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Abstract: The primary cause of tumor-related death in breast cancer (BC) is still represented by distant 

metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream 

cannot be early detected by standard imaging methods. The enumeration of circulating tumor cells (CTCs) represents 

an effective prognostic and predictive biomarker, which is able to monitor efficacy of adjuvant therapies, detect 

early development of (micro)metastases and at last, assess therapeutic responses of advanced disease earlier than 

traditional imaging methods. Moreover, since repeated tissue biopsies are invasive, costly and not always feasible, the 

assessment of tumor characteristics on CTCs, by a peripheral blood sample as a ‘liquid biopsy’, represents an attractive 

opportunity. The implementation of molecular and genomic characterization of CTCs could contribute to improve 

the treatment selection and thus, to move toward more personalized treatments. This review describes the current 

state of the art on CTC detection strategies, the evidence to demonstrate their clinical validity, and their potential 

impact for both future clinical trial design and, decision-making process in our daily practice.
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Introduction 

Breast cancer (BC) remains the most common type of 
cancer diagnosed among women and is responsible for 
15% of all cancer-related deaths with 40,000 estimated 
deaths in 2014 (1). Although the improvements in BC 
detection and adjuvant treatments led to a significant 
decrease in BC-related deaths in the last two decades, about 
30% of women initially diagnosed with early-stage cancer 
eventually develop metastatic disease. Moreover, despite 
advances in the treatment of metastatic BC, at this point 
it remains practically incurable, and the aims of therapy 
are the prolongation of overall survival (OS) time and the 
improvement of quality of life (2).

The leading causes of tumor-related death in BC 
remain the complications from distant metastasization. 
Unfortunately,  the spread of tumor cells through 
haematogenous dissemination from the primary tumor 
to distant sites cannot be detected by standard imaging 
methods. Therefore, there is an urgent need to find novel 

biomarkers, which could monitor efficacy of adjuvant 
therapies, detect early development of (micro)metastases 
and at last, assess therapeutic responses of advanced disease. 
In the last decade, the detection of disseminated tumor 
cells (DTCs) in the bone marrow and circulating tumor 
cells (CTCs) in the blood have demonstrated to provide 
useful information for the clinical management of BC by 
predicting treatment benefit earlier than traditional imaging 
methods. 

More recently, other potential blood-based markers 
are emerging as independent parameters for prediction 
development and outcome in metastatic disease, including 
circulating tumor microemboli and circulating tumor 
materials (CTMat). The apoptosis and necrosis processes 
of CTCs cause the leakage of intracellular components in 
the bloodstream, such as electrolytes, cellular debris, DNA, 
and chromatin. Since CTCs are continuously released and 
destroyed, such CTMat accumulate and could represent 
an independent biomarker for the prognostication and 
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monitoring of metastatic disease. 
The aim of this review is to describe the current state of 

the art on CTCs detection and clinical use, the evidence 
to demonstrate their clinical validity, and their potential 
impact for both future clinical trial design and, decision-
making process in our daily practice.

Strategies for CTC analysis

CTCs are present in the bloodstream at a very low 
concentration, thus their detection and characterization 
require highly sensitive and specific methods, which consist 

of a combination of enrichment (isolation) and detection 
(identification) strategies (Table 1) and both steps are 
essential components of the identification process (19).

CTC enrichment

CTC enrichment strategies are based on technologies 
that can distinguish CTCs among the surrounding 
hematopoietic cells, according to their physical (size, density, 
electric charges, deformability) and biological (cell surface 
protein expression, viability) characteristics. Therefore, 
enrichment techniques are based on two different strategies: 

Table 1 Advantages and disadvantages of the main enrichment and detection techniques

Technique Advantages Disadvantages References

CTC-filtering devices by size 

(ISET)

Capture and analysis platform; 

multiplexed imaging and genetic 

analysis; easy and rapid; feasible for 

EpCAM-negative CTCs

Low specificity (lose smaller CTCs and retain 

larger leukocytes)

(3-5)

Density gradient 

centrifugation (Ficoll-

hypaque or OncoQuick)

Easy and inexpensive; feasible for 

EpCAM-negative CTCs

Low specificity; cross-contamination of 

different layers (OncoQuick can resolve this 

issue)

(6,7)

CellSearch® system FDA cleared; visual confirmation of 

CTCs; clinical relevance; automated, 

quantitative; highly reproducible

EpCAM-positivity dependent; no additional 

gene expression tests could be added 

for analysis of CTCs; subjective picture 

evaluation; costly instrumentation

(8,9)

CTC-chip High detection rate; visual confirmation 

of CTCs; potential to harvest CTCs for 

further molecular and genetic analyses

EpCAM-positivity dependent; subjective 

CTC analysis; further investigation on assay 

specificity

(10,11)

Immunocytochemistry (ICC) Quantification and morphological 

analysis of CTCs; facilitate classical 

cytopathological review

Time-consuming; subjective evaluation (12)

Protein assays (EPISPOT) Detects only viable cells; limited 

number of markers

Clinical relevance not demonstrated; 

proteins must be actively secreted; no 

further identification and isolation of CTCs

(13,14)

Immunofluorescence-based 

technologies (DyLight)

Multimarker image analysis Application in cell lines (15)

RT-PCR (CTCscope) High sensitivity; detects only viable 

cells

No morphological analysis; visualization and 

enumeration of CTCs is not possible

(16)

Multiplex RT-PCR (AdnaTest) High sensitivity; detects only viable 

cells; saves sample and time, reduces 

cost; isolation and detection of stem 

cell and EMT markers

No morphological analysis; EpCAM and 

MUC1 positivity dependent assay; no 

quantification

(17,18)

ISET, isolation by size of epithelial tumor cells; CTCs, circulating tumor cells; EPISPOT, EPithelial ImmunoSPOT; EMT, epithelial 

mesenchymal transition; EpCAM, epithelial cell adhesion molecule.
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the selection according to morphological features or 
according to immunologic profile (12).

Several membrane filter devices are available for CTC 
enrichment based on the differential cellular size, including 
isolation by size of epithelial tumor cells (ISET) (3-5,20,21), 
micro electro-mechanical system (MEMS)-opticbased 
microfilter (3,22), ScreenCell® (23), CellSieve™ (24) and 
CellOptics® (3). Size-based enrichment techniques are 
jeopardized by the heterogeneity of size and the shape of 
CTCs. Filtration by size consents to enrich CTCs from 
a wide range of tumors, but sometimes results in loss of 
smaller CTCs or clotting of filter pores by leukocytes. 
Another morphology-based enrichment strategy is based 
on density gradient centrifugation using Ficoll-hypaque 
solution (6). Ficoll density-gradient dependent approaches 
are easy to handle, even if real losses of tumor cells have still 
been observed (25). Subsequently, the OncoQuick™ device 
was developed to avoid the cross-contamination of different 
layers by using a porous membrane, which keeps them 
separate (7). To date, several other devices based on physical 
properties of CTC are available, including a photoacoustic 
flow cytometer, a label-free biochip that exploits the 
differences in size and deformability of CTCs, a micro-
fluidics device that combines multiorifice flow fractionation 
(MOFF) and the dielectrophoresis (DEP) cell separation 
techniques, and a DEP field-flow fractionation device that 
allows isolation of viable CTCs by their different response 
to DEP (26-30). Particularly, Gupta et al. have recently 
described the ApoStream device. This technique exploits 
differences in the biophysical characteristics between 
normal blood cells and cancer cells in order to capture 
CTCs using dielectrophoretic technology in a microfluidic 
flow chamber (31).

Most  of  CTC enr ichment  procedures  involve 
immunomagnetic isolation (32-36). CTCs are subjected 
to positive or negative selection, utilizing either tumor 
cell antigens such as epithelial cell adhesion molecule 
(EpCAM), or hematopoietic cell antigens such as the 
common leukocyte antigen CD45 for purified cell 
suspensions (37-39). Antibodies are coupled to magnetic 
beads, thus the antigen–antibody complex is subsequently 
isolated from the solution with a magnetic field (8). 
Unfortunately, the lack of reliable target antigens for 
cellular capture still represents a significant limitation to 
the procedure. EpCAM, for example, is the by far most 
used capture antigen (i.e., CellSearch® system, CTC-Chip, 
MACS, Dynabeads, RosetteSep, affinity-based microchips) 
due to its expression across numerous tumor entities (40,41), 

but several pitfalls exist, including epithelial mesenchymal 
transition (EMT) and differential antigen expression. 
Particularly, EMT is a morphogenetic process in which 
cells lose their epithelial characteristics and acquire a 
mesenchymal-like migratory phenotype, endowing cells 
with invasive properties, thereby contributing to the 
apparition of CTCs and to the formation of metastases. 
It was further suggested that induction of EMT might 
generate cells that exhibit molecular and functional stem-like 
characteristics, leading to the under-expression of epithelial 
antigens like EpCAM (42). Thus, in order to capture this 
crucial biological subset of EpCAM low/negative CTCs, 
which have been suggested to confer aggressive tumor 
progression (43), future positive separation strategies should 
take this phenotype into account.

Recently, a structured medical Seldinger guidewire 
(FSMW), used to obtain safe access to blood vessels, bound 
with EpCAM antibodies, has been developed. This device 
has the potential to enrich CTCs in vivo and has been able 
to enrich EpCAM-positive CTCs from 22 of 24 BC or non-
small cell lung cancer (NSCLC) patients (44). Finally, a novel 
technique using surface-enhanced Raman spectroscopy (SERS) 
has been described. This method is able to enumerate targeted 
CTCs in the presence of whole blood, using magnetic beads 
and SERS tags respectively conjugated to EpCAM and HER2 
antibodies (45,46). SERS nanoparticles, with epidermal growth 
factor peptide as a target, successfully identified CTCs in the 
peripheral blood of 19 patients with squamous cell carcinoma 
of the head and neck (47). 

More recently, novel methods combining physical (size) 
and biologic (immunomagnetic) features of CTCs have 
been developed. Particularly, the CTC-iChip is capable of 
sorting rare CTCs from whole blood at a rate of 10 million 
cells per second in both epithelial and non-epithelial 
cancers by using tumor antigen–independent microfluidic 
technology (48,49). 

CTC detection

After enrichment, the solution usually still contains several 
leukocytes, thus CTCs need to be identified at the single-
cell level and separated from normal blood cells. CTCs 
detection can be done through cytometric strategies or 
nucleic acid-based techniques (12).

Among cytometric strategies, classic immunocytochemistry 
(ICC) is the most widely used immunological approach, 
and has the advantage to facilitate classical cytopathological 
review. Furthermore, monoclonal antibodies against various 
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epithelium-specific antigens, surface adhesion molecules, 
and growth factor receptors as well as diverse other 
upstream analyses (transcriptome/genome analyses) have 
been developed.

Among the current EpCAM-based technologies, the FDA 
cleared the CellSearch™ platform and the Ariol system (36), 
but the CellSearch™ remains the “gold standard” for all 
the CTC-detection strategies (8). The previously enriched 
EpCAM-positive cell fraction is additionally treated with a 
nucleic acid dye, a leukocyte-specific anti-CD45 monoclonal 
antibody and epithelial-specific anti-cytokeratin 8, 18, and 
19 antibodies. Subsequently, a semi-automated fluorescence-
based microscopy system (CellSpotter Analyzer) consents a 
computer-generated reconstruction of cellular images. CTCs 

express EpCAM and are CD45-negative, exhibit cytoplasmic 
expression of cytokeratin and contain a nucleus that binds to 
the nucleic acid dye 4’, 6-doamidino-2-phenylindole (DAPI). 
The absence of one of these characteristics disqualifies a cell 
image as a CTC (Figure 1). 

In 2007, Nagrath et al. introduced the “CTC-Chip”, 
a microchip technology on a microfluidic platform that 
separates CTCs from whole blood using microposts coated 
with an antibody against EpCAM under precisely controlled 
laminar-flow conditions. In the pilot study, the CTC-chip 
successfully identified CTCs in the peripheral blood of 99% 
patients with metastatic lung, prostate, pancreatic, breast 
and colon cancer (10). In a first clinical and promising 
approach, the chip had been tested on the samples of 
NSCLC patients, demonstrating that changes in tumor 
genotypes (EGFR mutational analysis on DNA of CTCs) 
may correlate with response to treatments (50,51). More 
recently, Stott et al. improved the technique in patients with 
localized and metastatic prostate cancer. The authors associated 
the detection of the PSA with the EpCAM-based method and 
with morphologic criteria and integrated multiple signals in 
the same 3D microfluidic device, improving the efficacy of 
the CTC-chip to detect CTCs. The pilot study showed that 
CTCs rapidly decreased after surgical tumor removal or after 
the initiation of an effective treatment, while the persistence 
of CTCs after 3 months from the surgery suggested that 
CTCs could be released from the localized disease before 
metastases development (11). Other microfluidic chips used 
for the identification and isolation of CTCs include the 
IsoFlux system (based on immunomagnetic capture) (52,53) 
and the Herringbone-Chip (based on microvortices that 
increase the number of interactions between CTCs and the 
antibody) (54).

Nevertheless, EpCAM-based technologies do not 
consent to recognize whether the detected CTCs are viable 
or apoptotic cells. A new functional test that allows the 
detection of only viable cells after CD45-cell depletion has 
been developed for the CTC and DTC analyses. Avoiding 
direct contact with the target cells, this method assesses 
the presence of CTCs on the basis of proteins secreted or 
released during a 24-48 hours of short-term culture (i.e., 
CK19 and MUC1). This technique, named EPithelial 
ImmunoSPOT (EPISPOT) assay, has been applied to blood 
and bone marrow samples of breast, prostate and colon 
cancer patients providing first clinical data (13,14).

In 2011, Balic et al. developed a multi-marker imaging 
approach using DyLight technology (15). This technique 
requires the use of multiple antibodies (i.e., against 

Figure 1 Computer-generated reconstruction of CTC images by 
semi-automated fluorescence-based microscopy system (CellSpotter 
Analyzer). EpCAM-positive cells are treated with a nucleic acid dye 
4’, 6-doamidino-2-phenylindole (DAPI), a leukocyte-specific anti-
CD45 monoclonal antibody (CD45-APC) and epithelial-specific 
anti-cytokeratin 8, 18, and 19 antibodies (CK-PE). CTCs exhibit 
cytoplasmic expression of cytokeratin (second column), contain a 
nucleus that binds to the nucleic acid dye (third column) and they 
are CD45-negative (fourth column). The first column represents 
the composite of the cells. CTCs, circulating tumor cells; EpCAM, 
epithelial cell adhesion molecule.

Tumor cell
composite

Cytoplasm
CK-PE pos

Nucleus
DAPI pos

Cell membrane
CD45-APC neg
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CK, HER2, ALDH1, CD44, and CD24) labeled with 
fluorochromes of different colors and spectral image 
analysis to separate different color spectra. Interestingly, by 
the addition of specific markers, this method may help to 
identify subpopulations that express particular therapeutic 
targets. Furthermore, the advent of quantum dots (QDs) 
with narrow emission spectra provided a new tool for multi-
marker analysis. Compared to immunofluorescent dyes, 
QDs are brighter, not prone to photo bleaching, available 
in a number of colors, and their emission can be tuned 
to any desired wavelength by modulating the size of the 
particle (41,55,56). Other available immunofluorescence-
based technologies for CTC-detection include automated 
scanning devices such as the fiber-optic array scanning 
technology (FAST) (57), the laser scanning cytometer 
[i.e., Maintrac® (58)] and a dedicated image cytometer 
[CellTracks® (59)].

Nucleic acid-based techniques have become the most 
widely used alternative to immunocytochemical assays. 
Particularly, PCR-based assay evaluates the amount of 
DNA from CTCs. The main disadvantage of this technique 
is the inability to distinguish the DNA free in the blood 
from apoptotic cells, creating false-positive results. For 
this reason, most groups prefer RT-PCR assays to target 
specific mRNA, since only viable CTCs produce mRNA 
(12,60,61). RT-PCR is based on the utilization of several 
cancer-related genes or epithelial antigens, including 
CK19, CK7, HER2, and mammaglobin A (62,63). To 
date, the mRNA encoding CK19 has been the most widely 
studied in clinical trials (64). Particularly, Stathopoulou  
et al. developed an RT-qPCR assay for KRT19 mRNA that 
showed to be highly sensitive and specific for the molecular 
detection of occult carcinoma cells in peripheral blood of 
BC patients (65-69). Nevertheless, the principal limitations 
to these techniques are related to the mRNA markers used, 
since they may be also present at low concentrations in 
normal blood, bone marrow cells and in other non-tumor 
cells (70). Moreover, cancer cells express high genetic 
instability and, especially in the course of the EMT, gene 
transcription may be downregulated. Quantitative real-time 
PCR provides interesting prospects for better quantification 
of the tumor cell load, provided that the specificity of the 
applied markers is well controlled. 

AdnaTest (Alere) is a commercially available RNA-
based CTC assay. This RT-PCR based assay utilizes 
nonquantitative RT-PCR to identify putative transcripts 
of genes after immunomagnetic separation of MUC1/
HER2/EpCAM-positive cells (17). The principal limitation, 

along with the others related to EpCAM-based methods, 
is that MUC1 expression has been found on activated T 
lymphocytes (18). Another aspect to be considered is the fact 
that the RT-PCR is unable to quantify the tumor cell load, 
since the observed bands may be the result of one single cell 
as well as a thousand. Another promising nucleic acid-based 
technique is the RNAscope technology used by CTCscope. 
This assay, recently described by Payne et al. (16), measures 
single RNA molecules for the detection of single CTCs 
in metastatic BC patients. This is a method that requires 
minimal enrichment and that can exclude apoptotic cells, 
since these do not produce mRNA.

Concluding, in the last two decades several promising 
CTC detection methods have been developed. These 
strategies should be validated in appropriately sized clinical 
trials in order to evaluate their quality and validity.

The rationale for the use of CTCs

The presence of tumor cells in the peripheral circulation 
was reported for the first time in 1869 by Thomas 
Ashworth (71). Since then, the existence, origin, and 
clinical significance of CTCs have been widely discussed. 
In the late 1970s, the introduction of sensitive and specific 
immunohistochemical techniques led to renewed interest 
in the detection of CTCs and their possible association 
with early metastasization in solid malignancies. However, 
the lack of sensitivity of the early detection methods on 
circulating blood and the analogy between tissue metastasis 
and single cell precursors of solid metastasis, especially in 
bone, shifted the focus on the detection of DTCs in bone 
marrow. Bone marrow is accessible by needle aspiration 
through the iliac crest, and represents the most common 
homing organ for DTCs derived from different tumors 
and thus, the most prominent indicator organ for minimal 
residual disease (72,73).

Initially, DTCs have been detected in the bone marrow 
of 30-40% of primary BC patients and their presence has 
been strongly associated with poor prognosis (74). In more 
recent studies, the DTC detection rate appears to be far 
lower (about 3%), likely due to the earlier detection of BC 
ubsequent to increased use of screening mammography (75). 
Although the presence of DTCs is a significant prognostic 
factor in the prediction of outcome, the low rate of DTCs 
questioned the value of its routine use in this highly selective 
group of patients. Furthermore, bone marrow biopsy is an 
invasive procedure, with higher morbidity and costs than a 
simple blood draw, thus subsequent research was directed to 
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the evaluation of CTCs in peripheral blood. Nevertheless, it 
should be noticed that with the choice of focusing research 
on the blood compartment, epidemiologic, prospective 
and biologic evidence regarding CTCs must not simply be 
extrapolated from the extensive body of evidence on DTCs. 
Interestingly, several studies compared both compartments 
in the same patients and reported higher prevalence of 
DTCs in bone marrow than CTCs in the blood, and rates of 
CTC-DTC concordance ranging from 63% to 94% (76-82). 

A higher presence of DTCs, together with its prognostic 
significance, favors the notion that bone marrow may be 
a ‘perfect niche’ in which tumor cells resist host defense 
mechanisms and survive. Several researchers shared the 
theory that bone marrow may represent a functional 
reservoir for cancer cells with the capability of recirculating 
through the bloodstream and colonizing other distant 
organs (83,84). As proof of that, a number of studies 
demonstrated that DTCs are able to persist in bone marrow 
even after completion of adjuvant therapy. Most of initially 
DTC-positive tumors turned negative during adjuvant 
treatment, but those with persistence of DTCs had worse 
disease-free and OS, suggesting that evaluation of DTCs 
can help in the selection of patients that will benefit from 
additional or a switch of adjuvant treatments (85). Even 
in neoadjuvant setting, the presence of DTCs in locally 
advanced BC was found to be a significant prognostic factor 
for cancer-related death, as well as a surrogate predictor 
of response to neoadjuvant chemotherapy and of disease 
recurrence (86). However, despite the presence of DTCs 
in bone marrow, according to the theory of “metastatic 
inefficiency” (87,88), only a part of tumor cells will be able 
to survive at the secondary sites and determine tumor mass, 
therefore only 40-60% of patients will eventually develop a 
relapse (74,89). 

Clinical application of CTCs in BC

CTCs in metastatic BC 

In 2004,  the seminal  work by Cristofani l l i  et  a l . 
demonstrated that CTC count detected using the 
CellSearch® was an independent prognostic factor for 
progression-free survival (PFS) and OS in metastatic 
BC. The cut-off of 5 CTCs/7.5 mL has been identified 
to classif ied patients with good or poor cl inical 
outcome (9) and subsequent studies have confirmed the 
prognostic value of CTCs with the same cut-off (90-92). 
The data of the pivotal study resulted in FDA-approval 

of the CellSearch® for prognosis and monitoring of 
patients with MBC. Interestingly, several authors have 
then shown that monitoring CTC levels enable prediction 
of treatment efficacy (93,94). Particularly, Cristofanilli  
et al. demonstrated that detection of CTCs before initiation 
of first-line therapy is highly predictive of PFS and OS, 
even more than traditional imaging techniques (based on 
RECIST criteria) (95,96), and that detection of elevated 
CTCs at any time during treatment, since the first cycle 
of therapy, is an accurate indication of subsequent rapid 
disease progression and mortality (90). A recent pooled 
analysis of 1,944 patients across 17 European centers has 
confirmed the independent prognostic role of CTC level on 
PFS and OS in metastatic BC patients. Patients with a CTC 
count of 5/7.5 mL or higher at baseline were associated 
with decreased PFS (HR 1.92, P<0.0001) and OS (HR 
2.78, P<0.0001) compared with patients with a CTC count 
of less than 5/7.5 mL. Moreover, 3-5 and 6-8 weeks after 
start of treatment, increased CTC counts were associated 
with decreased PFS and OS. The authors concluded that 
survival prediction was significantly improved by addition 
of CTC count to the clinic-pathological models, while the 
carcinoembryonic antigen (CEA) and cancer antigen 15-3 
(Ca 15.3) levels at baseline and during treatment did not 
add significant information to the model (92).

Since changes in CTC levels proved to reflect treatment 
responses as early as after the first cycle of chemotherapy, 
several other studies evaluated the predictive potential of 
CTCs, monitoring their dynamic in peripheral blood during 
specific treatments. Particularly, Smerage et al. have recently 
published the final results of the SWOG S0500 trial. 
The aim of this trial was to determine whether switching 
chemotherapy after 21 days of first-line chemotherapy, in 
patients with persistent increase in CTCs, could improve 
their OS. This study showed that early changing to another 
therapy improved neither OS nor PFS. Nevertheless, the 
authors concluded that for this population, there would be a 
need for a wider participation in trials of novel therapeutic 
agents at the time of progression, rather than moving on to 
further lines of standard chemotherapy (97). Furthermore, 
the CirCe01 trial aims to investigate the value of early CTC 
count-based switch in chemotherapy regimen in third-line 
or later settings.

With regard to molecular subtypes, in hormone receptor 
positive BC, detection of higher levels of CTCs may guide 
the selection of patients who would more likely benefit 
from chemotherapy rather than endocrine treatment. On 
the other hand, CTCs seem to lose their prognostic value in 
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patients with metastatic BC treated with targeted therapies, 
particularly in HER2 positive tumors. This effect could be due 
to a selective action of bevacizumab (Avastin®) and HER2-
targeted therapy against circulating epithelial cells, reducing 
the prognostic value of CTCs enumeration (98-100).

Figure 2 reassumes the evidence for the prognostic and 
predictive value of CTC count in metastatic BC. CTCs 
enumeration could guide therapeutic decision-making and 
the development of tailored treatments, improving the 
management of metastatic patients. 

CTCs in early-stage BC

In a large study involving 2,026 primary BC patients, 
CTCs have been detected in the peripheral blood of 
approximately 22% of patients after surgery and before 
adjuvant therapy (101). This amount appeared to be 
even higher in a smaller study that detected CTCs in 
approximately 31% of early stage BC patients (36% ER 
positive, 32% PR positive and 30% HER2 positive tumors). 
The authors reported that only 7% of all patients remained 
CTCs positive after adjuvant therapy, and no association 
between CTCs and tumor size, tumor grade, histological 
grade and receptor status was found (102). In adjuvant 
setting, CTC detection before chemotherapy has shown to 
be an independent predictor of disease-free survival (DFS) 
and OS and, not only the presence but also the quantity 
of CTCs has proven to be associated with worse outcome. 
Moreover, the persistence of CTCs after adjuvant treatment 
significantly correlates with a decreased DFS (101,103). 
These data have been recently updated and confirmed by 
Rack et al. in the success trial (104). In this large prospective 
trial, CTCs were detected in 21.5% of 2,026 patients before 

adjuvant chemotherapy. Particularly, CTCs were detected 
significantly more frequently in node-positive patients 
(22.4%) than in node-negative (19.6%) (P<0.001) while, no 
association was found with tumor size, grading, or hormone 
receptor status. Patients with at least 5 CTCs/30 mL blood 
before adjuvant treatment showed the worst prognosis. This 
trial provided strong evidence that CTC level represents 
a prognostic marker for reduced DFS, distant DFS, BC-
specific survival, and OS before adjuvant chemotherapy and 
for DFS after completion of the treatment. 

Therefore, CTCs evaluation in patients with early-stage 
BC could provide useful information for adjuvant treatment 
decision-making. However, in this particular context, CTCs 
are observed with low frequency thus, CTC detection 
methods with higher sensitivity could be necessary for their 
clinical use. Moreover, further studies are needed to better 
define its efficacy in both the prediction of outcome and 
monitoring the effect of therapy.

Concerning neoadjuvant chemotherapy, systemic 
response to treatment seems to be independent from the 
clinic-pathological features and the local response of the 
primary BC. Therefore, monitoring CTC and DTC levels 
during neoadjuvant treatment consents to better define the 
effectiveness of systemic treatment on tumor cell diffusion 
and could guide treatment strategies (105). In the neoadjuvant 
setting, CTCs have been detected in 22-23% of patients 
before and in 10-17% after systemic treatment. Interestingly, 
the persistence of CTCs after neoadjuvant chemotherapy 
was not correlated to the primary tumor response but it 
identifies a subpopulation of patients with an increased risk 
for early relapse and worse OS (106,107). Figure 2 reassumes 
the evidence for the prognostic and predictive value of CTC 
count in neoadjuvant and adjuvant settings.

Figure 2 Prognostic and predictive value of CTC level in neoadjuvant, adjuvant and metastatic setting. OS, overall survival; DMFS, distant 
metastasis free survival; DFS, disease free survival; BC, breast cancer; PFS, progression-free survival; CTCs, circulating tumor cells.
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Clinical application of CTCs in other cancers

Prostate cancer

In 2005, Moreno et al. demonstrated that in patients 
with metastatic prostate cancer, CTC detection with 
the cut-off of 5 CTCs was a predictive factor superior 
to other clinical variables (108). Moreover, Okegawa 
et al. confirmed that CTC count represent an independent 
predictor for OS (109). Nevertheless, the optimal cut-off 
point to distinguish patients with favorable prognosis from 
those with poor prognosis still remains widely discussed 
(110-112). Subsequently, several large cohorts of castration-
resistant prostate cancer (CRPC) patients clinically defined 
the prognostic significance of pre- and post-treatment 
CTC counts and the superior predictive ability of CTC 
enumeration in comparison with PSA level at all-time 
points (113-115). Therefore, changes in CTC counts in 
response to treatment have been established as indicators of 
response to treatment (116-118).

Patients with high-risk non-metastatic prostate cancer 
infrequently present with small number of CTCs in 
peripheral blood therefore, CTC may not be the optimal 
marker to predict prognosis or detect residual disease after 
radical prostatectomy (119,120). Interestingly, in these 
patients with localized prostate cancer, CTC count did 
not correlate with tumor volume, pathological stage, and 
Gleason score, suggesting that CTCs are more likely to 
originate from metastatic sites instead of primary lesions 
(121,122).

Colorectal cancer

In 2008, Cohen et al. demonstrated that metastatic colorectal 
cancer (mCRC) patients with ≥3 CTCs had significantly 
shorter median PFS and OS and worse treatment outcome 
compared with those with <3 CTCs (123). More recently, 
also the presence of at least 1 CTC at baseline count was 
found to be predictive for poor prognosis. Therefore, 
patients with 1-2 CTC should be switched from the favorable 
prognostic group (conventionally defined by the presence 
of <3 CTCs) to the unfavorable (124). Interestingly, the 
prevalence of CTCs in colorectal cancer patients are lower 
than in other cancer types, due to the capture of viable CTCs 
in the liver as first filter organ (125). Particularly, unfavorable 
baseline CTC was associated with worse PFS in patients 
receiving first- or second-line therapy, irinotecan, having 
liver involvement, ≥65 years, and ECOG PS of zero (126). 
Moreover, CTC count turned out to be a reliable surrogate 

biomarker in assessing Japanese patients responsive to 
oxaliplatin-based chemotherapy (127). More recently, 
high CTC count predicted reduced OS in patients treated 
with cetuximab-combination chemotherapy as third-line 
treatment (128). 

In non-metastatic setting, molecular assessment for 
micrometastasis in sentinel lymph node along with 
CTC count may help to identify patients at high risk for 
recurrence and thus who could benefit from adjuvant 
therapy (129,130). Furthermore, even after curative 
resection, patients with persistence of CTCs exhibited 
higher incidence of relapse and worse relapse-free 
survival rate (131). In a multi-institutional study, a panel 
of genes (CEA/CK/CD133) investigated in peripheral 
blood from 753 colorectal cancer patients, turned out 
to be a superior prognostic factor over other existing 
clinicopathologic features in patients with Dukes’ stages 
B and C (132). Particularly, higher CD133 expression 
was significantly associated with poorer clinical outcome 
and some clinicopathological factors such as T category, 
N category and vascular invasion in colorectal cancer 
patients (133).

Lung cancer

In lung cancer, it was demonstrated that CTC detection 
had the potential to distinguish malignant from benign lung 
disease and to predict the presence of distant metastasis. 
Moreover, CTC status was proportional to both clinical and 
pathological status and was associated with radiographic 
response at the end of two cycles of chemotherapy. CTC 
detection also possessed a significant prognostic value in 
both small and NSCLC patients who were treated with 
standard chemotherapy and also in resectable NSCLC 
independently of disease staging. Patients with a reduction 
in CTC number after one cycle of chemotherapy have 
longer PFS and OS (134-145).

Furthermore, the prognostic and predictive value of 
CTC level has been investigated in bladder, renal, ovarian, 
gastric and liver cancer (146). Table 2 reassumes the main 
clinical evidence for CTC detection in breast, prostate, 
colorectal and lung cancer.

Liquid biopsy

As previously reported in literature, the immunehistochemical 
profile of BC could change in the course of the disease, 
determining a substantial discordance in receptor status 
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between primary and recurrent BC (155). Particularly, 
the ER and HER2 status of the primary tumor could be 
discordant with the status of the metastatic tumor sites and 
the profile of CTCs (156). Since repeated and approachable 
tumor biopsies are invasive, costly and not always possible, 
the assessment of tumor characteristics on CTCs by a 
peripheral blood sample as a ‘liquid biopsy’ represents an 
attractive alternative. 

Several studies analyzed the genetic aberrations carried 
by CTCs and compared their genetic profile to that of 
primary tumor, trying to correlate some mutations to 
disease aggressiveness and treatment response. Therefore, 
several clinical trials are currently investigating novel 
targeted strategies based on expression profiles of CTCs. 
For instance, Stebbing et al. studied the efficacy of lapatinib 
in metastatic BC with HER2-negative primary tumors 
and EGFR-positive CTCs, but the attempt to expand the 
pool of patients eligible for a targeted therapy in this study 
was unsuccessful (157). Moreover, the DETECT III trial 
and the CirCe T-DM1 trial are currently investigating the 
efficacy of HER2-targeted therapy in HER2-negative MBC 
with HER2-positive CTC. 

Further interventional controlled phase III trials 
are needed to investigate and define the role of CTCs 
evaluation in the improvement of patient outcome and 
in the reduction of medical costs (158). It is likely that 
the future implementation of molecular and genomic 
characterization of CTCs will contribute to improve the 
treatment selection and thus to move toward precision 
medicine.

Conclusions

DTCs in bone marrow and CTCs in peripheral blood 
have a wide range of potential applications, including 
prognostication at diagnosis, assessment of treatment 
response, detection of early metastasization and evaluation 
of novel agents, allowing a personalized choice of treatment 
modalities and timing. Moreover, the capability of 
detecting and eradicating metastatic cells at an early phase 
of metastatic process likely has the potential to improve 
cancer outcomes. These interesting findings provide ample 
room for well-designed clinical trials in order to further 
investigate the significance of CTCs in human cancer.
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