, while 37 
patients who underwent surgery from August 2017 to May 
2018 constituted the validation cohort.

Table 1 summarized the characteristics of all patients 
in the primary and validation cohort. There was no 
significant difference between the primary and validation 
cohort (all P>0.05). The OS rate was 80.8% (97/120) for 
all patients. The median follow-up time was 27.51 months 
(range, 18.90–47.17 months) for the primary cohort 

and 27.03 months (range, 17.47–47.01 months) for the 
validation cohort.

Construction of radiomics signatures

In the primary cohort, radiomic features with nonzero 
coefficients were selected from multiple phases, MRI 
images, and quantitatively integrated into 3 rad-scores 
based on ROItumor, ROIliver, ROIpenumbra. Finally, all significant 
radiomics features were integrated into a combined rad-
score. The calculation formulas of rad-scores were shown in 
the Supplementary file. Feature extraction algorithms can 
be found in Supplementary file.

Construction of survival models

In the univariate analysis, eight significant factors, including 
one clinical variable (BCLC stage), three semantic imaging 
features (non-enhancing capsule, arterial peritumoral 
enhancement, and non-smooth tumor margin) and 4 rad-
scores were significantly associated with OS (all P<0.05).

Lasso Cox regression

Image acquisition Image segmentation

Background liver parenchyma

Tumor penumbra

Tumor

Radiomics feature extraction

Radiomics feature selectionModel constructionHCC prognosis prediction

Nomogram Survival prediction Modeling Model performance

Figure 1 Diagram shows the workflow of the radiomics study. Image segmentation reveals a representative example of ROIs segmentation. 
First, radiologists manually draw a region on the largest cross-sectional area of the tumor as an ROI tumor (yellow), and the computer 
automatically extended the contour of the lesion, with a 1 cm-wide radius surrounding the tumor boundary (ROI penumbra) obtained 
automatically (red). On the bases of ROI penumbra, a region of liver parenchyma excluding intratumoral and peritumoral region were 
manually segmented (ROI liver) (green). ROI, regions of interest.
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Multivariate Cox regression analyses confirmed BCLC 
stage [HR, 1.93; 95% confidence interval (CI), 0.91–4.12, 
P=0.09], non-smooth tumor margin (HR, 2.84; 95% CI, 
0.88–9.16, P= 0.08) and combined rad-score (HR, 2.61; 
95% CI, 1.71–3.96, P<0.001) as independent predictors of 
OS (Table 2). Based on coefficients assigned by multivariate 
Cox regression analysis, these independent predictors were 
combined linearly to set up the combined model presented 
as a nomogram (Figure 3A). Also, the BCLC stage and non-
smooth tumor margin were used to construct the clinic-
radiological model.

Performance of models

In the primary cohort, the combined rad-score derived from 
3 ROIs yield the highest C-index of 0.88 (95% CI: 0.81–
0.95), followed by the rad-score (ROItumor) (C-index, 0.84, 
95% CI: 0.76–0.92), rad-score (ROI liver) (C-index, 0.82, 
95% CI: 0.71–0.93) and rad-score (ROIpenumbra) (C-index, 
0.74, 95% CI: 0.61–0.87). In the validation cohort, the 

C-index was 0.83 (95% CI: 0.60–0.99) for combined rad-
score, 0.72 (95% CI: 0.50–0.94) for rad-score (ROItumor), 
0.71 (95% CI: 0.51–0.91) for rad-score (ROIpenumbra) and 0.72 
(95% CI: 0.58–0.86) for Rad-score (ROIliver), respectively. 
However, the pairwise comparison of 3 rad-scores based on 
3 ROIs showed no significant differences in the primary and 
validation cohorts (all P>0.05).

After adding the combined rad-score into two clinic-
radiological predictors, the combined model achieved better 
prognostic performance (C-index, 0.92, 95% CI: 0.87–0.97) 
than both the combined rad-score (C-index, 0.88, 95% CI: 
0.81–0.95; P=0.016) and clinic-radiological model (C-index, 
0.86, 95% CI: 0.79-0.94; P=0.039) in the primary cohort. 
Similar results were found in the validation cohort: the 
combined model yielded the highest C-index of 0.84 (95% 
CI: 0.60–0.99), compared with the combined rad-score 
(C-index, 0.83, 95% CI: 0.60–0.99) and clinic-radiological 
model (C-index, 0.70, 95% CI: 0.48–0.91) (Table 3). The 
calibration curves for the nomogram in predicting 1, 2, 
or 3 years survival rate after surgery in the primary and 

277 consecutive patients suspected of hepatocellular carcinoma 
underwent preoperative MR examination

255 patients underwent surgery

143 HCC patients were followed up

120 patients were finally enrolled

Excluded:
•  6 with poor image quality
•  17 were difficult to draw ROIs (e.g., 

infiltrative tumors or tumor size<1 cm)

Excluded:
•  22 received other treatment

Excluded:
•  28 pathologically confirmed non-HCC
•  52 were followed up for less than 1 year
•  32 incomplete clinicopathological reports

Training cohort
n=83

Validation cohort
n=37

Figure 2 Patient recruitment process. HCC, hepatocellular carcinoma; ROI, region of interest.
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Table 1 The characteristics of patients in the primary and validation cohort

Variable Primary cohort (n=83) Validation cohort (n=37) P

Clinical characteristics

Sex 0.477

Female 19 (22.89%) 4 (10.81%)

Male 64 (77.10%) 33 (89.19%)

Age 0.119

<60 70 (84.35%) 24 (64.86%)

≥60 13 (15.66%) 13 (35.14%)

Follow-up time (mo.) 0.833

Median (mean ± SD) 27.51 (29.27±10.37) 27.03 (29.37±11.90)

Maximum 47.17 47.01

BCLC stage 0.970

0 15 (18.07%) 6 (16.22%)

A 33 (39.76%) 18 (48.65%)

B 24 (28.92%) 12 (32.43%)

C 11 (13.25%) 1 (2.70%)

AFP (ng/mL) 0.997

<400 38 (45.78%) 17 (45.95%)

≥400 45 (54.22%) 20 (54.05%)

CEA (ng/mL) 0.881

<3.4 67 (80.72%) 27 (72.97%)

≥3.4 16 (19.28%) 10 (27.03%)

ALT (IU/L) 0.895

<40 50 (60.24%) 26 (70.27%)

≥40 33 (39.76%) 11 (29.73%)

AST (IU/L) 0.162

<35 45 (54.22%) 21 (56.76%)

≥35 38 (45.78%) 16 (43.24%)

TBIL (μmol/L) 0.673

5.0–28.0 79 (95.18%) 33 (89.19%)

<5.0 or >28.0 4 (4.82%) 4 (10.81%)

ALB (g/L) 0.924

40–55 71 (85.54%) 28 (75.68%)

<40 or >55 12 (14.46%) 9 (24.32%)

Table 1 (continued)
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Table 1 (continued)

Variable Primary cohort (n=83) Validation cohort (n=37) P

Semantic imaging findings

Tumor size, cm 0.408

Median (mean ± SD) 5.50 (5.80±2.91) 4.99 (4.90±2.47)

<3 16 (19.28%) 11 (29.72%)

>3 67 (80.72%) 26 (70.28%)

Tumor size, cm 0.988

<5 38 (45.78%) 18 (48.65%)

≥5 45 (54.22%) 19 (51.35%)

Multifocality 0.966

Absent 62 (74.70%) 28 (75.68%)

Present 21 (25.30%) 9 (24.32%)

Non-enhancing capsule 0.471

Absent 74 (89.16%) 29 (78.38%)

Present 9 (10.84%) 8 (21.62%)

Non-smooth tumor margin 0.964

Absent 51 (61.45%) 21 (56.76%)

Present 32 (38.55%) 16 (43.24%)

HBP peritumoral hypointense 0.213

Absent 26 (31.33%) 19 (51.35%)

Present 57 (68.67%) 18 (48.65%)

Arterial peritumoral enhancement 0.810

Absent 74 (89.16%) 35 (94.59%)

Present 9 (10.84%) 2 (5.40%)

“Washout” 0.872

Absent 11 (13.25%) 3 (8.10%)

Present 72 (86.75%) 34 (91.90%)

HBP intensity (mean ± SD) 228.87 (215.6±77.14) 229.23 (225.96±100.16) 0.924

BCLC, Barcelona clinic liver cancer; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; TBIL, total bilirubin; ALB, albumin; SD, standard deviation.

validation cohort are shown in Figure 3B,C. 
Patients were classified as low-risk or high-risk patients 

based on the cut-off values defined from the primary cohort. 
As shown in Figure 4, low-risk patients were significantly 
correlated with shorter postoperative survival in the primary 
cohort (log-rank test, P<0.0001; Figure 4A), which had been 

validated in the validation cohort (log-rank test, P=0.038; 
Figure 4B).

Discussion

In this study, we developed the radiomics signatures using 
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gadoxetic acid-enhanced MRI radiomics features to predict 
survival outcomes in surgically resected HCC patients. 
The proposed radiomics signature could successfully 
distinguish high-risk from lower-risk survivors with HCC. 
By integrating radiomic and clinic-radiological features, 

the combined model showed improved predictive ability 
compared with the clinic-radiological model, suggesting 
that our findings could play a critical role in the clinical 
treatment management of HCC.

MVI is a well-known prognostic risk factor for early 

Table 2 Multivariate Cox regression analysis for overall survival prediction in the primary cohort

Variables 
Clinic-radiological model Combined model

Hazard ratios (95% CI) P Hazard ratios (95% CI) P

BCLC stage 2.62 (1.33–5.17) 0.006 1.93 (0.91–4.12) 0.09

Non-smooth tumor margin 4.13 (1.29–13.26) 0.02 2.84 (0.88–9.16) 0.08

Combined rad-score NA NA 2.61 (1.71–3.96) <0.001

The clinic-radiological model was built based on independent predictors without the addition of a radiomics signature. BCLC, Barcelona 
clinic liver cancer; CI, confidence interval; NA, not available.

Figure 3 Development of nomogram and calibration curves of the combined model for overall survival of patients in both primary and 
validation cohorts. A nomogram was set up based on the primary cohort, with radiomics signature, BCLC stage, and non-smooth tumor 
margin incorporated, and scaled by the proportional regression coefficient of each predictor (A). Calibration curves for the combined model 
in predicting the overall survival of patients at 1, 2, or 3 years after surgery in the primary cohort (B) and the validation cohort (C).
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recurrence, highly correlated with tumor progression 
and more reduced postoperative survival, but is only 
microscopically detectable (27). Recent studies based on 
gadoxetic acid-enhanced MRI have indicated a significant 
association between MVI and semantic imaging features 
involving peritumoral tissue (including non-smooth tumor 
margin, arterial peritumoral enhancement, and peritumoral 
hypointensity on HBP). These features proved to be capable 
of predicting early recurrence of HCC after surgery, but 
with poor prognostic accuracy (AUC, 0.77–0.79) (7,28). 
Recently, the computational-based radiological imaging, 
known as radiomics, has shown promising ability in HCC 

prognostic prediction. Utilizing the radiomics method, we 
were able to capture either the tumor-related factors (e.g., 
intratumoral heterogeneity) or non-tumorous tissue factors 
(e.g., peritumoral or background liver status), and to assess 
the predictive accuracy among these tissues. These features 
extracted from the issues above could be efficiently selected 
and integrated to risk prediction models, which can offer 
essential information about HCC prognosis regardless of 
pathological information and predict the survival outcomes.

However, most of the earlier radiomic studies only 
evaluated the prognostic ability of radiomics features 
extracted from the intratumoral region. In the present 

Figure 4 The results of Kaplan-Meier survival analysis for predicting the overall survival of the combined model for patients in the primary 
cohort (A) and validation cohort (B).

Table 3 Predictive performance of the survival models

Models
Primary cohort Validation cohort

C-index 95% CI C-index 95% CI

Radiomics signature

Rad-score (ROI tumor) 0.84 0.76–0.92 0.72 0.50–0.94

Rad-score (ROI penumbra) 0.74 0.61–0.87 0.71 0.51–0.91

Rad-score (ROI liver) 0.82 0.71–0.93 0.72 0.58–0.86

Combined rad-score 0.88 0.81–0.95 0.83 0.60–0.99

Clinic-radiological model 0.86 0.79–0.94 0.70 0.48–0.91

Combined model 0.92 0.87–0.97 0.84 0.60–0.99

The combined model was set up based on independent predictors of the clinic-radiological predictors and the combined rad-score. ROI, 
region of interest; CI, confidence interval.
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study, we proposed a new approach to determine multi-
scale radiomics features, from the intratumoral region 
(ROItumor), peritumoral region (ROIpenumbra), and background 
liver parenchyma (ROIliver). We defined ROI penumbra as a 1 
cm expansion from the lesion based on the current surgical 
safety margin for HCC (29). As a result, 3 rad-scores were 
significantly associated with OS in the univariate analysis 
and showed comparable prognostic performances in both 
primary and validation cohorts. Among them, the Rad-
score (ROIliver) showed outstanding prognostic performance 
with a C-index of 0.82 in the primary cohort and 0.72 in 
the validation cohort. Therefore, we suggested that changes 
in radiomics features from background liver parenchyma 
have predictive value in patient survival and might supply 
prognostic information related to recurrence and metastatic 
potential. Also, based on our findings, we found that the 
tumor was a more informative region than peritumoral 
tissue, with the higher prognostic performance observed. 
Our finding was in agreement with the one recent study 
based on CT images reporting that the radiomics features 
from the entire tumor were superior to those from the 
tumor edge zone in predicting MVI (30). Compared with 
CT-based study, our radiomics analysis based on gadoxetic 
acid-enhanced MRI has the advantages of higher soft-tissue 
contrast for more accurate tumor margin segmentation 
and also obtaining functional information of hepatocyte 
uptake from the tumor itself (31,32). In addition, after 
adding the radiomics features into a joint radiomics 
model, the combined rad-score demonstrated an improved 
performance with C-index of 0.88 in the training cohort 
and 0.83 in the validation cohort. It suggests that the multi-
scale radiomics features involving different regions may 
have superior prognostic power for HCC patient survival 
prediction.

Also, the BCLC stage and non-smooth tumor margin 
were identified as independent predictors of OS in our 
study, which were consistent with previous studies (28,33). 
Although the BCLC staging system is commonly used 
for the clinical management guidance and prognostic 
prediction of HCC, the predictive accuracy of which may be 
limited by the lack of detailed quantitative parameters (34).  
Therefore, we further assessed the added value of quantitative 
radiomics features to the clinical management system and 
semantic imaging finding and setting up a multiscale model 
using several predictive factors from different aspects. 
The results of the combined model demonstrated proper 
calibration and discrimination ability in the primary and 
validation cohorts, and it is worth noting that the C-index 

of this model was higher than those of the other two 
prediction models (C-index, 0.92 for the primary cohort 
and 0.84 for the validation cohort), which suggests that the 
integration of quantitative radiomics features and clinic-
radiological predictors within a computational framework 
could be a viable alternative in clinical practice.

Our study is still suffering from some limitations. First, the 
sample size of this study is limited to only 120 patients due to 
the prospective nature. However, all MR images used for our 
radiomics analysis were acquired in a uniform MR scanner 
with standardized sequences, protocols and reconstruction 
to avoid the bias of image. In the next step, large-scale 
samples based on multi-institutional cohort are necessary 
to facilitate the high-quality radiomics study. Second, 2D 
ROIs were applied in this study instead of 3D analysis, which 
enabled more effective tumor segmentation and were easy 
to achieve, and also proved to have a particular ability with 
3D analysis (35). Additionally, the ROI of background liver 
parenchyma was not delineated on the largest cross-section 
of the liver, but the largest one of the tumor, which may limit 
the prognostic performance of background liver in our study. 
Third, all MR images in this prospective study were obtained 
with a uniform MR scanner at a single institution to reduce 
bias and variance of our results; our results still need further 
validation on its generalizability.

Conclusions

In conclusion, we showed the prognostic value of the 
radiomics-based risk model, integrating radiomic and clinic-
radiological features, as a potent prognostic factor of HCC. 
Our model can supply the basis for alternative treatment 
strategy making and guide systematic follow-up, thus 
prolonging clinical outcome. Further studies on the integration 
of qualitative and quantitative image features were needed to 
confirm the efficiency and feasibility of our study.
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